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Using signal processing measures we evaluate the effect of aging on the peripheral cardiovascular
system. Laser Doppler flowmetry �LDF� signals, reflecting the microvascular perfusion, are re-
corded on the forearm of 27 healthy subjects between 20–30, 40–50, or 60–70 years old. Wavelet-
based representations, Hölder exponents, and sample entropy values are computed for each time
series. The results indicate a possible modification of the peripheral cardiovascular system with
aging. Thus, the endothelial-related metabolic activity decreases, but not significantly, with aging.
Furthermore, LDF signals are more monofractal for elderly subjects than for young people for
whom LDF signals are weakly multifractal: the average range of Hölder exponents computed with
a parametric generalized quadratic variation based estimation method is 0.13 for subjects between
20 and 30 years old and 0.06 for subjects between 60 and 70 years old. Moreover, the average mean
sample entropy value of LDF signals slightly decreases with age: it is 1.34 for subjects between 20
and 30 years old and 1.19 for subjects between 60 and 70 years old. Our results could assist in
gaining knowledge on the relationship between microvascular system status and age and could also
lead to a more accurate age-related nonlinear modeling. © 2008 American Association of Physi-
cists in Medicine. �DOI: 10.1118/1.2831909�
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I. INTRODUCTION

Several signal processing studies have revealed that heart
rate variability �HRV� signals and cardiac interbeat interval
dynamics show less variability with aging �see for example
Refs. 1–6�. These alterations may be due to the reduced abil-
ity to adapt to physiological stress, degradation, and decou-
pling of integrated physiological regulatory systems, as well
as to the loss of integrated physiologic responsiveness in-
creasing susceptibility to injury and illness.3,4,6 However,
HRV and cardiac interbeat interval times series reflect a cen-
tral view of the cardiovascular system. But what are the con-
sequences of aging on the peripheral cardiovascular system?
Are the losses of complexity and multifractality visible from
a peripheral viewpoint? Is microcirculation modified with
aging?

Laser Doppler flowmetry �LDF� signals allow the moni-
toring of microvascular blood flow and therefore provide a
peripheral view of the cardiovascular system.7 The LDF
technique relies on the Doppler effect: when photons are
scattered by moving erythrocytes, they are shifted in fre-
quency. A part of the scattered light is then re-emitted from

the surface. The broadening of the frequency spectrum is
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used to calculate an estimate of the perfusion in the tissue
under study. This value is proportional to the product of the
mean velocity and the concentration of red blood cells.7 LDF
measurements from the skin reflect perfusion in capillaries,
arterioles, venules, and dermal vascular plexa.8–10

By processing LDF signals, we are interested in studying
the effect of aging on the healthy peripheral cardiovascular
system. Using wavelet-based representations and sample en-
tropy computations on LDF signals, we show that the under-
lying processes of the microcirculation behave slightly dif-
ferently between elderly healthy subjects and young healthy
people. Moreover, using a parametric generalized quadratic
variation based estimation method we demonstrate that LDF
time series are more monofractal for elderly healthy subjects
than for young healthy people for whom LDF signals are
weakly multifractal.

II. METHODS

II.A. Signal acquisition

Twenty seven healthy subjects with no respiratory or car-

diac failure, peripheral vascular disease, psychological disor-
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der, or tremor were studied. Nine of these subjects were
young �between 20 and 30 years old�, nine were between 40
and 50 years old, and nine were between 60 and 70 years
old. The institutionally approved study was conducted in ac-
cordance with the Declaration of Helsinki. Before their par-
ticipation, all subjects were informed of the methods and
procedures and gave their written consent to participate. To
measure skin blood flow, a laser Doppler probe �PF408, Per-
imed, Stockholm, Sweden� connected to a laser Doppler
flowmeter �Periflux PF5000, Perimed, Stockholm, Sweden�
was positioned on the forearm �ventral face�. Skin blood
flow was assessed in arbitrary units and recorded on a com-
puter via an analog-to-digital converter �Biopac System�
with a sample frequency of 20 Hz. Local skin temperature
was measured using a surface thermocouple probe connected
to an electronic thermometer �BAT-12, Physitemp Instru-
ments, Clifton, NJ�. The surface thermocouple probe was
positioned 5 cm from the laser Doppler probe. Systemic ar-
terial blood pressure was monitored using a Finapres 2350
�Ohmeda, Englewood, CO� positioned on the second or third
finger controlateral hand used for skin blood flow measure-
ment. Recordings were performed with the subjects placed
supine in a quiet room with the ambient temperature set at
24�1 °C. After at least 10 min of acclimatization, skin
blood flow measurement was started. No significant changes
were observed for mean arterial blood pressure and for local
skin temperature throughout any experiment.

II.B. Wavelet-based analyses

It has been shown that LDF signals contain, in addition to
the cardiac and respiratory oscillatory activities, oscillations
originating from three other processes: the myogenic �the
smooth-muscle cells in the vessel walls respond continually
to the changes in intravascular pressure�, neurogenic, and
endothelial-related metabolic activities.9–13 The correspond-
ing frequencies are, respectively, near to 0.1, 0.04, and
0.01 Hz for healthy humans.9–13 In order to study the varia-
tions of these three activities with age, the frequency bands
corresponding to the underlying mechanisms are analyzed.
To detect the properties of LDF signals in the high �near to
0.1 Hz� and low frequencies �near to 0.01 Hz�, high frequen-
cies have to be analyzed with short windows and low fre-
quencies with long windows. This can be achieved with a
wavelet analysis,14 which has proved to be very useful to
process LDF times series �see for example Refs. 9–14�, as
well as other biomedical signals.15 The idea of the continu-
ous wavelet transform is to project a signal s on a family of
zero-mean functions, the wavelets, deduced from an elemen-
tary function, called the mother wavelet, by translations and
dilations. The continuous wavelet transform �CWT� of a sig-
nal s is therefore defined as

CWTs�a,b� =
1
�a
�

−�

+�

s�t��� t − b

a
�dt , �1�

where � is the mother wavelet, and b and a are time and
scale parameters.16 The translation and dilation/contraction

of the mother wavelet give rise to a family of basis functions.
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The continuous wavelet transform uses short windows at
high frequencies and long windows at low frequencies.

In our work, the Morlet wavelet is chosen because the
Gaussian window achieves the best time-frequency localiza-
tion within the limits given by the uncertainty principle.17 On
each subject, the LDF signal taken into account for the
wavelet-based analysis is resampled to 10 Hz in order to
reduce the computation time, and has a length of 16 min
40 s: recordings are recommended to last at least ten times
the period of the lower frequency boundary of the investi-
gated component, but in order to ensure stationarity of the
signal, should not be extended substantially beyond this
time.18 The scalogram �squared modulus of the continuous
wavelet transform� is studied between 0.0095 and 0.145 Hz
to obtain the characteristic frequencies corresponding to the
myogenic, neurogenic, and endothelial-related metabolic ac-
tivities: intervals 0.052–0.145, 0.021–0.052, and
0.0095–0.021 Hz, respectively.12,13,19

II.C. Hölder exponents and entropy analyses

II.C.1. Hölder exponents computation

The rapid changes in a time series are called singularities
and a characterization of their strength is obtained with the
Hölder exponents.20 The Hölder exponent h�x0� of a function
f at the point x0 is the highest h value so that f is Lipschitz at
x0. There exists a constant C and a polynomial Pn�x� of order
n so that for all x in a neighborhood of x0 we have21–23

	f�x� − Pn�x − x0�	 � C	x − x0	h. �2�

Moreover, the Hausdorff dimension of the set where the
Hölder exponent is equal to h is21

D�h� = dimH
x	h�x� = h� . �3�

Monofractal signals are homogeneous: they have the same
scaling properties throughout the entire signal; therefore,
they are indexed by a single global exponent called the Hurst
exponent, which suggests that they are stationary from the
viewpoint of their local scaling properties.24 However, mul-
tifractal signals can be decomposed into many subsets char-
acterized by different local Hurst exponents that quantify the
local singular behavior and relate the local scaling of the
time series.24 Therefore, signals are considered as multifrac-
tal when a “broad” range of Hölder exponents is found,
whereas a “narrow” range implies monofractality. Multifrac-
tal signals are more complex and inhomogeneous than
monofractal ones.25,26 Recently, the computation of Hölder
exponents from LDF signals recorded at rest on young
healthy human subjects and comparison of their range with
known mono and multifractal data has shown that LDF sig-
nals recorded on young healthy subjects are weakly
multifractal.25 Herein, each original LDF signal �sampled at
20 Hz� is processed with a parametric generalized quadratic
variation based estimation method �See also
http://math.cnrs.fr/imagesdesmaths/pdf2004/Cohen.pdf.�25,27,2

We carry out the computation with the FRACLAB v2.0 tool29

and we take into account 7895 pointwise Hölder exponents

for each time series �see Figs. 1 and 2�.
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II.C.2. Sample entropy analysis

Pincus introduced approximate entropy �ApEn� to quan-
tify the regularity of time series �presence of similar patterns
in the time series�.30,31 The more regular and predictable a
time series, the lower the value of ApEn; the more random a

FIG. 1. �a� Skin LDF signal recorded on a healthy subject at rest �subject be
FIG. 2. �a� Skin LDF signal recorded on a healthy subject at rest �subject betwee
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time series, the higher the value of ApEn. ApEn can be
thought of as the negative natural logarithm of the probabil-
ity that sequences that are close for m points remain close for
an additional point. ApEn takes a template-wise approach to
calculate this average logarithmic probability. ApEn was

n 20 and 30 years old�. �b� Corresponding time series of Hölder exponents.
n 60 and 70 years old�. �b� Corresponding time series of Hölder exponents.
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used in numerous cardiovascular studies. However, its main
drawbacks are its dependency on the record length and its
lack of relative consistency.32,33 Therefore, herein, sample
entropy is used instead. The lower the value of the sample
entropy, the more reproducibility in the time series. In other
words, a low value for the sample entropy reflects a high
degree of regularity, while a random signal has a relatively
higher value of sample entropy. The sample entropy
�SampEn�m ,r ,N�� is the negative natural logarithm of the
conditional probability that a dataset of length N, having re-

FIG. 3. Energies of the scalogram computed in each frequency band for the
three populations �signals 16 min 40 s long; nine subjects for each popula-
tion�. The box lines represent the lower quartile, median, and upper quartile
values. The whiskers �lines extending from each end of the box� show the
extent of the rest of the data. Outliers are data with values beyond the ends
of the whiskers. P-values are computed with the Mann–Whitney test.

FIG. 4. Relative energies of the scalogram computed in each frequency band
for the three populations �signals 16 min 40 s long; nine subjects for each
population�. The box lines represent the lower quartile, median, and upper
quartile values. The whiskers �lines extending from each end of the box�
show the extent of the rest of the data. Outliers are data with values beyond
the ends of the whiskers. P-values are computed with the Mann–Whitney

test.
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peated itself within a tolerance r for m points, will also re-
peat itself for m+1 points, without allowing self-matches.32

In contrast to ApEn�m ,r ,N�, which calculates probabilities
in a template-wise fashion, SampEn�m ,r ,N� calculates the
negative logarithm of a probability associated with the time
series as a whole. Contrary to approximate entropy, sample
entropy is largely independent of record length and displays
relative consistency under circumstances where approximate
entropy does not.32–34

The choice of the values for m and r is critical in deter-
mining the outcome of the approximate entropy and sample
entropy. The various existing rules generally lead to the use
of values of r between 0.1 and 0.25 and values of m of 1 or
2 for data of length N ranging from 100 to 5000 points.35–37

According to Wolf et al.38 the number of data points should
range between 10m and 30m. Pincus suggested that for m=2
and N=1000, r should range from 0.1 to 0 .2�the standard
deviation �SD� of the dataset.30 On the basis of these works
and others,37,39 we choose m=2, N=1000, and r=0.2�SD
since it is convenient to set the tolerance r proportional to SD
so as to allow measurements on datasets with different am-
plitudes to be compared. Equivalently, all our LDF time se-
ries �sampled at 20 Hz� are normalized to have SD=1, and
are subsequently processed with the same tolerance r=0.2.

III. ANALYSIS AND COMPARISON

In order to compare the behavior of the myogenic, neuro-
genic, and endothelial-related metabolic activities with age,
quantitative measures are calculated.13,40,41 The first one is
the energy of the scalogram on a given frequency
band.13,40,41 It is defined as

TABLE I. Average value for the minimum, maximum, range, mean, and
standard deviation of the Hölder exponents computed for skin LDF signals
recorded on healthy subjects �average value computed over nine signals for
each population�. See text for the mode of computation.

Subjects
Minimum

value
Maximum

value Range
Mean
value

Standard
deviation

20–30 years old 0.40 0.53 0.13 0.46 0.02
40–50 years old 0.87 0.96 0.09 0.91 0.01
60–70 years old 1.03 1.09 0.06 1.06 0.01

TABLE II. P-values computed with the Kruskal–Wallis test to evaluate the
differences of the minimum, maximum, and mean values of the Hölder
exponents between the groups of subjects.

P-value
Between the three groups

of subject

Minimum values
of Hölder exponents

0.0648

Maximum values
of Hölder exponents

0.0980

Mean values
of Hölder exponents

0.0889
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E�f1, f2� =
1

b
�

0

b �
1/f2

1/f1 1

a2 	CWTs�a,b�	2dadb . �4�

The results are noted as EMyogenic, ENeurogenic, and EMetabolic

and represent the energy of the scalogram on the intervals
0.052–0.145, 0.021–0.052, and 0.0095–0.021 Hz, respec-
tively. Moreover, in order to evaluate how the distribution of
the energy among the three bands changes, we
introduce the relative energy of the scalogram on a frequency
band. They are noted as ERelativeMyogenic�=EMyogenic /Esum�,
ERelativeNeurogenic�=ENeurogenic /ESum�, and
ERelativeMetabolic�=EMetabolic /ESum�, where ESum represents
�EMyogenic+ENeurogenic+EMetabolic�. Furthermore, the Mann–
Whitney test is used to evaluate the differences between the
groups of subjects. Statistical significant differences are de-
fined as P�0.05.

The measures computed on the scalogram show that the
energy in the frequency bands corresponding to the myo-
genic, neurogenic, and endothelial-related metabolic activi-
ties are lower for elderly subjects than for young people �see
Fig. 3�. The relative energy of the endothelial-related meta-
bolic activity is also lower for elderly subjects than for
young ones �see Fig. 4�. However, we note that these differ-
ences are not statistically significant �see P-values in Figs. 3
and 4�.

The results of the Hölder exponents and sample entropy
analyses are presented in Tables I–IV and are computed as
follows: for each of the 27 time series, we determine for the
Hölder exponents the minimum, maximum, range, mean, and
standard deviation values. Then, for each subject group, an
average for the nine minimum values obtained is computed;
idem for the maximum, range, mean, and standard deviation.
Sample entropy is also determined for each time series. From
them and for each age group, a minimum, maximum, mean,
and standard deviation value is determined. The results are
depicted in Tables I and III, and in Figs. 5 and 6. Moreover,
the Kruskal–Wallis test is used to evaluate the differences

TABLE III. Average value for the minimum, maximum, mean, and standard
deviation of the sample entropy computed for skin LDF signals recorded on
healthy subjects �average value computed over nine signals for each popu-
lation�. See text for the mode of computation.

Subjects
Minimum

value
Maximum

value
Mean
value

Standard
deviation

20–30 years old 0.50 1.91 1.34 0.42
40–50 years old 0.72 1.96 1.26 0.47
60–70 years old 0.88 1.87 1.19 0.35

TABLE IV. P-values computed with the Kruskal–Wallis test to evaluate the
differences of the sample entropy values between the groups of subjects.

P-value
Between the three groups

of subjects

Sample entropy values 0.7396
Medical Physics, Vol. 35, No. 2, February 2008
between the groups of subjects �see Tables II and IV�. Sta-
tistically significant differences are defined as P�0.05. The
results for the Hölder exponents computed with the FRACLAB

v2.0 tool29 �see Tables I and II� show that the mean value of
the exponents become higher with age �average mean value
slightly higher than one for elderly subjects and near to 0.5
for young people�. Furthermore, the average range of Hölder
exponents becomes narrower with age: it is 0.13 for the sub-
jects between 20 and 30 years old, and 0.06 for the elderly
subjects �subjects between 60 and 70 years old�. However,
the statistical test shows that the differences are not signifi-
cant. Moreover, the average mean value of the sample en-
tropy �see Table III� decreases with age: it is 1.34 for the

FIG. 5. Plot of the Hölder exponents mean value as a function of age with
all of the subjects. A star corresponds to a subject and the lines represent the
average values computed for each age group.

FIG. 6. Plot of the sample entropy as a function of age with all of the
subjects. A star corresponds to a subject and the lines represent the average

values computed for each age group.
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subjects between 20 and 30 years old, and 1.19 for the eld-
erly subjects �subjects between 60 and 70 years old�. The
difference found is not significant �see Table IV�.

IV. DISCUSSION AND CONCLUSION

Scalograms of LDF signals have already shown to give
information on the myogenic, neurogenic, and endothelial-
related metabolic activities.9–13 The present work shows that
absolute and relative energies of the endothelial-related
metabolic activity slightly decrease between young and eld-
erly healthy subjects �the decrease is not statistically signifi-
cant�. Kvernmo et al. have shown that athletes have higher
endothelial activity than less trained subjects.42 They have
also demonstrated a higher absolute, but lower relative, am-
plitude of the oscillations linked to the neurogenic activity in
athletes than in controls, and a lower relative amplitude of
the oscillations linked to the myogenic activity among ath-
letes than in controls.42 The latter conclusions mention that
the neurogenic component contributes relatively less to the
blood flow than the other regulators of the cutaneous blood
flow in athletes than in controls, and that athletes have de-
creased vasomotion induced by the intrinsic activity of vas-
cular smooth muscle cells as compared to controls. Our re-
sults show that aging leads to opposite conclusions compared
to physical activity for the endothelial-related metabolic ac-
tivity �see Figs. 3 and 4�.

The Hölder exponents analysis also brings information on
the impact of aging over the peripheral cardiovascular sys-
tem. Indeed, our results show that the average range of
Hölder exponents decreases with age. This means that aging
leads to a loss of multifractality for the peripheral cardiovas-
cular system. Several studies have shown that multifractality
can be found in other physiological time series �heartbeat
time series among others� and that some pathologies can
break this property.24,43,44 The latter conclusion can be used
to distinguish healthy subjects from pathological subjects.
Our results show that, for LDF signals, aging behaves in the
same way as pathology for more central cardiovascular data
�loss of multifractality�. Moreover, our work carried out with
the FRACLAB v2.0 tool29 shows that the average mean value
of Hölder exponents is higher than one for elderly subjects
whereas it is lower than one for younger people. This means
that LDF signals recorded on elderly healthy subjects are, on
average, differentiable whereas they are not for young
healthy people �Hölder exponents lower than one�. Our re-
sults also show that LDF signals from young people have
properties that are close to the ones of white noise �Hölder
exponents near 0.5�, whereas LDF signals from elderly sub-
jects behave as 1 / f noise �Hölder exponents near 1�. These
results lead to interesting interpretations if we analyze them
in terms of information theory. Indeed, white noise, because
it contains no redundancy, generates the most efficient or
cost-effective coding of information.45 In opposition, 1 / f
noise, which has more redundancy, represents a less efficient
or more expensive coding of information. One can also think
in terms of information channel, for the cardiovascular op-

eration and regulation, from the central control to the periph-
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ery where LDF signals are recorded. Low-redundancy sig-
nals observed for young subjects would be associated with a
high-quality information channel that requires no added re-
dundancy in order to convey information reliably. In opposi-
tion, redundant signals observed for elderly subjects would
be associated with a lower-quality information channel that
requires added redundancy for reliable transmission of infor-
mation. The comparison of our results with those of other
papers dealing with more central cardiovascular data shows
that aging leads to aspects that seem more complex than
expected.

The sample entropy analysis conducted herein on LDF
signals is related to regularity. The results show that the av-
erage mean value of the sample entropy decreases with age.
As a consequence, LDF time series recorded on elderly
healthy subjects are, on average, more regular than those
recorded on young healthy people. However, the difference
is not statistically significant.

Our work shows that there is a slight decrease of the
endothelial-related metabolic activity, and a loss of multi-
fractality and “randomness” of the healthy peripheral cardio-
vascular system with aging. The latter conclusions are drawn
from average ranges of Hölder exponents �the latter are com-
puted with a parametric generalized quadratic variation
based estimation method� and average values of sample en-
tropy. Several authors have shown that HRV signals and car-
diac interbeat interval dynamics become less irregular with
aging �see for example Refs. 1–6�. Our work suggests that
aging has also consequences on the healthy peripheral car-
diovascular system. However, even if we find differences in
energy, Hölder exponents, and sample entropy between
young and old subjects, the statistical tests show that these
differences are not statistically significant. Our results, there-
fore, may confirm the idea of Vaillancourt and Newell, who
postulated that the observation of an increase or decrease in
complexity with aging and disease is dependent on the nature
of both the intrinsic dynamics of the system and the short-
term change required to realize a local task demand.46

These analyses of LDF signals recorded on subjects of
different ages suggest that aging can modify the peripheral
cardiovascular system. Further work is now needed in order
to confirm these results and to gain knowledge on the rela-
tionship between microvascular system status and age.
Moreover, the preliminary findings of our work could lead to
a more accurate quantification and nonlinear modeling of the
peripheral cardiovascular system changes in healthy condi-
tions in relations to age.
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