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Abstract To contribute to the important task of characterizing the complex multidimen-
sional structure of natural images, a fractal characterization is proposed for the colorimetric
organization of natural color images. This is realized from their three-dimensional RGB color
histogram, by applying a box-counting procedure to assess the dimensionality of its support.
Regular scaling emerges, almost linear over the whole range of accessible scales, and with
non-integer slope in log-log allowing the definition of a capacity dimension for the histogram.
This manifests a fractal colorimetric organization with a self-similar structure of the color
palette typically composing natural images. Such a fractal characterization complements
other previously known fractal properties of natural images, some reported recently in their
colorimetric organization, and others reported more classically in their spatial organization.
Such fractal multiscale features uncovered in natural images provide helpful clues relevant
to image modeling, processing and visual perception.

Keywords Color images · Three-dimensional histogram · Scaling · Fractal dimension ·
Multicomponent images

1 Introduction

Natural images are complex multidimensional information-carrying signals. Their under-
standing and modeling are essential to many tasks in image processing and vision, and
advances are still needed in this direction. Among specific properties that have been found
constitutive of the complex structure of natural images are fractal properties. Principally,
fractal or self-similarity or scaling properties have been observed in the spatial organiza-
tion of natural images (Ruderman and Bialek 1994; Ruderman 1997; Hsiao and Millane
2005). Such spatial fractal properties can be related to the many features and details which
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usually exist across many spatial scales, in a self-similar way, in natural scenes. Such fractal
self-similar structures have also been found to extend to the temporal organization of time-
varying sequences of natural images, as perceived by the visual system (Dong and Atick
1995). These findings of such spatial or temporal fractal scaling properties are helpful to
construct more realistic models for natural images, and carry relevance for image coding and
processing (Pesquet-Popescu and Lévy Véhel 2002; Srivastava et al. 2003; Chen et al. 2008)
and vision systems (Knill et al. 1990; Olshausen and Field 2000).

In the present paper, we will address another, complementary, aspect of the fractal proper-
ties of natural images. Beyond the spatial and temporal organizations of natural images, we
address here their colorimetric organization. Some evidence has recently been reported that
a fractal or self-similar organization also exists in the colorimetric domain for natural images
(Chauveau et al. 2008; Chapeau-Blondeau et al. 2009). The pixels of natural color images
would tend to distribute, over the colorimetric space, in a self-similar fractal arrangement.
This has been shown in Chauveau et al. (2008), Chapeau-Blondeau et al. (2009) by means
of the evaluation of the correlation dimension of the distribution of pixels in the colorimetric
space, as represented by the three-dimensional color histogram of the images. Two distinct
estimators in Chauveau et al. (2008) and in Chapeau-Blondeau et al. (2009) have been tested
for the correlation dimension, which confirm the presence of non-integer correlation dimen-
sion manifesting a fractal distribution of the pixels in the colorimetric space. We complement
these investigations here by considering another approach to further characterize a fractal
colorimetric organization. We evaluate the capacity dimension of the three-dimensional his-
togram of color images. Such a capacity dimension characterizes the structure of the support
of the three-dimensional histogram, which expresses, in the colorimetric space, which colors
are present in an image and which are not. In other words, the capacity dimension character-
izes the structure of the color palette employed by Nature to compose a given natural image.
We show here that such a color palette tends to display a fractal organization, identified by
a non-integer capacity dimension. By contrast, the correlation dimension of Chauveau et al.
(2008), Chapeau-Blondeau et al. (2009) offers a more composite view, as it simultaneously
characterizes the color palette and the populations of pixels distributing among these existing
colors. These are two complementary approaches on the fractal colorimetric organization of
images, which are made possible by the evaluation of the capacity dimension we perform
here.

2 Three-dimensional color histogram

We consider RGB color images (Sharma 2003), with each component R red, G green and B
blue varying among Q possible integer values in [0, Q −1] at each pixel of spatial coordinate
(x1, x2). The histogram of such color images is a three-dimensional structure comprising Q3

colorimetric cells, each of which containing the pixels with this color in the image. For the
very common choice Q = 28 = 256, the histogram with its Q3 = 224 ≈ 16.8 × 106 cells
is a large data structure which can display complex organization. Instead of the full three-
dimensional histogram, three marginal one-dimensional histograms, separately for each R,
G or B component, are often considered to lead to simpler data handling. In addition, the full
three-dimensional histogram can be highly nonuniform. For a typical RGB color image with
size 512 × 512 and Q = 256, a total of 5122 = 218 pixels distribute among the Q3 = 224

colorimetric cells. This means that in the three-dimensional color histogram, most of the cells
are likely to be empty, while cells corresponding to dominant colors in the image may be
highly populated. A typical three-dimensional color histogram is thus a large data structure,
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Fig. 1 Random RGB color image I3(x1, x2) of size 512 × 512 pixels (left) and its three-dimensional
histogram in the colorimetric cube [0, Q − 1 = 255]3 as a three-dimensional manifold (right)

highly nonuniform, with possibly large voids, some high local concentrations of pixels, an
overall diffuse character, and not so often considered (in place of the three marginal his-
tograms). Such features can be perceived on the two examples of three-dimensional color
histograms from natural images shown in Fig. 7. We will implement here a characterization of
the three-dimensional color histogram, manifesting the prevalence of a fractal organization.

3 Fractal characterization

RGB color images have been tested for their fractal organization by applying a box-counting
procedure as follows. The colorimetric cube [0, Q − 1]3 is successively covered with boxes
of side a and volume a3, with varying a. For each box size a, one computes the number N (a)

of boxes which are needed to cover the support of the three-dimensional histogram, i.e. to
cover all the cells of the colorimetric cube which are occupied by pixels of the image.

For calibration purpose, we apply first this measuring process on reference RGB images
with known properties for their three-dimensional histogram. We consider a random image
I3(x1, x2) for which each color component R, G or B is uniformly drawn at random in
[0, 255] independently at each pixel (x1, x2). Such a color image I3(x1, x2) is endowed with
a three-dimensional histogram where the pixels uniformly distribute over the colorimetric
cube [0, Q − 1 = 255]3, as shown in Fig. 1.

In a similar way, we also consider a random image I2(x1, x2) for which the two com-
ponents R and G are uniformly drawn at random in [0, 255] independently at each pixel
(x1, x2). In addition, the B component is fixed everywhere to the constant value 128. Such
a color image I2(x1, x2) is endowed with a three-dimensional histogram which reduces to
a two-dimensional manifold: the pixels uniformly distribute over the plane with equation
B = 128 in the colorimetric cube [0, Q − 1 = 255]3, as shown in Fig. 2.

Finally we introduce a random image I1(x1, x2) for which the component R is uniformly
drawn at random in [0, 255] independently at each pixel (x1, x2). In addition, the remaining
G and B components are determined according to the value of the R component as G = R
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Fig. 2 Random RGB color image I2(x1, x2) of size 512×512 pixels (left) and its three-dimensional histogram
in the colorimetric cube [0, Q − 1 = 255]3 as a two-dimensional manifold (right)

Fig. 3 Random RGB color image I1(x1, x2) of size 512×512 pixels (left) and its three-dimensional histogram
in the colorimetric cube [0, Q − 1 = 255]3 as a one-dimensional manifold (right)

and B = 255 − R at each pixel (x1, x2). Such a color image I1(x1, x2) is endowed with a
three-dimensional histogram which reduces to a one-dimensional manifold: the pixels uni-
formly distribute over the diagonal with equation (G = R, B = 255− R) in the colorimetric
cube [0, Q − 1 = 255]3, as shown in Fig. 3.

For each three-dimensional histogram of reference shown in Figs. 1–3, we count the
number N (a) of covering boxes at scale a.1 For the histogram which is a one-dimensional

1 In the plots like Fig. 4, non-integer values of the box size a correspond to the cubic root of the volume of
boxes of the form b × b × b/2 or b × b/2 × b/2 with b a power of 2. The corresponding count N (a) results
from an average over the three possible configurations of such boxes relative to the three coordinate axes (R,
G, B).
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Fig. 4 Number N (a) of covering boxes with size a to cover the three-dimensional histogram of image
I1(x1, x2) from Fig. 3 (left), and image I2(x1, x2) from Fig. 2 (right). Dotted lines show the slopes −1 (left)
and −2 (right)

manifold in Fig. 3, the count N (a) is expected to follow a simple power law N (a) ∝ a−D

with an exponent D = 1. This is verified in Fig. 4. For the histogram which is a two-dimen-
sional manifold in Fig. 2, the count N (a) is expected to follow a power law N (a) ∝ a−D

with D = 2. This is also verified in Fig. 4.
For the histogram in Fig. 1 where the pixels uniformly distribute over the whole colorimet-

ric cube [0, Q − 1 = 255]3, the count N (a) is expected to follow a power law N (a) ∝ a−D

with D = 3. This is verified in Fig. 5 only at large scales a. At the smallest scale a = 1, the
straight line with slope −3 in log-log figuring the power law N (a) ∝ a−3 in Fig. 5, points to
a count N (a = 1) = 224 which precisely matches the total number of colorimetric cells in
the colorimetric cube [0, Q − 1 = 255]3. However, the original image I3(x1, x2) of Fig. 1
contains only a total of Npix = 512 × 512 = 218 pixels. Therefore at scale a = 1, a total
number of 218 boxes of size a is sufficient to cover all the occupied cells of the three-dimen-
sional histogram in Fig. 1. Clearly, if only Npix = 218 pixels uniformly distribute among 224

colorimetric cells, there will be no more than 218 occupied cells, as seen in Fig. 5. In this
way, as the box size a is reduced, if the power law ∝ a−D predicts a number of occupied
boxes larger than the total number Npix of pixels in the image, the experimental count N (a)

of occupied boxes will deviate from the power law to saturate as it cannot exceed Npix. It is
important to realize this possibility of saturation of the number of covering boxes N (a) at
small scales a, which will saturate in practice according to the total number of pixels Npix in
the image, and may therefore deviate from an underlying power law N (a) ∝ a−D at small
scales a due to the limited number of observed pixels. This possibility will be relevant to
interpret the observations on natural images to come next.

A final random test image Ig(x1, x2) was generated with, at each pixel (x1, x2), the value
of each component R, G and B selected independently from a Gaussian probability density
with mean 128 and standard deviation 256/6, and then clipped into [0, 255]. This Gaussian
random image Ig(x1, x2) is also characterized by a compact distribution of the colors in the
colorimetric cube [0, 255]3. This is associated in Fig. 5 for Ig(x1, x2), with a number of
covering boxes N (a) ∝ a−D with D = 3, as shown by the log-log plot matching a straight
line with slope −3, at least at large scales a, and with a similar saturation as for I3(x1, x2),
at small scales a, due to the limited number of pixels.
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Fig. 5 Number N (a) of covering boxes with size a to cover the three-dimensional histogram of uniform
random image I3(x1, x2) from Fig. 1 (left), and a Gaussian random image Ig(x1, x2) (right). Dotted lines
show the slope −3

4 Natural color images

We now apply the box-counting procedure of Sect. 3 to characterize the three-dimensional
histogram of natural color images. We have considered various common RGB color images,
with size N = 512 × 512 pixels and Q = 256 levels. Examples of such images are shown
in Fig. 6, with two typical three-dimensional color histograms depicted in Fig. 7.

For the images of Fig. 6, log-log plots of the number N (a) of covering boxes are presented
in Fig. 8.

The remarkable observation in Fig. 8 is that the plots of log[N (a)] versus log(a) are well
approximated by straight lines with slope −D, over a significant range of scales a. This is
equivalent to a number N (a) of covering boxes following a power law N (a) ∝ a−D , and with
the exponent D from Fig. 8 which tends to assume non-integer values significantly below 3.
At small scales a, there is usually a departure from the power law N (a) ∝ a−D which can
be related to the finite number of pixels present in the images, which limits the total count of
boxes N (a), as explained at the end of Sect. 3. This saturation of N (a) is image-dependent
since at the smallest scale a = 1, the number of covering boxes N (a = 1) saturates exactly
at the number of distinct colors present in the image.

The results of Fig. 8 manifesting a power law N (a) ∝ a−D are typical of the behavior
that was observed while testing many natural color images, with an exponent D that was
found to vary between 2.2 and 2.5 typically for natural images. This type of behavior, with
non-integer exponent D, identifies what can be viewed as a fractal organization of the col-
ors present in natural images. The box covering procedure as used here, characterizes the
structure of the support of the three-dimensional histogram of color images. It shows how
the color that are present in the images distribute across the colorimetric cube, according to
the colorimetric scale, for close neighboring colors or far apart distant colors. Alternatively,
the measure of Fig. 8 characterizes the regions of the colorimetric cube that contribute in
providing colors that are employed in the images. A fractal organization, as identified by
straight lines with non-integer slopes in Fig. 8, represents images containing clusters of close
neighboring colors as well as colors that are far apart. At the same time, a fractal structure with
exponent D less than 3, indicates voids of all sizes with no colors for the three-dimensional
histograms in the colorimetric cube. In this way, natural images appear to involve colors that
are selected in a non-trivial self-similar fractal fashion over the colorimetric cube, with color
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Fig. 6 Nine RGB color images with size 512 × 512 pixels, and Q = 256 levels

selected uniformly across many scales. Small scales are related to the many different shades
and variations of some generic reference colors, large scales are related to the several largely
distinct colors that frequently compose natural images. And these different colors are usually
recruited in a self-similar way across scales, as manifested by Fig. 8.

The results of Fig. 8 characterize a fractal structure in the colorimetric organization of
natural images by means of the box-counting method and what is known as the capacity
dimension D (Maggi and Winterwerp 2004; Schroeder 1999). It is possible to confront this
characterization with other recent approaches to the colorimetric organization of natural
images (Chauveau et al. 2008; Chapeau-Blondeau et al. 2009). These approaches of Chau-
veau et al. (2008), Chapeau-Blondeau et al. (2009) perform a fractal characterization based
on the evaluation of the correlation dimension of the three-dimensional color histogram.
This evaluation relies on two distinct estimators in Chauveau et al. (2008) and in
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Fig. 7 Color histogram in the RGB colorimetric cube [0, 255]3 for image “Zelda” (left) and image “Fruits”
(right) from Fig. 6
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Fig. 8 Number N (a) of covering boxes with size a to cover the three-dimensional histogram, for the nine
RGB color images of Fig. 6. For each image, the dotted line shows the slope −D
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Table 1 The capacity dimension
D = D0 evaluated by the
box-counting method of Fig. 8,
and the correlation dimension D2
evaluated from the correlation
integral as in Chapeau-Blondeau
et al. (2009). The nine images of
Fig. 8 are treated first,
complemented by three other
standard images not displayed in
Fig. 6 but coming from
Chapeau-Blondeau et al. (2009)
or Chauveau et al. (2008)

Image Capacity dim. Correlation dim.
D = D0 D2

Lena 2.2 1.9

Zelda 2.2 2.1

Boats 2.2 1.8

Monarch 2.3 1.7

Parrots 2.3 1.8

Fruits 2.3 1.9

Yacht 2.4 1.8

Flowers 2.5 1.3

Mandrill 2.5 2.3

Goldhill 2.2 2.1

Car 2.3 1.5

Sailboat 2.3 1.7

Chapeau-Blondeau et al. (2009), developed for the correlation integral, as pioneered
by Grassberger and Procaccia to characterize strange attractors of chaotic dynamics
(Grassberger and Procaccia 1983). For the three-dimensional histogram from natural color
images, we confront in Table 1, the capacity dimension D = D0 evaluated by the box-count-
ing method of Fig. 8, with the correlation dimension D2 evaluated in Chapeau-Blondeau
et al. (2009) from the correlation integral of Grassberger and Procaccia (1983). In Table 1,
some of the values of D2 are directly taken from Chapeau-Blondeau et al. (2009) while some
others not given in Chapeau-Blondeau et al. (2009) have been computed here with the method
of Chapeau-Blondeau et al. (2009). It is to be noted that these two characterizations by D0

and D2, constitute two distinct complementary points of view on the fractal properties. The
capacity dimension D0 and the correlation dimension D2 are two important (and very often
considered) instances in the infinite series of fractal dimensions which can be defined for
fractal structures (Hentschel and Procaccia 1983; Schroeder 1999). As established already in
Grassberger and Procaccia (1983), the capacity dimension D0 and the correlation dimension
D2 are usually different and verify D0 ≥ D2, as observed in Table 1.

In Table 1, both the capacity dimension and the correlation dimension assume non-integer
values, and in this way they both manifest a fractal organization of the three-dimensional
histogram of the color images. However, these two dimensions reflect different aspects of
the fractal organization.

The results of Fig. 8 associated with the capacity dimension D = D0 from the box-count-
ing method, characterize, as we already mentioned, the support of the three-dimensional
histogram. Equivalently, this measures which colors of the colorimetric cube are used and
which are not used in the image. This support, according to Fig. 8, tends to display a fractal
structure, with clusters and voids spanning many scales in a self-similar way. This is mani-
fested in Fig. 8 by the linear scaling in log-log coordinates, with non-integer slopes defining
the fractal dimension D = D0 representing the capacity dimension or dimension of the sup-
port of the distribution. In other words, the capacity dimension characterizes the structure of
the color palette employed by Nature to compose a given natural image. And Fig. 8 expresses
that such a color palette tends to display a fractal organization, identified by a non-integer
capacity dimension.
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By contrast, the correlation dimension D2 explored in Chauveau et al. (2008), Chapeau-
Blondeau et al. (2009) and reproduced in Table 1, offers a more composite view. Through
its mode of calculation as explained in Chauveau et al. (2008), Chapeau-Blondeau et al.
(2009), the correlation dimension D2 is affected by the color palette and by the populations
of pixels distributing among these existing colors. This performs a joint characterization of
both the support of the histogram and of the populations in the histogram. Equivalently, this
measures simultaneously which colors are used in the histograms, and which populations of
pixels distribute among these occupied colors. In this respect, it can be noted in Table 1 that,
among the different images, there is more variability of the values found for the correlation
dimension D2 which evolve in the interval [1.5, 2.3], compared to the values found for the
capacity dimension D = D0 evolving in [2.2, 2.5]. This larger variability of D2 is consistent
with the fact that D2 is affected by two properties of the histogram—the structure of its
support (the color palette) and the populations of pixels filling these colors. Meanwhile, the
capacity dimension D = D0 is affected only by the support, and consistently experiences
less variability across the images in Table 1.

Clearly, the characterization by the capacity and the correlation dimensions stand as two
distinct, complementary, approaches to contribute to the analysis of the colorimetric organi-
zation of images. Their confrontation is realized for the first time here, thanks to the evaluation
of the capacity dimension we perform. The correlation dimension D2 points to a fractal orga-
nization for the way the pixels populate the occupied colorimetric cells of the histogram. The
capacity dimension D = D0 from Fig. 8 reveals that the occupied colorimetric cells alone,
irrespective of their populations, display a fractal organization. These are two distinct fractal
properties, which are both useful to characterize the complex colorimetric organization of
natural images.

A consistent behavior of the capacity dimension can be observed when the box-counting
procedure is applied to natural gray images coded as RGB colors images with three identical
color components R = G = B. In this case, as shown in Fig. 9, the number of covering boxes is
N (a) ∝ a−D with D = 1, because the three-dimensional RGB histogram of the gray images
is supported by the principal diagonal of the colorimetric cube, which is a one-dimensional
manifold, much like in Fig. 3.

It is clear that a fractal dimension is a useful scalar index to summarize fractal properties
in the three-dimensional histogram of the images. We have confronted several approaches
for extracting a fractal dimension for the color histograms, by the box-counting method in
Fig. 8 or via the correlation integral of Grassberger and Procaccia (1983) approached with
two distinct estimators in Chauveau et al. (2008), Chapeau-Blondeau et al. (2009). The results
of Fig. 8 estimate the capacity dimension D = D0 by means of a simple linear fit. This is a
straightforward approach which requires minimal hypothesis concerning the observed data,
and as such it is very useful as a simple and direct reference. Other more sophisticated esti-
mation procedures exist which require further hypothesis on the data, for instance estimators
based on maximum likelihood formalism which require the specification of a probabilistic
framework for assessing the probabilities of observing the data (Theiler 1990; Galka 2000).
The Takens, or the binomial, or the Judd estimators are of this kind, as applied to the cor-
relation dimension in Galka (2000), Theiler (1990). Here, the approach in Fig. 8 is directly
based on counts on the actual observed data, with no probabilistic assumption required. It
stands as a natural reference if, beyond, one wants to compare methods for extracting a fractal
dimension from the graphs of Fig. 8. However, we want to emphasize that the graphs of Fig. 8
allow one to appreciate also the whole scaling behavior of the histogram in the colorimetric
space, across the whole range of scales available for the images. The significance here goes
beyond the mere extraction of a fractal dimension, which may possibly differ slightly with
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Fig. 9 Two gray-level images with size 512 × 512 pixels and Q = 256 levels, coded as RGB color images
with three identical color components R = G = B; and corresponding number N (a) of covering boxes with
size a to cover their three-dimensional histogram

one method or another. Defining a fractal dimension usually involves a regular linear scaling
behavior at small scales only, theoretically via a limit at scales going to zero. Here, the graphs
of Fig. 8 reveal a regular scaling behavior linear almost over the whole range of scales (small
and large) accessible for the histograms. It is this whole scaling behavior, as shown in Fig. 8,
which is first of all significant concerning the structure of the colorimetric organization of
the images.

5 Discussion

The characterization by the box-counting method performed in Sect. 4 indicates that the
three-dimensional histograms from natural color images tend to display a support with a
fractal structure. This complements the other recent characterization of Chauveau et al.
(2008), Chapeau-Blondeau et al. (2009) showing a fractal organization also for the popu-
lations of pixels over the populated colors of the histograms. These results represent a first
stage of exploration in this direction for characterizing the complex structure of images in
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the colorimetric domain. They next should be complemented by examination of extended
series of natural images, possibly with control on their typologies, in the direction which has
been opened.

For natural images, such characterizations of fractal properties in their colorimetric organi-
zation complement other fractal properties previously established, through a gradual process
with successive studies, in their spatial organization (Tolhurst et al. 1992; Ruderman and
Bialek 1994; Ruderman 1997; Bex and Makous 2002; Hsiao and Millane 2005). The tra-
ditional methodologies for revealing spatial fractal properties in images usually rely on the
frequency spectrum or on the autocorrelation function of the images. Power-law evolutions of
such quantities are taken as the mark of a scale-invariant or fractal character (Schroeder 1999)
in the images. Specific self-similar models, like the fractional Brownian motion, precisely
endowed with power-law autocorrelation and spectrum, have been shown capable to provide
relevant descriptions of the variations of intensities over natural images (Mandelbrot 1983;
Pentland 1984; Keller et al. 1987; Potlapalli and Luo 1998; Kaplan 1999; Pesquet-Popescu
and Lévy Véhel 2002). In such situations, the origin of the fractal self-similar behavior relates
to the spatial organization of the features and details across the image. Application of fractal
concepts to image compression (Jacquin 1992; Fisher 1995; Wohlberg and De Jager 1999;
Truong et al. 2004; Faraoun and Boukelif 2005) has emerged in this context of spatial frac-
tality in natural images. Also, this type of spatial characterization of fractal properties has
been mostly applied to gray-level or one-component images. The approach we developed
here is quite different since it specifically applies to RGB color images, and it offers a char-
acterization of the image in the colorimetric domain as a complement to the spatial domain.
The common aspect is the power-law scaling of relevant quantities, as in Fig. 8, which is in
each case taken as the mark of a scale-invariant fractal organization. However, the scaling
quantities are quite different to reveal spatial or colorimetric fractal properties. And while
fractality in the spatial organization was previously known for natural images, fractality in
the colorimetric organization as addressed here constitutes a novel direction of exploration.

For color images as considered here, the fractal dimensions resulting from such analy-
ses of their three-dimensional histograms, stand as simple characteristic parameters, which
can be helpful to various purposes such as image classification or indexing, or contribute
to metrics for realistic synthesis of images (Gevers and Smeulders 1999; Batlle et al. 2000;
Distasi et al. 2003; Lian 2008; Sharma 2003). Also, a fractal organization indicates clusters of
occupied colorimetric cells exhibiting many sizes, over many scales, in the three-dimensional
histograms. This is to be contrasted with simpler structures composed of a few clusters, with
a few definite sizes, for the occupied colorimetric cells of the histograms. This may bear rel-
evance to segmentation of color images based on pixel clustering from the color histogram.
The presence of a fractal organization suggests that there is no such thing as a small number
of well defined clusters that would emerge in the three-dimensional histograms, but on the
contrary, many clusters and sub-clusters co-existing over many scales in a self-similar way.

Uncovering fractal structures also provides clues useful to developing models for natural
images (Srivastava et al. 2003; Gousseau and Roueff 2007). This is an important task for
many areas of image processing and computer vision. The fractal organization observable
in the three-dimensional color histograms of natural images can have its origin in the spa-
tial structures present in natural scenes, typically containing features and details spanning
many scales. In this direction, the fractal colorimetric organization reported here for natu-
ral images, would share some common origin with the distinct fractal spatial organization
previously reported for natural images (Tolhurst et al. 1992; Ruderman and Bialek 1994;
Ruderman 1997; Hsiao and Millane 2005). Also, trichromacy for color representation is
a coding modality inherent to the visual system. Fractal organization in the colorimetric
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structure of natural images could reveal some coding principles implemented by the visual
system itself (Field 1987, 1994; Olshausen and Field 2000). Fractal self-similar organization
of the colors perceived in natural images, could represent some optimal way of distributing
the contrast discrimination capabilities of the visual system across the colorimetric domain.
In this way, the visual system would be equally capable of distinguishing small colorimetric
contrasts of close colors as well as large contrasts of very different colors.

6 Conclusion

The present study has implemented a fractal characterization of the three-dimensional his-
togram from natural color images. The most prominent findings lie in the regular scaling
behavior which is observed almost linear over the whole range of accessible scales, and with
non-integer slope. This type of scaling identifies a fractal colorimetric organization which is
characterized here with the capacity dimension. This remarkable linear scaling is persistent
among the standard color images that were tested here, and it points to a highly structured
organization of natural images in the colorimetric domain. The non-integer capacity dimen-
sion was observed to vary from one image to the other, yet in a rather narrow range, typically
between 2.2 and 2.5. The capacity dimension has been confronted with the very recently
measured correlation dimension which offers a different viewpoint on the color histograms,
and both dimensions consistently confirm a fractal organization. Similar fractal approaches
as addressed here for the three-dimensional histogram of color images, can be extended to
multispectral images, to characterize the complex structure of their multidimensional histo-
grams, contribute to assess their intrinsic dimensionality, and suggest efficient representations
in reduced coordinate systems (Landgrebe 2002). All these aspects connected to fractal prop-
erties in images, and possibly relevant to many areas of image processing and artificial or
natural vision, offer promising directions for further investigation.
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