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Abstract

A simple first-order recurrence in a (max, +) dynamic system is numerically investigated and
shown to exhibit statistical long-range dependence, characterized by slowly decaying aggregated
variances and power-law evolutions of the autocorrelation and spectrum. We propose this model
as a basis for a very parsimonious modeling of some long-range dependent processes such as
data traffic.

1. INTRODUCTION

Several types of processes arising in complex sys-
tems of various kinds have recently been shown to
exhibit fractal statistical properties characterized
by long-range dependence and self-similarity. For
instance, the results of Ref. 1 (and references there
in) are concerned with highway traffic and report
various quantities, both from models and measure-
ments, that fluctuate like 1/fα noises, such as the
flow of cars or the size of traffic jams. References 2–
5 exhibit long-range correlations in texts or com-
puter programs or files: usually a numerical code
is assigned to each character and the series of char-
acters forming the text or file is transformed into a
random walk from which long-range correlations are
quantified. Other important examples are provided

by data traffics in communication networks, where
long-range dependence has been measured on var-
ious quantities, such as the travelling times be-
tween nodes in the network,6 or the number of data
packets incoming on a node per unit time,7–8 or the
arrival or interarrival times of connections,9 or the
number of bytes to encode successive video frames
in variable-bit-rate video traffic.10

Accurate modeling and simulation of such
long-range dependent processes are key issues for
analysis, control and performance evaluation of
complex engineering systems like modern commu-
nication networks. Classical models like Poisson-
based processes or linear models (such as au-
toregressive moving average (ARMA) processes)
are known to be unable to generate long-range
dependence.7,9,11 More elaborate processes have
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been proposed for modeling long-range dependent
evolutions, including fractional Gaussian noises
and fractional ARIMA (autoregressive integrated
moving average) processes.7–8,12 Yet, the practical
implementation of such processes to generate syn-
thetic traces is usually uneasy and demanding on
computational resources. Generating a single data
point of the synthetic trace often requires processing
a large number of auxiliary points, usually infinite
in principle if one closely adheres to the definitions
of the processes. It is the case for the fractional
Gaussian noise obtained by convolution (over an in-
finite time horizon in the past) of a white noise with
an hyperbolic kernel,11 the case also with the real-
ization of fractional ARIMA processes with linear
filters of infinite order.13 Also, most of the time
the synthesized data do not come through a simple
(low-order) recurrence allowing “on-line” genera-
tion, in contrast to the scheme we are about to
propose.

In another area of signals and systems science,
(max, +) dynamic systems have been introduced,
mainly in a deterministic context, for modeling
discrete events and their synchronization, as they
occur for instance in manufacturing lines or trans-
portation networks.14–16 We propose here a novel
application of (max, +) systems, in a stochastic con-
text, with a simple instance that we show capable

of generating, through a parsimonious first-order
recurrence, statistical long-range dependence and
usable as a basis for traffic modeling.

2. THE MODEL AND ITS
PROPERTIES

Consider the system defined by:

U(k) = U(k − 1) + u(k) , (1)

Y (k) = max[Y (k − 1), U(k)] , (2)

y(k) = Y (k)− Y (k − 1) , (3)

for integers k > 0, with the initial condition U(0) =
Y (0) = 0. For all k > 0, the quantities u(k) form-
ing the input sequence are independent and identi-
cally distributed random variables with zero mean.
We are interested in the statistical properties of the
output sequence y(k) and shall show that it exhibits
long-range dependence.

The stochastic process described by Eqs. (1)–
(3) has a very concise writting under the form of
a simple first-order recurrence allowing direct nu-
merical implementation. It makes use of the max
and + operators which form the basis of the so-
called (max, +) dynamic systems.15–16 This process
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Fig. 1 A typical evolution of y(k) from Eqs. (1)–(3) when u(k) is uniform over [−1, 1], displayed over intervals of increasing
lengths and revealing a self-similar structure.
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can also be interpreted in the context of random
walks:17 it represents the stochastic process formed
by the successive increments of the running max-
imum of a random walk with arbitrary increment
distribution. Yet, such an unconventional process is
usually not considered as such in classical texts on
random walks, especially for the property of long-
range dependence that we shall now address.

A typical evolution of the sequence y(k) is shown
in Fig. 1. It is formed by bursts where y(k) > 0,
separated by intervals where y(k) = 0. The val-
ues of the increment y(k) at zero happen each time
the sequence U(k) lags behind Y (k). When U(k)
catches up on Y (k), the increment y(k) gets above
zero. Every time U(k) catches up on Y (k), it is
just as if the system was restored in its initial con-
dition. The resulting evolution of y(k) displays self-
similarity, with bursts where y(k) > 0 separated by
intervals where y(k) = 0 occurring with a similar
appearance at any time scale, as visible in Fig. 1.

To characterize this self-similarity, we consider
the aggregated process y(m)(`) formed by averag-
ing y(k) over non-overlapping successive bins of a

fixed length m, i.e. y(m)(`) = m−1∑`m+m
k=`m+1 y(k).

From a very long segment of data, we have esti-
mated the empirical variance of the aggregated pro-
cess according to var[y(m)] = N−1∑N

`=1[y
(m)(`)]2 −

[N−1∑N
`=1 y

(m)(`)]2 and for different values of the
aggregation level m. The variation shown by the
log-log plot of Fig. 2 is quite consistent with a power
law of the form var[y(m)] ∼ m−β with β ≈ 0.5.
This slow decay of var[y(m)], with an exponent
β < 1, is characteristic of a process with long-range
dependence.7–8

We have also performed the empirical estima-
tion of the autocorrelation function of the sequence
y(k) according to Ryy(`) = N−1∑N

k=1 y(k)y(k+ `).
Figure 3 shows a typical evolution of Ryy(`) which
is quite consistent with a power law of the form
Ryy(`) ∼ `−β with β ≈ 0.5. This slow power law de-
cay of the autocorrelation function is again charac-
teristic of a process with long-range dependence.7,8

Fourier transforming the autocorrelation func-
tion Ryy(`) gives access to an estimation of a fre-
quency spectrum Pyy(f) for the sequence y(k). For
such an empirically evaluated Fourier pair, the
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Fig. 2 Variance var[y(m)] of the aggregated process y(m)(`) versus m, from Eqs. (1)–(3) when u(k) is: (×) uniform over
[−1, 1] and (◦) zero-mean unit-variance Gaussian. The inset concerns s(k) defined in Fig. 5. In both graphs, the solid line has
the slope −0.5.
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Fig. 3 Autocorrelation Ryy(`) versus lag `, from Eqs. (1)–(3) when u(k) is zero-mean unit-variance Gaussian. The inset
concerns s(k) defined in Fig. 5. In both graphs, the dashed line has the slope −0.5.
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Fig. 4 Spectrum Pyy(f) from a Fourier transform of the autocorrelation of Fig. 3. The dashed line has the slope −0.5.
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Fig. 5 An evolution of the process s(k) (see text) with the yi(k) driven in Eqs. (1)–(3) by zero-mean unit-variance Gaussian
independent ui(k), s0 = 3 and η(k) a zero-mean Gaussian white noise with standard deviation 0.2.

theory predicts11 that with a statistically self-
similar signal, the autocorrelation function will fol-
low a power law with exponent β, and then the
associated spectrum will follow a power law with
exponent α = 1 − β. We have verified that our
process y(k) realizes this property, as exemplified
by Fig. 4 which shows an evaluation of the spec-
trum quite consistent with a power law of the form
Pyy(f) ∼ f−α with α = 1 − β ≈ 0.5. This power
law behavior identifies the stochastic process y(k)
in the class of 1/fα noises.8,11,18–19

We have also verified that the autocorrelation
function that can be estimated in the same way
for the aggregated process y(m)(`) and the corre-
sponding spectrum, exhibit the same power law
dependences with identical values for β and α.

The power laws empirically observed in Figs. 2–
4 allow one to assign to the process y(k), a self-
similarity property which can be quantitatively
identified by the self-similarity parameter H =
1 − β/2 ≈ 0.75.11 It is this type of procedure that
is adopted, for instance in Refs. 7, 8 and 10 to
characterize empirical data traffics as self-similar
and to assign to them a self-similarity parameter
H. For our process of Eqs. (1)–(3), we have ob-
served that the long-range dependence property and
its characteristic values β = 0.5, α = 0.5 and
H = 0.75, remained unchanged when tested with
various distributions of the zero-mean input pro-
cess u(k) (Gaussian, uniform, exponential, discrete
distributions were tested). This robust behavior
seems to be a universal property of the long-range
statistics of the (max, +) system of Eqs. (1)–(3),
unaffected by short-range features conveyed by the
distribution of u(k).

Similar long-range dependence with comparable
values for the self-similarity parameter has recently
been observed in different types of data traffic.7–8,10

We propose the process y(k) of Eqs. (1)–(3) as a

possible basis for modeling such long-range depen-
dent traffics, or other long-range dependent pro-
cesses with a self-similarity parameter H ≈ 0.75.
The process y(k) alone has a peculiar structure
with bursts of positive activity separated by in-
tervals at zero. This offers a possibility for repre-
senting burstiness in traffics. More realism can be
introduced in the synthetic traffic traces by using
several independent sequences yi(k) as building
blocks, in order to induce more local variability
in the traces while preserving long-range depen-
dence. For instance, we form the sequence s(k) =
s0 +

∑3
i=1 yi(k) −

∑6
i=4 yi(k) + η(k), where the

yi(k) are driven in Eqs. (1)–(3) by independently
and identically distributed inputs ui(k). η(k) is a
zero-mean white noise (or a noise with short-range
correlation) whose role is to describe fluctuations
with short-range correlation in the traffic, as ob-
served for instance in Refs. 7, 9 and 10. s(k) will
fluctuate around the constant s0 and because of the
statistical independence of the components forming
s(k), these fluctuations will display long-range de-
pendence with the same power law behaviors as the
individual yi(k). An illustration is given in Fig. 5
and in the insets of Figs. 2 and 3.

3. DISCUSSION

The present results show that the process of
Eqs. (1)–(3) is able to generate synthetic traces
that, when tested the way empirical data traffics
are, exhibit comparable long-range dependence
properties. This forms the basis for our proposing
the process of Eqs. (1)–(3) for the modeling of traffic
with long-range dependence. The type of model-
ing we have in mind here is essentially “black-box”
modeling. We are not trying to represent, with
Eqs. (1)–(3), actual internal mechanisms taking
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place in traffic systems. Rather, we propose a
formal model that is able to reproduce some im-
portant statistical properties (long-range depen-
dence) that are observed in the “external” behavior
measured on various traffic processes. A large
amount of measured data have recently become
available which point to long-range dependence
properties in traffic. Their modeling have impor-
tant implications for modern engineering systems,
yet no simple models are now available to repro-
duce these long-range dependence properties. Our
formal model offers a possibility to this aim.

It is possible to go a little further toward a
“physical” grounding of our model. As evoked
in Sec. 1, (max, +) dynamic systems are used in
some areas of systems science to model the evolu-
tion of delayed or synchronized processes as they
occur for instance in manufacturing lines or trans-
portation networks. They manage to represent in
a natural way, signals or events that are coming
in asynchronously into a system possessing inter-
nal processing times regulating the signals or events
that are put out.14–16 These elementary ingredi-
ents, when organized in a sufficiently elaborated
way, may be at the root of some specific mecha-
nisms taking place in networks of traffic and lead-
ing to statistical properties such as long-range de-
pendence. It is thus an existing possibility, that
Eqs. (1)–(3) could appear as building blocks in mod-
els describing actual internal mechanisms in net-
works of traffic. But such models referring to actual
networks would require careful elaboration; they
would be more specific to a given type of traffic;
and also their inherent complexity could somehow
obscure the simple origin of the long-range depen-
dence property, that we show clearly present as soon
as the elementary process described by Eqs. (1)–(3).

We thus prefer in the present study to keep a
“black-box” status to our model of Eqs. (1)–(3).
Elaborations on Eqs. (1)–(3) to show if they can
be meaningfully incorporated in realistic models of
specific networks of traffic may constitute possi-
ble developments. Here, we concentrate on show-
ing that intrinsically, Eqs. (1)–(3) can generate
long-range dependence and on establishing them as
a very parsimonious “black-box” model for long-
range dependent traffics, which we think interesting
and useful in its own right.

A process like y(k), with a 1/fα spectrum, is
usually non-stationary.11 Empirical traffic data are
measured and analyzed in the absence of any proof
that they are stationary and given the complexity

uncovered in actual traffic, it is probable that
it is not stationary. Also, from a theoretical
point of view, a strict self-similar process cannot
be stationary.20 In practice, empirical estimators
are employed which allow a characterization, in
measured data, of self-similarity and long-range de-
pendence properties7–10. It is this type of empirical
estimators that we implement here to characterize
the long-range dependence in our process. The em-
pirical autocorrelation function and spectrum used
here are of this type. For non-stationary processes,
Ref. 21 explains how such empirical measures can
be interpreted as averages of time-dependent quan-
tities. For instance, a time-dependent spectrum
which reduces to the conventional power spectral
density if the signal happens to be stationary.

The main purpose for establishing Eqs. (1)–(3) as
a possible model for long-range dependent traffic is
related to the observation reported, that when our
synthetic traces are tested the way actual traces are,
with the same empirical estimators, they exhibit
comparable long-range dependence properties.

Finally, we note that our scheme of Eqs. (1)–
(3) does not provide control on the parameter H
characterizing the long-range dependence. Never-
theless, the invariant value H = 0.75 is close to
values of H currently observed for actual data traf-
fics, and it can serve as a useful approximation,
given the simplicity of Eqs. (1)–(3) that allow on-
line generation. In fact, Eqs. (1)–(3) involving a
simple first-order recurrence on a scalar variable
with a straightforward on-line implementation, con-
stitute to our knowledge the simplest scheme that
has ever been proposed for the generation of a non-
trivial 1/fα noise. Our scheme realizes α = 0.5
as a universal property, much like the white noise
realizes α = 0 and the Brownian motion α = 2.
Further, various extensions could be investigated to
gain additional control on the process, such as the
consideration of higher-order (max, +) systems, or
the introduction of correlation in the input sequence
u(k), all of which are currently under study.
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