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Abstract: A quantum Pauli noise is a nonunitary process that alters the state of a qubit by random
application of the four Pauli operators. We investigate a four-qubit quantum circuit, consisting of a
pipeline of three independently controlled Pauli gates, for simulating the general class of qubit Pauli
noises. The circuit with a fixed architecture is controllable by three separable quantum states from three
auxiliary qubits in order to adjust the parameters of the targeted Pauli noise on the principal qubit.
Important Pauli noises such as bit flip, phase flip, bit phase flip, and depolarizing noise are readily
simulated, along with an infinite subset of other Pauli noises. However, the quantum circuit with its
simple and fixed architecture cannot simulate all conceivable Pauli noises, and a characterization is
proposed, in the parameter space of the Pauli noises, denoting those that are simulable by the circuit
and those that are not. The circuit is a useful tool to contribute to controlled simulation, on current or
future quantum processors, of nonunitary processes of noise and decoherence.
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1. Introduction

Quantum technologies, present and forthcoming, have to operate, in realistic practical
conditions, in the presence of quantum noise or decoherence [1–3]. Accordingly, quantum
noise or decoherence represents a major factor for the operation and development of quan-
tum technologies. It is therefore crucial to take quantum noise into account when designing
and evaluating quantum methodologies and devices for quantum signal and information
processing.

Significant efforts are being made to reduce or mitigate quantum noise in the physical
implementation of quantum devices as much as is feasible. An inevitable residual amount
of noise is nevertheless realistic to envisage in this sector, and, from a broader perspective,
quantum noise or decoherence may result from an imposed environment and the given
external conditions where the quantum devices have to operate. It is therefore broadly
relevant to tailor and optimize the quantum signals, information processing, and devices to
efficiently cope with noise. Many areas and tasks of quantum technologies are concerned
with this perspective, such as the following examples.

For communication over a quantum channel, efficient signaling and encoding at the
input, efficient measurement and decoding at the output, the performance of quantum error
correcting codes, and the information capacities and their approaching or achieving condi-
tions all generally depend on the quantum noise over the channel [4,5]. The performances
of cryptosystems, cryptographic protocols, encryption and decryption, and quantum key
distribution generally depend on the quantum noise present [6,7]. For quantum sensors and
metrology, the input quantum signals used for probing, their measurement and processing
at the output, and the quantum protocols in use for parameter estimation and for state
or process tomography all generally need to be designed and optimized according to the
noise conditions [8–10]. Quantum control, quantum optimization, quantum annealing,
and quantum machine learning can also have their performance affected by noise [11–14]
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and may require optimization for optimal efficiency, for instance to exploit a controlled
level of noise to escape local suboptimal solutions, or to exploit more special noise effects
such as stochastic resonance [15–17]. Fault-tolerant quantum computation is also directly
concerned with the influence of quantum noise [18,19].

All these areas and tasks, for the design and optimization of the quantum signals, quan-
tum processing, and quantum devices involved, may benefit from experimental testbeds
where quantum noise is applicable in controlled conditions so as to assess its impact in
various scenarios. Such controlled simulation of quantum noise can be obtained by means
of appropriate noise models implemented on quantum circuits accessible from current or
future quantum processors. In this respect, various circuit models are accessible to simulate
important quantum noises, especially with relevance to the qubit [20,21], which is a funda-
mental object of quantum information, yet not exhaustively covering all conceivable qubit
noises. Also, different circuit models are possible depending on the constraints imposed on
the circuit hardware, but no systematic methodology yet exists to derive and optimize the
models, even for the essential case of qubit noises.

To contribute in this direction of controlled simulation of quantum noises, in this
article, we address the important class of quantum Pauli noises on a qubit. We will consider
a quantum circuit with a simple fixed pipeline architecture of three controlled standard
quantum gates. Moreover, we will investigate the capability of this quantum circuit in
order to simulate Pauli noises over a broad (infinite) range of instances while enabling easy
control regarding the noise parameters.

2. Quantum Pauli Noise

A general Pauli noise [4] is a nonunitary process that alters the quantum state ρ of a
qubit through random application of the four Pauli operators

{
σ0 ≡ I2, σx, σy, σz

}
, which

form an orthogonal basis for operators on the two-dimensional qubit Hilbert space H2.
Accordingly, the action of such a Pauli noise on a density operator ρ can be represented by
the quantum operation with the operator-sum representation

ρ 7−→ N (ρ) = ∑
k=0,x,y,z

pkσkρσ†
k , (1)

with (p0, px, py, pz), a probability distribution satisfying the normalization condition p0 +
px + py + pz = 1, and the four Kraus operators Λk =

√
pkσk. Pauli noises form a useful

class of quantum noise that has been considered in many contexts of application, for in-
stance for detection [22] or estimation [23–25] with quantum signals, or for investigating
specific properties of quantum noises [26,27]. The class of Pauli noises of Equation (1) in
particular contains important noises [20] such as the bit-flip noise when (p0, px, py, pz) =
(1 − px, px, 0, 0), the phase-flip noise when (p0, px, py, pz) = (1 − pz, 0, 0, pz), the bit-
phase-flip noise when (p0, px, py, pz) = (1 − py, 0, py, 0), and the depolarizing noise when
(p0, px, py, pz) = (1 − p, p/3, p/3, p/3) parametrized by the probability p = 1 − p0.

Equivalently, on a qubit density operator ρ =
(
I2 + r⃗ · σ⃗

)
/2 in standard Bloch repre-

sentation [20], the quantum operation of Equation (1) realizes inR3 the transformation of
the Bloch vector

r⃗ 7−→ r⃗ ′ =

 ax 0 0
0 ay 0
0 0 az

 r⃗ , (2)

with the three real scalar matrix elements
ax = p0 + px − py − pz = 1 − 2(py + pz) ,

ay = p0 − px + py − pz = 1 − 2(px + pz) ,

az = p0 − px − py + pz = 1 − 2(px + py) .

(3)

(4)

(5)

The three parameters ak in Equations (3)–(5) are contraction factors satisfying 0 ≤ |ak| ≤
1 for all k ∈ {x, y, z}, to guarantee that the Bloch ball of valid Bloch vectors is mapped into
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itself. The transformation of Equation (2) by noise contracts the Bloch vectors in a generally
nonuniform way along the three directions, Ox, Oy, and Oz, ofR3. An increasing level of
noise corresponds to a more pronounced contraction. The maximum level of contraction
would occur as ax = ay = az = 0, corresponding to a noisy state with a null Bloch vector
0⃗ characterizing the maximally mixed qubit state I2/2 identifiable with the maximally
noisy state.

Alternatively, the nonunitary quantum operation N (·) defined in Equation (1) by an
operator-sum representation can be described through an interaction with an (unobserved)
environment in the form of a Stinespring dilated unitary representation [20]. For a principal
quantum system Q initially with the density operator ρ, the environment E is initially
prepared in a pure state |e0⟩, and a joint unitary operator UQE is introduced [20] to describe
the evolution of the system-environment compound QE generically occurring as ρ ⊗
|e0⟩ ⟨e0| 7→ UQE

(
ρ ⊗ |e0⟩ ⟨e0|

)
U†

QE. Finally, after this joint unitary evolution, the final state
of the principal system Q is obtained by partial tracing over the environment E as

trE

[
UQE

(
ρ ⊗ |e0⟩ ⟨e0|

)
U†

QE

]
= N (ρ) . (6)

The constitutive details of the environment are largely wiped off in the partial trace op-
eration of Equation (6), and an infinite set of environment models (isometrically related)
equivalently lead to the same evolution ρ 7→ N (ρ) from Equation (6) for the principal
system Q. For a quantum noise on Q, a simulator enabling control of the noise properties
can be constructed as a quantum system offering an adequate model for the environment.
The environment model has to be designed, via the choice of |e0⟩ and UQE, so as to match
in Equation (6) the quantum operation N (·) defined by the operator-sum representation of
Equation (1).

For a quantum operation ρ 7→ N (ρ) = ∑K
k=1 ΛkρΛ†

k defined by K Kraus operators Λk,
one possibility can be to select a K-dimensional environment E and a choice of |e0⟩ and
UQE, solving

UQE |Q⟩ ⊗ |e0⟩ =
K

∑
k=1

(
Λk |Q⟩

)
⊗ |ek⟩ (7)

for any pure state |Q⟩ of the principal system Q, and {|ek⟩}K
k=1 forming an orthonormal

basis of the K-dimensional environment space.
To model by such a Stinespring dilated unitary representation the qubit Pauli noise of

Equation (1) defined by K = 4 Kraus operators Λk =
√

pkσk, a four-dimensional environ-
ment E can be selected, realized by two auxiliary qubits, unitarily interacting via UQE with
the principal qubit Q. Yet, as we mentioned earlier, other models for the environment E are
possible, with a larger, arbitrarily larger, dimensionality, to equivalently satisfy Equation (6).

To obtain a simulation by a simulating device of the nonunitary quantum operation
N (·), a subsequent step is to materialize with a quantum circuit, constructed from elemen-
tary unitary quantum gates, the environment model E and its joint unitary evolution UQE
with the principal qubit Q. In the resulting simulating circuit, it is desirable to obtain easy
control on the parameters determining N (·), that is, the set of probabilities (p0, px, py, pz)
in the case of the Pauli noises from Equation (1).

For simulating in this fashion the class of Pauli noises from Equation (1), with a two-
qubit environment E as envisaged above, if one wants the convenience of a fixed circuit
architecture fixing a common UQE for any choice of the four noise parameters (p0, px, py, pz),
one displaces in this way the control of (p0, px, py, pz) onto the initial state |e0⟩ of the two
environment qubits. To dispose of enough degrees of freedom, one will usually have to
resort to two-qubit entangled states |e0⟩, for instance under the form

|e0⟩ =
√

p0 |00⟩+√
px |01⟩+√

py |10⟩+√
pz |11⟩ , (8)

that may not be straightforward to prepare with common qubit gates (and presumably
restoring a parameter-dependent architecture for the quantum circuit preparing |e0⟩).
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As an alternative in the sequel, we will examine a larger environment model E, relying on
three auxiliary qubits instead of two, enabling a simple hardware architecture to implement
a fixed UQE, and a control on the four parameters (p0, px, py, pz) of Pauli noise (only three of
them are independent) by means of separable initial states for the three environment qubits.

3. A Quantum Circuit for Simulating Pauli Noises

For simulating the qubit Pauli noises from Equation (1), we consider a quantum circuit
utilizing three auxiliary qubits and only three elementary quantum gates in the form of
a controlled version of each elementary Pauli gate σx, σy, and σz. These three controlled
Pauli gates are elementary quantum gates usually readily accessible from the gate libraries
of the currently available quantum processors, such as those of [28,29] or others. The three
controlled Pauli gates are assembled in the simple pipeline architecture shown in Figure 1.

Q

|qx〉
|qy〉
|qz〉

σx σy σz N (·)

⊐
⊐
⊐

Figure 1. Quantum circuit for simulating a general Pauli noise by realizing the quantum operation
N (·) of Equation (1) on the principal qubit Q. The three-qubit environment E prepared in the pure
separable state |qx⟩ ⊗ |qy⟩ ⊗ |qz⟩ from Equation (9) sets the noise parameters pk in the presence of a
fixed hardware circuit by providing the control qubits to Pauli gates σx, σy, and σz.

Each control qubit to the three Pauli gates in Figure 1 is initialized in the (properly
normalized) state of the Hilbert space H2,

|qk⟩ =
√

1 − qk |0⟩+
√

qk |1⟩ , (9)

for every k ∈ {x, y, z}, with each scalar qk chosen as real in [0, 1]. Such a qubit state |qk⟩ is
easily obtained by applying to the initial state |0⟩ the rotation gate

Ry(ξk) = exp
(
−i

ξk
2

σy

)
=

[
cos(ξk/2) − sin(ξk/2)
sin(ξk/2) cos(ξk/2)

]
(10)

at an angle ξk = 2 arcsin
(√

qk
)
, which is also an elementary gate available from the gate

libraries of current quantum processors.
Each resulting controlled Pauli gate σx, σy, and σz in Figure 1 acts independently on

the principal qubit Q initialized in the normalized state |Q⟩ of the Hilbert space H2 via
a two-qubit unitary evolution formally as in Equation (7) with UQEk , a two-qubit unitary
operator, and taking each time the form

UQEk |Q⟩ ⊗ |qk⟩ =
√

1 − qk |Q⟩ ⊗ |0⟩+√
qk
(
σk |Q⟩

)
⊗ |1⟩ . (11)

When the control qubit k is discarded (nonmeasured) in Figure 1 and traced out, formally
as in Equation (6), this implements on the qubit density operator ρ = |Q⟩ ⟨Q| the one-qubit
nonunitary evolution

ρ 7−→ (1 − qk)ρ + qkσkρσ†
k , (12)

for every k ∈ {x, y, z}.
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A more general initialization of the control qubit could be envisaged, with |qk⟩ =
αk |0⟩+ βk |1⟩ instead of Equation (9), with two complex coordinates

(
αk, βk

)
satisfying

|αk|2 + |βk|2 = 1. This would lead to the evolution UQEk |Q⟩ ⊗ |qk⟩ = αk |Q⟩ ⊗ |0⟩ +
βk(σk |Q⟩) ⊗ |1⟩ instead of Equation (11). Then, when tracing out the control qubit as
conducted for obtaining Equation (12), we would obtain ρ 7→ |αk|2ρ + |βk|2σkρσ†

k instead
of Equation (12). We therefore observe that no additional flexibility would be gained with
two complex coordinates

(
αk, βk

)
since only the squared moduli |αk|2 and |βk|2 affect the

noise model, and this control is already fully obtained with the initialization of Equation (9)
with real coordinates and the rotation gate Ry of Equation (10).

For every given k ∈ {x, y, z}, the evolution of Equation (12) can be described as a
matrix transformation of the qubit Bloch vector, similar to Equation (2), yet with only two
nonzero probabilities, formally qk ≡ pk and 1− qk ≡ p0. Three such matrix transformations
are cascaded when the three control qubits acting independently in the circuit of Figure 1
are successively traced out while tracing out the environment E. It results that, when
the three control qubits are discarded (nonmeasured), the circuit of Figure 1 implements
on the principal qubit Q with input Bloch vector r⃗ the overall transformation in Bloch
representation

r⃗ 7−→ r⃗ ′ =

 1 − 2qz 0 0
0 1 − 2qz 0
0 0 1

 1 − 2qy 0 0
0 1 0
0 0 1 − 2qy

 1 0 0
0 1 − 2qx 0
0 0 1 − 2qx

 r⃗ , (13)

which is also

r⃗ 7−→ r⃗ ′ =

 (1 − 2qy)(1 − 2qz) 0 0
0 (1 − 2qx)(1 − 2qz) 0
0 0 (1 − 2qx)(1 − 2qy)

 r⃗ . (14)

Incidently, since in Equation (13) the products of the three diagonal matrices commute,
the three controlled Pauli gates can be cascaded in any order in the pipeline of Figure 1
without changing the circuit behavior.

We want the transformation of Equation (14) to implement the Pauli noise transfor-
mation of Equation (2). By Equations (3)–(5), this requires the three control parameters
(qx, qy, qz) of the circuit in Figure 1 to satisfy the nonlinear algebraic system

qy + qz − 2qyqz = py + pz ,

qx + qz − 2qxqz = px + pz ,

qx + qy − 2qxqy = px + py .

(15)

(16)

(17)

The nonlinear system of Equations (15)–(17) can be solved explicitly as

qx =
1
2

(
1 ±

√
∆

1 − 2(py + pz)

)
=

1
2

(
1 ± sign(ax)

√
ayaz

ax

)
,

qy =
1
2

(
1 ±

√
∆

1 − 2(px + pz)

)
=

1
2

(
1 ± sign(ay)

√
axaz

ay

)
,

qz =
1
2

(
1 ±

√
∆

1 − 2(px + py)

)
=

1
2

(
1 ± sign(az)

√
axay

az

)
,

(18)

(19)

(20)

with the discriminant

∆ =
[
1 − 2(px + py)

] [
1 − 2(px + pz)

] [
1 − 2(py + pz)

]
= axayaz , (21)

to define two feasible sets of solutions (qx, qy, qz)+ and (qx, qy, qz)− according to the ± sign
chosen in Equations (18)–(20). However, every solution (qx, qy, qz) from Equations (18)–(20)
solving the system of Equations (15)–(17) does not necessarily represent an admissible solu-
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tion to our noise simulation problem. For instance, with three real ak in [−1, 1] as delivered
by Equations (3)–(5), complex numbers (qx, qy, qz) can ensue in Equations (18)–(20) when a
negative discriminant ∆ occurs in Equation (21) that indeed solves Equations (15)–(17) but
is not admissible for our noise simulation problem. Our noise simulation problem requires
each solution qk provided in Equations (18)–(20) to be real and in [0, 1]. This would be
no different if we had envisaged as before the more general control |qk⟩ = αk |0⟩+ βk |1⟩
instead of Equation (9), which would have provided ρ 7→ |αk|2ρ + |βk|2σkρσ†

k instead of
Equation (12), with |βk|2 in place of qk, which is equally constrained to remain in [0, 1] for
an admissible solution. We therefore have an admissible solution to our noise simulation
problem if and only if each qk provided in Equations (18)–(20) is real and in [0, 1]. In terms
of the three variables 

sx =
ayaz

ax
,

sy =
axaz

ay
,

sz =
axay

az
,

(22)

(23)

(24)

an admissible solution in Equations (18)–(20) for our noise simulation problem requires
each sk to be in [0, 1] for k = x, y, z. For any valid set of probabilities (p0, px, py, pz), each
contraction factor ak in Equations (3)–(5) varies in [−1, 1] ; as a result, the three variables
sk in Equations (22)–(24) can vary in ]− ∞,+∞[ , and only when these three variables sk
lie in [0, 1] can the corresponding Pauli noise be simulated by the circuit of Figure 1. This
establishes the essential condition for simulability, which we state as

Theorem 1. A given set of probabilities (px, py, pz) defining with p0 = 1 − px − py − pz a
valid Pauli noise can be simulated by the circuit of Figure 1 with a setting (qx, qy, qz) of three
real parameters in [0, 1] provided in Equations (18)–(20) if and only if all three variables sk in
Equations (22)–(24) are in [0, 1].

Proof of Theorem 1. For k = x, y, z, each qk in Equations (18)–(20) is qk =
(
1 ± sign(ak)√

sk
)
/2. The square root

√
sk is real if and only if sk ≥ 0. The resulting qk is in [0, 1] if and

only if each sk ≥ 0 is no larger than 1. Therefore, qk is in [0, 1] if and only if sk is in [0, 1]
for k = x, y, z, which completes the proof.

The Pauli noise configurations (px, py, pz) that satisfy the condition of Theorem 1 can
be associated with a feasible set of control parameters (qx, qy, qz) in Equations (15)–(17)
and can therefore be simulated by the quantum circuit of Figure 1. Conversely, when a
noise configuration (px, py, pz) does not satisfy the condition of Theorem 1, i.e., when at
least one variable sk from Equations (22)–(24) is not in [0, 1], this configuration cannot be
simulated by the circuit of Figure 1 because the corresponding variable qk is not in [0, 1]
and no suitable control |qk⟩ in Equation (9) can be physically realized for the circuit. The
simulable Pauli noise configurations (px, py, pz) form a nontrivial set, which, in addition to
the algebraic characterization of Theorem 1, can be graphically visualized by means of the
illustrations provided in Figures 2–6.

To begin with, Figure 2 displays, in the three-dimensional spaceR3, the probability
configurations (px, py, pz) defining a valid quantum Pauli noise in Equation (1) by satisfying
0 ≤ px + py + pz ≤ 1.

As visible in Figure 2, the acceptable configurations (px, py, pz) defining a valid quan-
tum Pauli noise form a solid tetrahedron inR3. In this tetrahedron, the valid Pauli noise
configurations (px, py, pz) that can be simulated by the quantum circuit of Figure 1 are those
that satisfy Theorem 1, i.e., those having all three variables sk of Equations (22)–(24) in [0, 1].
To visualize these Pauli noise configurations that can be simulated by the circuit of Figure 1,
the tetrahedron of valid Pauli noise configurations of Figure 2 is sliced in Figures 3 and 4
along the axis of px. In each slice at given probability px, in the plane (py, pz), each configu-
ration (px, py, pz) that can be simulated is marked in green, while it is marked in red when it
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cannot. In practice, in each slice in Figures 3 and 4, a uniform Monte Carlo sampling of 105

configurations of (py, pz) are obtained and tested according to Theorem 1 to be marked by
a green or red pixel. As can be observed from Equations (18)–(20) and Equations (22)–(24),
the criterion represented in Figures 3 and 4 is symmetric or invariant in the exchange of the
noise probabilities px, py, and pz, so these figures will have the same appearance if instead
of px we fix py or pz and vary the other two probabilities.

Figure 2. In the three-dimensional space R3, the tetrahedron in blue has its four vertices at points
(0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1), and its interior (including its frontier) represents all the proba-
bility configurations (px, py, pz) satisfying 0 ≤ px + py + pz ≤ 1 and defining a valid quantum Pauli
noise in Equation (1).

For the range 0 ≤ px < 0.5, Figure 3 shows slices of the tetrahedron of Figure 2 in the
planar domain (py, pz) ∈ [0, 1]× [0, 1].

Figure 3 illustrates the nontrivial structure of the simulable and nonsimulable noise
configurations resulting from the algebraic nonlinear criterion involved in Theorem 1 and
coupling the variables (px, py, pz). We observe in particular a nonmonotonic evolution of
the surface (the amount) of simulable configurations, which starts to increase and then
decreases across the slices as px grows from 0 to 0.5 in Figure 3.

Next, for the range 0.5 ≤ px ≤ 1, Figure 4 shows slices of the tetrahedron of Figure 2
in the planar domain (py, pz) ∈ [0, 0.5]× [0, 0.5] since, from the normalization condition
when the probability px ≥ 0.5, the probabilities py and pz are necessarily in [0, 0.5].

Figure 4 further illustrates the nontrivial structure of the simulable and nonsimulable
noise configurations, as ruled by the algebraic criterion of Theorem 1. In this range, 0.5 ≤
px ≤ 1, we rather observe a monotonic decay of the surface (the amount) of simulable
configurations across the slices as px increases in Figure 4 and while reaching the tip of the
tetrahedron of valid Pauli noise configurations in Figure 2.
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Figure 3. At fixed probabilities px, in the plane (py, pz), the Pauli noise configurations that can
be simulated by the circuit of Figure 1 are marked in green, and the configurations that cannot be
simulated are in red.
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Figure 4. At fixed probabilities px, in the plane (py, pz), the Pauli noise configurations that can
be simulated by the circuit of Figure 1 are marked in green, and the configurations that cannot be
simulated are in red.
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Furthermore, it results from Theorem 1 that, with the quantum circuit of Figure 1, we
have the following possibilities for simulating important Pauli noises:

• The bit-flip noise with (p0, px, py, pz) = (1 − px, px, 0, 0) can be obtained with (qx =
px, qy = 0, qz = 0) (alternatively, (qx = 1 − px, qy = 1, qz = 1) is also feasible).

• The phase-flip noise with (p0, px, py, pz) = (1 − pz, 0, 0, pz) can be obtained with
(qx = 0, qy = 0, qz = pz).

• The bit-phase-flip noise with (p0, px, py, pz) = (1 − py, 0, py, 0) can be obtained with
(qx = 0, qy = py, qz = 0).

• The depolarizing noise with (p0, px, py, pz) = (1 − p, p/3, p/3, p/3) can be obtained
with

qx = qy = qz =
1
2

(
1 ±

√
1 − 4

3
p

)
, (25)

when p ∈ [0, 3/4]; otherwise, when p > 3/4, the corresponding Pauli noise can no
longer be simulated by the circuit of Figure 1. The limit p = 3/4 corresponds to
the depolarizing noise for three vanishing contraction factors ax = ay = az = 0 in
Equations (3)–(5) when the input state ρ is transformed by the noise into the maximally
mixed output state I2/2. When the noise parameter p continues to grow above 3/4,
up to p = 1, three negative contraction factors ax = ay = az = 1 − 4p/3 < 0 ensue
in Equations (3)–(5), with a noisy qubit state that would tend to recover from the
maximally mixed state I2/2 into a somehow less noisy (less mixed) state. Due to
this nonmonotonic evolution, the regime of p > 3/4, although formally acceptable
in the depolarizing noise model, comes with a less natural physical plausibility of
being relevant or observable in practice. Reversing the viewpoint, we could say that,
when a depolarizing noise is introduced to model the interaction of a qubit with an
unobserved physical environment, and when this environment takes the form of the
circuit of Figure 1, only depolarizing noise characterized by a parameter p ∈ [0, 3/4]
arises. Such depolarizing noise exhibits in Equation (2) a uniform contraction factor
ax = ay = az = 1 − 4p/3 ∈ [0, 1], describing a monotonic degradation, from a
vanishing alteration of the qubit state at p = 0 with no noise and ax = ay = az = 1,
up to an extreme alteration at p = 3/4 when ax = ay = az = 0 and the qubit state is
forced into the maximally mixed state I2/2. The physics of the interaction with the
environment of the circuit of Figure 1 give rise only to this range of noise action.

The situation in the three-dimensional probability space (px, py, pz) of these four
important Pauli noises is represented graphically in Figure 5.

Three other remarkable subsets of Pauli noises that can be simulated by the circuit
of Figure 1 are those where only two nontrivial Pauli operators act, and they are repre-
sented in Figure 6. One such subset corresponds to the situation with the probabilities
p0 = px = 0 and py = 1 − pz ; this leads in Equations (3)–(5) to the contraction factors
ax = −1, ay = −az = py − pz, simulable in Equations (18)–(20) with the control signals
(qx, qy, qz) = (py, 0, 1) or (qx, qy, qz) = (1 − py, 1, 0). The two other subsets of Figure 6
follow by symmetry.

As expressed by Figures 5 and 6, all six edges of the tetrahedron in Figure 2 of valid
Pauli noise configurations are simulable by the quantum circuit of Figure 1, corresponding
to Pauli noises where only a pair of trivial or nontrivial Pauli operators are acting. In addi-
tion, (infinitely) many more Pauli noise configurations are simulable from the interior of
the tetrahedron of Figure 2, as expressed by Figures 3 and 4.
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Figure 5. In the three-dimensional probability space (px, py, pz), the four green lines represent four
important Pauli noises simulable with the quantum circuit of Figure 1. Bit-flip, phase-flip, and
bit-phase-flip noises are, respectively, along the px, pz, and py axes. The depolarizing noise with
(px, py, pz) = (p/3, p/3, p/3) for p ∈ [0, 3/4] stands along the main diagonal.

Figure 6. In the three-dimensional probability space (px, py, pz), the three green lines represent three
subsets of Pauli noises simulable with the quantum circuit of Figure 1, where only two nontrivial
Pauli operators act, and defined by the parameters (p0, px, py, pz), respectively, being (0, 0, py, 1− py),
(0, 1 − pz, 0, pz), and (0, px, 1 − px, 0).
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4. Conclusions

For Pauli noise simulation, the quantum circuit of Figure 1 uses only three Pauli gates
in their controlled version, which are elementary quantum gates usually readily accessible
from the gate libraries of currently available quantum processors, such as those of [28,29]
or others under development and constant progress. Standard quantum processors are
primarily devised for implementing unitary evolutions for quantum algorithms of quantum
computation. By contrast, circuit models for controlled simulation of quantum noise or
decoherence, as with the circuit examined here, enable implementing nonunitary evolutions
with these quantum processors. This enlarges the class of quantum scenarios that can
be addressed with these processors, especially in the direction of realistic processes of
quantum signal and information processing in the presence of quantum noise.

The quantum circuit of Figure 1 offers the possibility to constitute experimental
testbeds or simulation platforms where quantum Pauli noise can be applied to qubits in
controlled conditions. The impact of Pauli noise can then be analyzed in various scenarios,
for instance on signaling qubits for communication or for cryptographic key distribution
over a noisy quantum channel, or on probe qubits for noisy quantum metrology, or in other
tasks of interest with noisy qubits, as mentioned in the Introduction. Pauli noise can be
applied and simulated on multiple entangled qubits in a regime often relevant in practice
where the noise acts independently on distinct qubits. Independent action of Pauli noise is
intrinsic to its definition conveyed by Equation (1) as it randomly applies the four qubit
Pauli operators independently on each distinct qubit. Accordingly, the simulation circuit
of Figure 1 reproduces this intrinsic property of Pauli noise when an independent copy
of the circuit is used for each principal (entangled or separable) qubit. This provides us
the possibility, with an experimental simulation platform based on the circuit of Figure 1,
to study the impact of Pauli noise on multiple entangled qubits. In this respect, in many
situations with noise on entangled qubits, the optimal configurations to maximize the signal
processing performance are not fully characterized, for instance to achieve the capacity
of a noisy communication channel or minimize the estimation errors in noisy metrology,
and can be studied in simulation. Alternatively, in the circuit of Figure 1, the same control
qubits could be used several times, according to different patterns, to control the noise on
several distinct principal qubits instead of three independent control qubits per principal
qubit. This would induce specific correlations between the noise realizations on multiple
qubits whenever they are assumed realistic for the noise in specific contexts, thus extending
the capabilities of a simulation platform.

The quantum circuit of Figure 1, as a model for simulating Pauli noises, is convenient
in terms of its fixed and simple architecture and the ease in the control on the noise
parameters without changing the hardware architecture. Each of the three independent
parameters (px, py, pz) defining Pauli noise are programmed by means of the state of
an independent auxiliary qubit acting on the fixed hardware architecture. The circuit
incorporates enough flexibility to simulate essential Pauli noises relevant to the qubit, as
illustrated in Figure 5, along with an infinite subset of other Pauli noises, also with the same
fixed and, so to speak, programmable hardware architecture. The limitation of the quantum
circuit of Figure 1 essentially comes from the fact that the actions of the three controlled
Pauli gates are cascaded, and each acts to contract the qubit Bloch vector in two directions
of R3, as expressed by Equation (13). These contractions cannot always be combined or
decoupled so as to produce three specific contractions along the three directions of R3,
as may be demanded by some acceptable Pauli noises in Equation (2). To gain additional
flexibility, one could envisage replacing the three Pauli gates, σx, σy, and σz in the circuit
of Figure 1, by three rotation gates, Rx = exp

(
−iξxσx/2

)
, Ry = exp

(
−iξyσy/2

)
, and

Rz = exp
(
−iξzσz/2

)
, benefiting from extra degrees of freedom in the three angles ξx,

ξy, and ξz. In its version controlled by |qk⟩ of Equation (9), each rotation gate Rk would
realize on the Bloch vector r⃗ the transformation r⃗ 7→ (1 − qk )⃗r + qkRk⃗r for each k = x, y, z,
which in general is not a diagonal transformation inR3, while each Pauli gate σk realizes a
diagonal transformation inR3, provided by each of the three diagonal matrices appearing in
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Equation (13), for k = x, y, z. In the cascade of Figure 1, while the three Pauli gates together
realize the diagonal transformation of Equation (14) to simulate the diagonal matrix of
Equation (2) defining Pauli noise, the three rotation gates together would instead realize a
generally nondiagonal transformation inR3. The three angles of the three rotation gates
could then be exploited so as to make this transformation diagonal. By explicitly expressing
this transformation matrix inR3, it is found that its diagonalization is feasible (nontrivially)
only with the rotation angles ξx = ξy = ξz = π, where the three rotation gates all match
the Pauli gates with Rx ≡ −iσx, Ry ≡ −iσy, and Rz ≡ −iσz. Consequently, for Pauli noise
simulation, no additional capability can be gained with three rotation gates, Rx, Ry, and Rz,
in place of the three Pauli gates used in the circuit of Figure 1. Alternatively, other quantum
circuits could still in principle be devised for simulation of Pauli noises, each expected to
come with its inherent properties and limitations, including the possibility or not to have a
fixed architecture to simulate a whole range of noise models, and together offering different
trade-offs between capabilities, simplicity of implementation, flexibility, and control. Such
tools, like the circuit investigated here, are useful to construct experimental simulation
platforms for various information processing tasks with controlled quantum noise so as to
contribute to the design and development of quantum methodologies and technologies
capable of better coping with quantum noise and decoherence.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Schleich, W.P.; Ranade, K.S.; Anton, C.; Arndt, M.; Aspelmeyer, M.; Bayer, M.; Berg, G.; Calarco, T.; Fuchs, H.; Giacobino, E.; et al.

Quantum technology: From research to application. Appl. Phys. B 2016, 122, 130
2. Preskill, J. Quantum computing in the NISQ (Noisy Intermediate-Scale Quantum) era and beyond. Quantum 2018, 2, 79.

[CrossRef]
3. Xin, K.; Lai, M.; Lv, F.; Guo, K.; Pang, Z.; Xu, C.; Zhang, G.; Wang, W.; Li, M. A cryo-CMOS, low-power, low-noise, phase-locked

loop design for quantum computers. Electronics 2023, 12, 3237. [CrossRef]
4. Wilde, M.M. Quantum Information Theory; Cambridge University Press: Cambridge, UK, 2017.
5. Gyongyosi, L.; Imre, S.; Nguyen, H.V. A survey on quantum channel capacities. IEEE Commun. Surv. Tutorials 2018, 20, 1149–1205.

[CrossRef]
6. Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 2002, 74, 145–195. [CrossRef]
7. Pirandola, S.; Andersen, U.L.; Banchi, L.; Berta, M.; Bunandar, D.; Colbeck, R.; Englund, D.; Gehring, T.; Lupo, C.; Ottaviani, C.; et

al. Advances in quantum cryptography. Adv. Opt. Photonics 2020, 12, 1012–1236. [CrossRef]
8. Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [CrossRef]
9. Shaji, A.; Caves, C.M. Qubit metrology and decoherence. Phys. Rev. A 2007, 76, 032111. [CrossRef]
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