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Purpose: The cardiovascular system �CVS� regulation can be studied from a central viewpoint,
through heart rate variability �HRV� data, and from a peripheral viewpoint, through laser Doppler
flowmetry �LDF� signals. Both the central and peripheral CVSs are regulated by several interacting
mechanisms, each having its own temporal scale. The central CVS has been the subject of many
multiscale studies. By contrast, these studies at the level of the peripheral CVS are very recent.
Among the multiscale studies performed on the central CVS data, multiscale entropy has been
proven to give interesting physiological information for diagnostic purposes. However, no multi-
scale entropy analysis has been performed on LDF signals. The authors’ goal is therefore to propose
a first multiscale entropy study of LDF data recorded in healthy subjects.
Methods: The LDF signals recorded in the forearm of seven healthy subjects are processed. Their
period sampling is T=50 ms, and coarse-graining scales from T to 23T are studied. Also, for
validation, the algorithm is first tested on synthetic signals of known theoretical multiscale entropy.
Results: The results reveal nonmonotonic evolution of the multiscale entropy of LDF signals, with
a maximum at small scales around 7T and a minimum at longer scales around 18T, singling out in
this way two distinctive scales where the LDF signals undergo specific changes from high to low
complexity. This also marks a strong contrast with the HRV signals that usually display a mono-
tonic increase in the evolution of the multiscale entropy.
Conclusions: Multiscale entropy of LDF signals in healthy subjects shows variation with scales.
Moreover, as the variation pattern observed appears similar for all the tested signals, multiscale
entropy could potentially be a useful stationary signature for LDF signals, which otherwise are
probe-position and subject dependent. Further work could now be conducted to evaluate possible
diagnostic purposes of the multiscale entropy of LDF signals. © 2010 American Association of
Physicists in Medicine. �DOI: 10.1118/1.3512796�
Key words: laser Doppler flowmetry, microcirculation, multiscale entropy
I. INTRODUCTION

The regulation of the cardiovascular system �CVS� can be
studied from a central or from a peripheral point of view. A
central viewpoint �at the heart itself� can be obtained with

the heart rate variability �HRV� data. A peripheral viewpoint
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is given by laser Doppler flowmetry �LDF� signals.1–6 The
LDF technique allows a noninvasive and continuous moni-
toring of microvascular blood flow. It is therefore used for
microvascular investigations and for the diagnosis and
follow-up of pathologies, such as diabetes and peripheral ar-

terial occlusive diseases �see, for example, Refs. 7–10�.
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Several complex biophysical processes have already been
identified in the cardiovascular system �heart beats and res-
piration being probably the most prominent�. Each of these
processes comes with inherent characteristic time scales and
all together also give rise to their interplays. The cardiovas-
cular system therefore operates across multiple temporal
scales. Accordingly, multiscale analyses of signals reflecting
the central cardiovascular system have been conducted and
have been proven to be of great interest to better understand
the data and for diagnostic purposes. By contrast, multiscale
analyses of LDF signals �peripheral cardiovascular system�
are very recent.11–14 Some of the works performed on the
data of the central cardiovascular system have been based on
the computation of the multiscale entropy.15,16 The authors
therefore studied the complexity of central cardiovascular
system signals over several scales �see, for example, Refs.
15–18�. However, no multiscale entropy study of LDF sig-
nals has already been carried out. Therefore, in order to bring
information in this field of interest, we propose in this letter
a first multiscale entropy analysis of LDF data recorded in
healthy subjects at rest. Moreover, if multiscale entropy val-
ues show the same pattern for each of the signals processed,
multiscale entropy could be an interesting measure to obtain
a stationary signature for LDF signals, which are probe-
position and subject dependent. This work is therefore a first
step in the assessment of the potentialities of multiscale en-
tropy for LDF signal analysis.

II. MEASUREMENT PROCEDURE AND SIGNAL
PROCESSING METHOD

II.A. Measurement procedure

Seven subjects �29.7�6.3 yr old� were enrolled in the
study. Each of them gave his/her written informed consent to
participate. For the measurements, the subjects were supine
in a quiet room and rested for at least 10 min before the
recordings started. For the measurement procedure, a laser
Doppler optical fiber probe �Perimed, Stockholm, Sweden�
connected to a laser Doppler flowmeter �Periflux PF5000,
Perimed, Stockholm, Sweden� was positioned on the right
forearm �ventral face� of the subjects. As suggested by the
manufacturer, the time constant of the laser Doppler flowme-
ter was set to 0.2 s.19 LDF signals were recorded in arbitrary
units �a.u.� on a computer via an analog-to-digital converter
�Biopac System�. The sampling period was chosen equal to
T=50 ms.

Due to the high sensitivity of the LDF technique to move-
ments �movements of the subjects, optical fiber movements,
movements of the probe head relative to the tissue, etc.�, the
subject has to be completely still during the acquisition.
Therefore, long recordings of LDF signals are not possible.
In our work, each recording lasted until 23 000 samples of
data were obtained �around 19.2 min of acquisition�. These
23 000 samples were then processed �see below�. An ex-

ample of LDF signal is shown in Fig. 1.
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II.B. Signal processing method

Multiscale entropy has been proposed at the beginning of
the 2000s to calculate entropy over multiple scales.15,16 Mul-
tiscale entropy analysis is a method of measuring the com-
plexity of finite length time series.15,16 The algorithm relies
on two main steps:

�1� For a time series �x1 , . . . ,xi , . . . ,xN�, a consecutive
coarse-grained time series is constructed by averaging a
successively increasing number of data points in non-
overlapping windows of length �. The coarse-grained
time series is calculated as

yj
��� =

1

�
�

i=�j−1��+1

j�

xi, �1�

where � is the scale factor and 1� j�N /�. The length of
each coarse-grained time series is N /�.

�2� Then, the sample entropy �SampEn� is computed for
each coarse-grained time series and is plotted as a func-
tion of the scale factor �.15,16

SampEn is a refinement of approximate entropy �ApEn�
introduced by Pincus20–22 to quantify the regularity of finite
length time series. A low value for the SampEn reflects a
high degree of regularity, while a random signal has a rela-
tively higher value of SampEn. The SampEn�m ,r ,N� is the
negative natural logarithm of the conditional probability that
a dataset of length N, having repeated itself within a toler-
ance r for m points, will also repeat itself for m+1 points,
without allowing self-matches.22 In contrast to
ApEn�m ,r ,N� that calculates probabilities in a templatewise
fashion, SampEn�m ,r ,N� calculates the negative logarithm
of a probability associated with the time series as a whole.
From its definition, contrary to ApEn, SampEn is largely
independent of the record length.22 Moreover, SampEn dis-
plays the property of relative consistency in situations where

22,23

FIG. 1. LDF signal recorded during 19.16 min on the forearm of a healthy
subject at rest. The sampling period is T=50 ms.
ApEn does not. That is, if one record shows lower
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SampEn than another with one set of values of m and r, it
also shows lower SampEn with different values.

In order to be able to compare our results to those ob-
tained by others when processing different physiological
time series, we choose for our algorithm the same parameter
values as previously published �see, for example, Refs.
15–18�: A pattern length m=2 and a similarity criterion r
=0.15�SD �SD is the standard deviation of the original time
series�. The value of the parameter r is therefore a percentage
of the time series SD. This implementation corresponds to
normalizing the time series �see, for example, Ref. 16�.
Moreover, because N=23 000 in our recordings, we choose a
scale factor � going from 1 to 23 so that the shortest coarse-
grained time series contains 1000 samples �see, for example,
Ref. 16�.

In order to test our implementation of multiscale entropy,
we first apply our algorithm on simulated white �uncorre-
lated� and 1 / f �long-range correlated� noises �see Fig. 2�.
Theoretical multiscale entropy values of white and 1 / f
noises can be found in Ref. 16.

III. RESULTS AND DISCUSSION

Figure 3 shows multiscale entropy values given by our
implementation for simulated white noise and 1 / f noise time
series. From Fig. 3, we can observe that the numerically
estimated multiscale entropy values and the numerical evalu-
ation of analytic multiscale entropy calculations, for our two
test synthetic signals, are close to each other. Our multiscale
entropy algorithm can therefore be applied later on over LDF
signals. We also note that the white noise time series pos-
sesses higher multiscale entropy values than the 1 / f noise
time series for scales below 5. However, it is the opposite for
scales larger than 5. This can be explained by the fact that
1 / f noise contains more diversity of structures across mul-
tiple scales24,25 and is therefore, in this respect, more com-
plex than white noise. For white noise, as the length of the

FIG. 2. �a� Gaussian white noise �mean: 0; variance: 1� of 23 000 samples.
�b� 1 / f noise of 23 000 samples.
windows used for coarse-graining time signal increases, the
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average value inside each window converges to a fixed value
because no new structures exist on larger scales. Therefore,
the standard deviation monotonically decreases with the
scale factor, and the same is found for multiscale entropy.
This reflects that white noise has information only on the
shortest scales. By contrast, for 1 / f noise, new information is
revealed at all scales.16

The average multiscale entropy values for the LDF sig-
nals from the seven subjects are shown in Fig. 4. From this
figure, we can see that the average multiscale entropy mea-
sure increases from scale factor �=1 to scale factor �=7. It
then gradually decreases until scale factor �=18. These two
behaviors �increase and then decrease� are observed on av-

FIG. 3. Multiscale entropy values for white noise �*� and 1 / f noise ��� time
series shown in Fig. 2. The symbols “*” and “�” correspond to the numeri-
cally estimated multiscale entropy values with our implementation of mul-
tiscale entropy, whereas the lines are the numerical evaluation of analytic
multiscale entropy calculation �see Ref. 16�.

FIG. 4. Average multiscale entropy values for seven LDF signals recorded
in the forearm �ventral face� of seven healthy subjects at rest. The param-
eters for SampEn computation are m=2 and r=0.15. The sampling period
for the LDF signals is T=50 ms, which gives, for scale factor going from

�=1 to �=23, time scales ranging from �T=0.05 s to �T=1.15 s.
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erage, but also for all our signals �see Fig. 5�. Finally, the
average multiscale entropy progressively increases again.
For scale factor �=1, corresponding to traditional SampEn,
we find an average multiscale entropy equal to 1.27. This
value is in accordance with the previous studies.12 As the
variation pattern observed �increase and then decrease� is the
same for all our signals, multiscale entropy could potentially
be a stationary signature for LDF signals, which are probe-
position and subject dependent.

From a qualitative point of view, multiscale entropy of
LDF signals �peripheral cardiovascular system� presents a
marked contrast pattern compared to the one of HRV data
�central cardiovascular system�. Our results reveal a non-
monotonic evolution of the multiscale entropy for the LDF
signals. By contrast, for HRV signals from healthy subjects,
the evolution observed for the multiscale entropy is usually
monotonic: The multiscale entropy measure increases on
small time scales �time scales smaller than one typical respi-
ratory cycle length, which is around 3.33 s� and then stabi-
lizes to a relatively constant value �see, for example, Refs. 15
and 16�. The nonmonotonic evolution of the multiscale en-
tropy observed for LDF signals is therefore markedly differ-
ent from that of the HRV data for which multiscale entropy
presents a monotonic behavior through scales.

From a quantitative point of view, we can note that the
multiscale entropy of LDF signals emphasizes two distinc-
tive scales where the LDF signals undergo specific changes
from high to low complexity: 7T=0.35 s and 18T=0.9 s. As
the multiscale entropy value of LDF signals is the highest
around 0.35 s, we can suggest that the processes acting
around this time scale have the highest irregularity. By con-
trast, because the multiscale entropy of LDF signals is the
lowest around 0.9 s, the processes acting around this scale
have the lowest irregularity. The time scale around 0.9 s is

FIG. 5. Multiscale entropy values for the seven LDF signals recorded in the
forearm �ventral face� of seven healthy subjects at rest. The parameters for
SampEn computation are m=2 and r=0.15. The sampling period for the
LDF signals is T=50 ms, which gives, for scale factor going from �=1 to
�=23, time scales ranging from �T=0.05 s to �T=1.15 s.
close to the period of heart beats. The regularity of this
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strong rhythmic activity could be the origin of the low mul-
tiscale entropy recorded around 0.9 s in the LDF signal. If
the heartbeat rate changes, then we hypothesize that the dis-
tinctive scale observed around 18T �0.9 s� will move to an-
other scale �a smaller or a longer scale, depending if the
heartbeat rate increases or decreases�. In this logic, the high
multiscale entropy around 0.35 s could manifest the action in
the LDF signal, on this range of temporal scales, of a very
irregular underlying process, still to be identified. Now con-
cerning long time scales above 1 s, due to the high sensitivity
of the LDF technique to movements, long LDF signals �more
than 30 min� are difficult to record. Therefore, with multi-
scale entropy studies conducted with our parameters, long
scales �of the order of several seconds� seem to be difficult to
obtain with LDF signals when 1000 samples are chosen as
the minimum number of points for sufficient accuracy in
statistical estimation of the entropy. Other works could be
conducted with fewer points in the coarse-grained time series
to investigate if slower biophysical processes, such as respi-
ration or vasomotion reported in literature, could be analyzed
or detected from a same limited duration of LDF recording.

These first observations of multiscale entropy on LDF sig-
nal complement those obtained recently on multiscale analy-
ses of LDF signals.11–14 Moreover, they also add information
to the works that have been published on the �single scale�
SampEn values of LDF signals.12,26 This study is the first one
dedicated to the multiscale entropy analysis of LDF signals.
Experiments can now be conducted in pathological subjects
to investigate how—as it is the case for the central cardio-
vascular system—possible diagnostic purposes could be ex-
tracted from multiscale entropy values.
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