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Received 2 June 2006; received in revised form 7 November 2006; accepted 7 December 2006

Communicated by V. Jirsa

Available online 20 February 2007
Abstract

A classic model neuron with threshold and saturation is used to form parallel uncoupled neuronal arrays in charge of the transduction

of a periodic or aperiodic noisy input signal. The impact on the transduction efficacy of added noises is investigated. In isolated neurons,

improvement by noise is possible only in the subthreshold and in the strongly saturating regimes of the neuronal response. In arrays,

improvement by noise is always reinforced, and it becomes possible in all regimes of operation, i.e. in the threshold, in the saturation, and

also in the intermediate curvilinear part of the neuronal response. All the configurations of improvement by noise apply equally to

periodic and to aperiodic signals. These results extend the possible forms of stochastic resonance or improvement by noise accessible in

neuronal systems for the processing of information.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Neurons interconnected in networks are very efficient for
signal and information processing, through detailed
modalities and mechanisms which are still under intense
investigation. Neurons are intrinsically nonlinear devices.
It is now known that in nonlinear processes, the presence
or even the injection of noise, can play a beneficial role for
signal and information processing. This type of useful-
noise phenomena have been widely investigated under the
denomination of stochastic resonance [15,1]. Many forms
of stochastic resonance or improvement by noise have been
reported in various nonlinear systems involved in diverse
signal processing operations. Several forms of stochastic
resonance have been reported in neural processes (see for
instance [14,12] for early experimental demonstrations, and
[21] for a recent overview). At the level of the nonlinear
neuron, many reported instances of stochastic resonance
essentially rely on the threshold or excitable dynamics
inherent to the neuron. In such situations, there is usually a
e front matter r 2007 Elsevier B.V. All rights reserved.
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small information-carrying signal, which is by itself too
weak to elicit an efficient response from the threshold or
excitable dynamics. The noise then cooperates construc-
tively with the small signal, in such a way as to elicit a more
efficient neuronal response.
Recently, a new mechanism of stochastic resonance has

been exhibited when threshold or excitable nonlinearities
are assembled into an uncoupled parallel array. This new
form has been introduced under the name of suprathres-
hold stochastic resonance in [25,26], because in the array,
addition of noise can improve the transmission of an input
signal with arbitrary amplitude, not necessarily a small
subthreshold signal. A parallel array is a common
architecture for neuron assemblies, especially in sensory
systems in charge of the transduction of noisy signals from
the environment. Stochastic resonance has been shown
possible in neuronal parallel arrays, with various models
for the threshold or excitable nonlinear dynamics of the
neuron. In neuronal arrays, Collins et al. [11], Chialvo et al.
[9], and Hoch et al. [18,19] show stochastic resonance
essentially with a subthreshold input signal, while Stocks
[24], Stocks and Mannella [27], and Hoch et al. [17] show
the novel form of suprathreshold stochastic resonance.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2006.12.014
mailto:chapeau@univ-angers.fr


ARTICLE IN PRESS
S. Blanchard et al. / Neurocomputing 71 (2007) 333–341334
In the neuronal arrays, suprathreshold stochastic resonance
is shown in [24,17] with simple threshold binary neurons,
meanwhile Collins et al. [11], and Stocks and Mannella [27]
for this investigate an excitable FitzHugh–Nagumo model in
its subthreshold and suprathreshold regimes.

For isolated nonlinear systems, it has recently been shown
that stochastic resonance can also operate in threshold-free
nonlinearities with saturation, where the noise has the ability
to reduce the distortion experienced by a signal because of the
saturation [23], with an extension to arrays of threshold-free
sensors with saturation given in [8]. Saturation is also a
feature present in the neuronal response, and this effect of
stochastic resonance at saturation has been shown to occur
[22] in the transmission by a nonlinear neuron in its saturating
region. More detailedly, Rousseau and Chapeau-Blondeau
[22] demonstrate that in signal transmission by an isolated
neuron, improvement by noise can take place both in the
region of the threshold and in the region of the saturation; in
between, when the neuron operates in the intermediate region
avoiding both the threshold and the saturation, then
improvement by noise does not take place. In the present
paper, we shall consider the same type of neuron model with
saturation as in [22]; we shall assemble these neurons into a
parallel array, and investigate the impact of added noise in
the array. We shall exhibit that different occurrences of
stochastic resonance take place in the array. We shall show in
the array that stochastic resonance is present in the threshold
and in the saturation regimes of the neuronal response, just
like in the case of an isolated neuron, but always with an
increased efficacy brought in by the array. In addition, we
shall show that in the array, stochastic resonance also takes
place in the intermediate regime of operation that avoids both
the threshold and the saturation of the neuron. Stochastic
resonance does not arise in isolated neurons in this regime,
but the property becomes possible in neuronal arrays through
a truly specific array effect.
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Fig. 1. Output firing rate f ðtÞ in units of f max ¼ 1=T r, as a function of the

input somatic current IðtÞ in units of I th, in typical conditions with

tm ¼ 10ms, T r ¼ 1ms and I th ¼ 0:1 nA, according to the neuron firing

function Eq. (1) (solid line) and its approximation Eq. (17) (dashed line).
2. The model of neuronal array

We consider the neuron model of [22]. The input signal
to the neuron, at time t, is taken as the total somatic
current IðtÞ. This input current IðtÞ may result from
presynaptic neuronal activities, or also from an external
stimulus of the environment for sensory neurons, a
situation to which stochastic resonance effects are specially
relevant. The output response of the neuron is taken as the
short-term firing rate f ðtÞ at which action potentials are
emitted in response to IðtÞ. A classic modeling of the
integrate-and-fire dynamics of the neuron leads to an
input–output firing function gð:Þ, under the so-called
Lapicque form [20,4]

f ðtÞ ¼ g½IðtÞ� ¼

0 for IðtÞpI th;

1=T r

1� ðtm=T rÞ ln½1� I th=IðtÞ�
for IðtÞ4I th:

8><>:
(1)
In the firing function of Eq. (1), a threshold current arises
as I th ¼ V th=Rm, with V th the standard firing potential of
the neuron, and Rm its total membrane resistance. Also in
Eq. (1), tm is the membrane time constant, and T r the
neuron refractory period. We take the typical values as in
[22]: V th ¼ 10mV above the neuron resting potential,
Rm ¼ 100MO leading to I th ¼ 0:1 nA, and tm ¼ 10ms and
T r ¼ 1ms. The resulting neuron firing function of Eq. (1) is
depicted in Fig. 1.
Although resulting from a very simplified description of

the neuronal dynamics, the firing function of Eq. (1) is able
to capture essential features of the neuron response [20,4]
characterized by the presence of a threshold, a saturation,
and in between a smooth curvilinear part.
A number N of identical neurons modeled as Eq. (1) and

labeled with index i ¼ 1 to N, are assembled into an
uncoupled parallel array. Each neuron i in the array
receives a common input signal IðtÞ. There is also, at the
level of each neuron i, a local noise ZiðtÞ, independent of
IðtÞ, which adds to IðtÞ and leads to the response of neuron
i as

f iðtÞ ¼ g½IðtÞ þ ZiðtÞ�; i ¼ 1; 2; . . . ;N. (2)

The N noises ZiðtÞ are assumed white, mutually indepen-
dent and identically distributed (i.i.d.) with probability
density function pZðuÞ. The response yðtÞ of the array can be

taken as the sum
PN

i¼1 f iðtÞ or as the average N�1
PN

i¼1 f iðtÞ

of the N neuron outputs, and both quantities would behave
in the same way in the present study; for the sequel we will
consider

yðtÞ ¼
1

N

XN

i¼1

f iðtÞ. (3)
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3. Assessing nonlinear transmission by the array

To demonstrate a neuronal transmission aided by noise,
we consider that the input current IðtÞ to the array is
formed as

IðtÞ ¼ sðtÞ þ xðtÞ. (4)

In Eq. (4), sðtÞ is our information-carrying signal, which
will be successively considered to be a periodic and an
aperiodic component. sðtÞ conveys an image of the
information coming from presynaptic neurons or from
the external world for sensory cells. Also in Eq. (4), xðtÞ is a
white noise, independent of sðtÞ and of the ZiðtÞ, with
probability density function pxðuÞ. This noise xðtÞ may have
its origin in random activities of presynaptic neurons, or in
the external environment. The input signal-plus-noise
mixture IðtÞ ¼ sðtÞ þ xðtÞ is transmitted by the neuronal
array to produce the corresponding output yðtÞ via Eqs.
(2)–(3). We will now study the impact of the array noises
ZiðtÞ on the efficacy of transmission of sðtÞ by the array.

3.1. Periodic signal transmission

To assess the transmission efficacy, when sðtÞ is a
periodic signal with period T s, a standard measure in
stochastic resonance studies is the signal-to-noise ratio
(SNR), defined in the frequency domain [5,15]. At the
output, the SNR measures in yðtÞ the power contained in
the coherent spectral line existing at 1=T s divided by the
power contained in the noise background in a small
frequency band DB around 1=T s, and reads [5]

Rout ¼
jhE½yðtÞ� expð�{2pt=T sÞij

2

hvar½yðtÞ�iDtDB
. (5)

In Eq. (5), a time average is defined as

h� � �i ¼
1

T s

Z T s

0

� � � dt, (6)

E½yðtÞ� and var½yðtÞ� ¼ E½y2ðtÞ� � E2½yðtÞ� represent the
expectation and variance of yðtÞ at a fixed time t; and Dt

is the time resolution of the measurement (i.e. the signal
sampling period in a discrete time implementation),
throughout this study we take DtDB ¼ 10�3.

At time t, for a fixed given value I of the input current
IðtÞ, according to the linearity of Eq. (3), one has the
conditional expectations

E½yðtÞjI � ¼ E½f iðtÞjI � (7)

and

E½y2ðtÞjI � ¼
1

N
E½f 2

i ðtÞjI � þ
N � 1

N
E2½f iðtÞjI �, (8)

which are both independent of i since the ZiðtÞ, and
therefore the f iðtÞ, are i.i.d. From Eq. (2), one has for
every i,

E½f iðtÞjI � ¼

Z þ1
�1

gðI þ uÞpZðuÞdu (9)
and

E½f 2
i ðtÞjI � ¼

Z þ1
�1

g2ðI þ uÞpZðuÞdu. (10)

Since IðtÞ ¼ sðtÞ þ xðtÞ, the probability density for IðtÞ is
pxðI � sðtÞÞ, and one obtains

E½yðtÞ� ¼

Z þ1
�1

E½yðtÞjI �pxðI � sðtÞÞdI , (11)

and

E½y2ðtÞ� ¼

Z þ1
�1

E½y2ðtÞjI �pxðI � sðtÞÞdI , (12)

which completes the relations needed for evaluation of the
output SNR Rout of Eq. (5).

3.2. Aperiodic signal transmission

When the information-carrying input signal sðtÞ is
aperiodic, a standard measure in stochastic resonance
studies is the normalized input–output cross-covariance,
which quantifies the similarity between input sðtÞ and
output yðtÞ in a way which is insensitive to both scaling and
offsetting in signal amplitude [10,23]. When sðtÞ is a
deterministic aperiodic signal existing over the duration
T s, we introduce the signals centered around their time-
averaged statistical expectation,esðtÞ ¼ sðtÞ � hsðtÞi (13)

andeyðtÞ ¼ yðtÞ � hE½yðtÞ�i, (14)

with the time average again defined by Eq. (6). The
normalized time-averaged cross-covariance is

Csy ¼
hE½esðtÞeyðtÞ�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE½es2ðtÞ�ihE½ey2ðtÞ�i

p , (15)

or equivalently, since sðtÞ is deterministic,

Csy ¼
hsðtÞE½yðtÞ�i � hsðtÞihE½yðtÞ�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½hsðtÞ2i � hsðtÞi2�½hE½y2ðtÞ�i � hE½yðtÞ�i2�

q , (16)

with E½yðtÞ� and E½y2ðtÞ� again given by Eqs. (11) and (12).
With the measures of performance Rout of Eq. (5) and

Csy of Eq. (16), we are now in a position to quantify the
impact of the array noises ZiðtÞ on the efficacy of
transmission of a periodic or an aperiodic sðtÞ by the
neuronal array.

4. Array transmission aided by noise

Direct numerical evaluations of Rout and Csy can be
realized through numerical integration of the integrals of
Eqs. (9)–(12). Alternatively, to push further the analytical
treatment, it is possible to consider the following situation.
The Lapicque function gð:Þ of Eq. (1) can be approximated
for IðtÞ sufficiently above the threshold I th by using
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lnð1� I th=IÞ � �I th=I , yielding the approximation

f ðtÞ ¼ g½IðtÞ� ¼

0 for IðtÞpI th;

1=T r

1þ ðtm=T rÞðI th=IðtÞÞ
for IðtÞ4I th;

8><>:
(17)

which is also depicted in Fig. 1. Eq. (17) constitutes an
interesting approximation that only departs slightly from
Eq. (1) for IðtÞ immediately above the threshold I th, and it
preserves the qualitative features of the existence of a
threshold, a saturation and an intermediate curvilinear part
in the response. This approximation, when associated to a
probability density pZðuÞ uniform over ½�a; a� authorizes an
analytical evaluation of integrals (9)–(10), as

E½f iðtÞjI �

¼

0 for IpI th � a;

1

T r

I th

2a
½F1ðI þ aÞ � F1ðI thÞ� for I th � aoIoI th þ a;

1

T r

I th

2a
½F1ðI þ aÞ � F1ðI � aÞ� for IXI th þ a;

8>>>>>><>>>>>>:
ð18Þ

and

E½f 2
i ðtÞjI �

¼

0 for IpI th � a;

1

T r

� �2
I th

2a
½F2ðI þ aÞ � F2ðI thÞ� for I th � aoIoI th þ a;

1

T r

� �2
I th

2a
½F2ðI þ aÞ � F2ðI � aÞ� for IXI th þ a;

8>>>>>>><>>>>>>>:
ð19Þ

with the two functions

F1ðuÞ ¼
u

I th
�

tm
T r

ln
u

I th
þ

tm
T r

� �
(20)

and

F2ðuÞ ¼
u

I th
� 2

tm
T r

ln
u

I th
þ

tm
T r

� �
�

ðtm=T rÞ
2

ðu=I thÞ þ ðtm=T rÞ
. (21)

To illustrate noise-aided transmission by the neuronal
array, we choose as in [22], the periodic input

sðtÞ ¼ I0 þ I1 sinð2pt=T sÞ 8t, (22)

to be assessed by the SNR Rout of Eq. (5), and the transient
aperiodic input

sðtÞ ¼
I0 þ I1 sinð2pt=T sÞ for t 2 ½0;T s�;

0 otherwise;

(
(23)

to be assessed by the cross-covariance Csy of Eq. (16). The
parameters I0 (offset) and I1 (amplitude) of the coherent
input sðtÞ of Eqs. (22) or (23) will be varied, in order to
solicit the array in various operation ranges of the
nonlinearity of Fig. 1, successively the threshold region,
the intermediate curvilinear part, and the saturation region.

4.1. Transmission at threshold

We consider here the situation of a small information-
carrying signal sðtÞ which permanently evolves, for every t,
below the threshold I th. The input noise xðtÞ which adds to
sðtÞ is also small, in such a way that the input signal–noise
mixture IðtÞ ¼ sðtÞ þ xðtÞ practically never reaches the
neuron firing threshold I th. Thus IðtÞ alone is unable to
trigger an efficient response at the output, and conse-
quently the measures of transmission efficacy Rout and Csy

remain essentially at zero. From this situation, Fig. 2 shows
the action of the added array noises ZiðtÞ to enhance the
transmission.
In an isolated neuron, at N ¼ 1 in Fig. 2, the added noise

Z1ðtÞ cooperates with the subthreshold input IðtÞ to reach
the firing threshold I th and to induce variations at the
neuron output that will be correlated with the information-
carrying input sðtÞ. This cooperative effect is observed for
both a periodic (Fig. 2A) and an aperiodic (Fig. 2B) input
sðtÞ. For the efficacy of the transmission, measured by the
output SNRRout in Fig. 2A and by the input–output cross-
covariance Csy in Fig. 2B, the effect gives rise to a
nonmonotonic evolution culminating at a maximum for a
nonzero level of the added noise Z1ðtÞ. This is a standard
effect of stochastic resonance in a threshold nonlinearity,
also observed in the same model of a single isolated neuron
in [22].
We next show here that the noise-aided transmission of a

subthreshold sðtÞ, already present in a single neuron, is
reinforced when the neurons are associated into a parallel
array. This is visible in Fig. 2 at N41, where both
measures of efficacy Rout and Csy are always enhanced by
the action of the added array noises ZiðtÞ. With no noises
ZiðtÞ added in the array, i.e. at sZ ¼ 0 in Fig. 2, all the
neurons respond in unison as a single one, and therefore
the performance is the same at sZ ¼ 0 for any N. Addition
of the array noises ZiðtÞ then always entails an enhancement
of the efficacy of the neural transmission compared to the
efficacy of a single isolated neuron, and the enhancement
gets more and more important as the array size N increases
as seen in Fig. 2. At the limit of large arrays, N ¼ 1 in Fig.
2, both measures Rout and Csy reach a plateau at large
values of the rms amplitude sZ of the array noises ZiðtÞ. The
behavior of the array with the added noises ZiðtÞ, and
especially the presence of the plateau, is consistent with a
similar behavior observed in [11] with arrays of Fitz-
Hugh–Nagumo neuron models for an input–output
correlation measure and an aperiodic noise-free input
signal. Here, for the input signal–noise mixture
IðtÞ ¼ sðtÞ þ xðtÞ, the input SNR defined according to
Eqs. (5) and (22) is Rin ¼ I21=ð4s

2
xDtDBÞ, while the

normalized cross-covariance between sðtÞ and IðtÞ defined
according to Eqs. (16) and (23) is CsI ¼ 1=½1þ 2s2x=I21�

1=2.
Precisely, in Fig. 2 at N ¼ 1 and large sZ, the plateau
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Fig. 2. Transmission at threshold by the neuronal array of size N, as a function of the rms amplitude sZ=I th of the array noises ZiðtÞ, with a zero-mean

Gaussian input noise xðtÞ of rms amplitude sx ¼ 0:1I th, and signal parameters I0 ¼ 0:5I th and I1 ¼ 0:1I th: (A) output SNR Rout of Eq. (5) for the

T s-periodic input sðtÞ of Eq. (22); (B) input–output cross-covariance Csy of Eq. (16) for the aperiodic input sðtÞ of Eq. (23).
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reached by the SNRRout isRin, and the plateau reached by
the cross-covariance Csy is CsI . This means that the arrays
with added noises ZiðtÞ, which always enhance the
transmission efficacy of an isolated neuron, have also the
ability, at large size N, to restore the transmission efficacy
as it would be if a direct observation of the input IðtÞ ¼

sðtÞ þ xðtÞ were accessible instead of its observation by
neurons with inherent thresholds.

A complementary point of view on the improvement by
noise in the array is provided by Fig. 3 in the time domain.
Fig. 3 considers a large array whose input is the same
subthreshold sinusoid in noise as in Fig. 2. For the array
output yðtÞ, Fig. 3 which depicts the mean E½yðtÞ� and
standard deviation std½yðtÞ�, shows that the beneficial effect
of adding noise in the array is two-fold. When moving
from Fig. 3A to B by addition of the array noises ZiðtÞ: (i)
on average the output yðtÞ resembles more the input
sinusoid, (ii) the fluctuation std½yðtÞ� relative to E½yðtÞ� is
reduced. In short, the output signal is less noisy and
resembles more the input sinusoid. These aspects are
properly quantified by the measures of Fig. 2, and can be
visually appreciated in Fig. 3.

4.2. Transmission at medium range

Another interesting capability of the noisy arrays arises
in the transmission of an input signal sðtÞ which is large
enough (but not too large) to permanently evolve, for every
t, above the neuron firing threshold I th, while at the same
time avoiding to operate the neuron characteristic of Fig. 1
in its saturation region. In this situation of a medium signal
sðtÞ, the behavior of the neuronal array is presented in
Fig. 4.

In an isolated neuron, at N ¼ 1 in Fig. 4, enhancement
by noise of the transmission efficacy does not occur, as
expressed by the monotonic decay of the SNR Rout and of
the cross-covariance Csy when the level of noise sZ grows.
This is because a medium sðtÞ, permanently above the
threshold and below the saturation, has the ability by itself
to trigger an efficient response from an isolated neuron. No
assistance by noise, for instance to overcome a threshold or
be shifted away of a saturation, is needed by a medium sðtÞ.
In this condition, addition of noise is felt as a pure nuisance
and always degrades the transmission efficacy of an
isolated neuron. This same behavior of no stochastic
resonance was also observed in the same model of a single
isolated neuron in [22].
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1Any linear system leaves the SNR unchanged, because in the output

spectrum it multiplies both the coherent line at 1=T s and the noise

background around 1=T s by the same factor, the squared modulus of its

transmittance.
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We demonstrate here that the picture is quite different
when the neurons are assembled into a parallel array with
added noises. In this case, Fig. 4 shows that with array sizes
N sufficiently above 1, the array with added
noises ZiðtÞ always has the ability to improve the efficacy
of transmission of a medium signal sðtÞ, compared to the
efficacy achieved by an isolated neuron with no
added noise Z1ðtÞ. This constructive action of the
added noises ZiðtÞ in the array is again expressed by a
possibility of increasing Rout in Fig. 4A and Csy in Fig. 4B
by raising the noise level sZ. The constructive action
of the noise is more and more pronounced as the array size
N gets larger. In the limit of an infinite array N ¼ 1 in
Fig. 4, the input performances Rout ¼ Rin and Csy ¼ CsI

are again recovered, on the plateaus at large sZ, as if
the array of nonlinear neurons was turned into a purely
linear device.

Moreover, sufficiently large arrays even have the
possibility, in a small range of the noise level sZ, of
improving the measures of efficacy Rout and Csy above
their values Rin and CsI at the input. This is a small effect
here, as visible in Fig. 4, where Rout and Csy slightly peak
above the large-sZ plateaus. Yet, this proves, in principle,
that some nonlinear sensors, possibly aided by noise, can
outperform a putative purely linear system providing direct
access to the input signal. Such a direct linear observation
is not available to isolated sensory neurons which have to
cope with their inherent threshold and saturation; but it
becomes possible, as shown here, when neurons are
assembled in arrays with added noises. But beyond, as
shown by Fig. 4, the neuronal arrays with added noises can
sometimes outperform the performance of a strict linear-
ization of the process. It is a remarkable property that
arrays of neuronal nonlinearities with threshold and
saturation can amplify the efficacies Rout and Csy above
their input values Rin and CsI , because this property is
shared by very few systems.
It is well known that linear systems, even dynamic linear

systems of arbitrarily high order, are incapable1 of
amplifying the output SNR Rout of Eq. (5) above the
input SNR Rin. Very few nonlinear systems are capable of
amplifying the SNR of a sinusoid in broadband white
Gaussian noise as in Fig. 4. SNR amplification is a
problem which has been addressed very early for signal
processing [13,2]. For the less stringent condition of a
narrowband noise addressed in [13,2], maximum SNR gains
of 2 are reported, and achieved with hard-threshold or
Heaviside nonlinearities. In the more stringent condition of
a broadband white noise, the SNR gains effectively reported
are also modest: Hänggi et al. [16] report a maximum SNR
gain of 1.2 achieved by an isolated bistable dynamic
system, Casado et al. [3] report a maximum SNR gain of
1.25 achieved by a fully coupled network of bistable
dynamic systems, Chapeau-Blondeau and Rousseau [7]
report a maximum SNR gain of 1.4 achieved by an
optimally tuned static nonlinearity with saturation. It
seems that, in nonlinearities capable of amplifying the
SNR, a moderate amount of saturation, as in the case of [7]
and also of neuronal nonlinearities as considered here,
might be an interesting feature, due to its clipping
capability on the input signal–noise mixture that could
reduce the noise more than the coherent signal. Beyond the
uncoupled parallel arrays of Fig. 4, more efficient
arrangements of neuronal nonlinearities could be tested
to specifically amplify the SNR for instance. Yet, this is not
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precisely the scope of the present study, which rather aims
at demonstrating a constructive impact of added noises in
simple uncoupled parallel neuronal arrays in different
regimes of operation (at threshold, at medium range and at
saturation, with periodic or aperiodic signal).

Fig. 5 offers a complementary point of view, in the time
domain, on the improvement by noise in the array. For the
same medium-range input sinusoid in noise as in Fig. 4,
Fig. 5 shows again a two-fold beneficial action of the noise.
When moving from Fig. 5A to B by addition of the array
noises ZiðtÞ, on average the output yðtÞ resembles more
(slightly here) the input sinusoid, and the fluctuation
std½yðtÞ� is reduced.
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std½yðtÞ�, in units of f max ¼ 1=T r. The input signal is the noisy sinusoid of

Eq. (22) with the same parameter values as in Fig. 4, applied to a large

array of size N !1: (A) is at sZ ¼ 0, i.e. with no added noises ZiðtÞ in the

array; (B) is at sZ ¼ 7I th, i.e. with a nonzero level close to the optimum for

the added array noises ZiðtÞ.
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4.3. Transmission at saturation

The conditions of Fig. 6 concern the operation of the
array in the regime of strong saturation of the neuronal
firing function. In an isolated neuron, at N ¼ 1 in Fig. 6,
the added noise Z1ðtÞ already is capable of inducing an
improvement in the transmission efficacy of both a periodic
and an aperiodic signal. A similar improvement at N ¼ 1
was also present in Fig. 2 in the threshold region, but
absent in Fig. 4 in the intermediate curvilinear region of the
neuronal characteristic. This illustrates the ability of the
added noise to bring some shift in the neuronal response,
when needed, in order to displace it away of an
unfavorable strongly nonlinear region (a threshold or a
saturation) into a more favorable region (the curvilinear
part) of the characteristic. Again, this behavior in a single
isolated neuron was also observed in [22].
Next we show here that the noise-aided transmission in

the saturation regime, already present in an isolated neuron
at N ¼ 1, is strongly enhanced when the neurons are
assembled in an array at N41 in Fig. 6. The enhancement
by noise applies to both periodic (Fig. 6A) and aperiodic
(Fig. 6B) signals. Again the enhancement is more and more
important as the array size N grows. At array sizes N !1

and a sufficient amount of the added noises ZiðtÞ, the
output of the nonlinear array recovers the performance as
at the input.
Fig. 7 in the time domain shows again the two-fold

beneficial action of the noises added to the array, for
the large input sinusoid in noise of Fig. 6: on average the
output yðtÞ resembles more, with reduced saturation, the
input sinusoid; and the fluctuation is decreased.

5. Discussion

The results presented here can be viewed as extensions
concerning the various forms of stochastic resonance or
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improvement by noise in signal transduction by neurons.
In this context, stochastic resonance has been widely
studied for noise-enhanced signal transmission by neurons
operating in the region of the threshold of activity. Here,
by contrast, we have also investigated signal transmission
away of the threshold, in the curvilinear part of the
neuronal response, and beyond in the saturation region.
For isolated neurons, we observed that improvement by
noise of the transmission can occur both in the threshold
and in the saturation of the response, but does not take
place in the intermediate curvilinear part, as it was also
found in [22]. Beyond, we have focused here on the
situation of a common basic architecture for neuronal
assemblies, i.e. parallel arrays of neurons, and the impact
of independent noises injected in such arrays. We have
observed that the stochastic resonance effect is always
reinforced in the arrays with a sufficient amount of the
added noises, compared to the situation of isolated
neurons. Moreover, in arrays stochastic resonance becomes
possible in the intermediate curvilinear part of the neuronal
response, where it was not feasible in isolated neurons.
Altogether in neuronal arrays, improvement by noise of
signal transduction is possible for any regime of operation
of the transmission, in the threshold, or in the intermediate,
or in the saturation part of the neuronal response. This is
afforded by the distinct mechanism of stochastic resonance
in arrays, where the added noises force individual neurons
to respond differently to a common input signal. This is the
source of richer representation capabilities by the neuronal
outputs that when collected over the array result in
enhanced transduction of the input signal. This enhanced
transduction obtained by gathering distinct nonlinear
outputs, does not specifically require threshold-like or
saturation-like nonlinearities, and curvilinear nonlinearities
also lend themselves to this effect as visible here. By
contrast, in isolated neurons, the mechanism of improve-
ment by noise can be interpreted as a form of biasing by
noise, where the noise assists a signal hidden below a
threshold or squeezed in a saturation to access a more
favorable region of the characteristic. This mechanism,
inherently, relies on threshold or saturation nonlinearities,
and does not apply to smooth curvilinear ones. Both
mechanisms of improvement by noise, in isolated neurons
and in arrays, operate in conjunction in Figs. 2 and 6 at
threshold and at saturation, while only one mechanism (the
array one) operates in the intermediate condition of Fig. 4.
Also here, all the configurations of improvement by noise
have been verified, with standard measures of efficacy, to
apply equally to periodic and to aperiodic signals. This
illustrates the wide versatility of the forms of improvement
by noise in neuronal structures.
An alternative interpretation of the constructive action

of noise, which has been employed especially in threshold
systems, resorts sometimes to a mechanism of linearization
by noise of the input–output characteristic. First, a
linearized characteristic may not be uniformly meaningful,
nor even definable, for distinct time-varying signals as
considered here. Second, clearly here there is more than a
linearization, since the action of noise, as visible in Fig. 4,
can increase the efficacy for signal transduction above that
of a purely linear device.The present neuronal nonlinea-
rities aided by noise, as also verified by other nonlinear
systems [6,8], implement an ‘‘intelligent’’ preprocessing
capable of reaching efficacies that no linear systems can
achieve.
The various forms of neuronal transduction aided by

noise in arrays, were shown here with a very simple neuron
model based on Eq. (1). Yet, as it has been pointed out in
many other neuronal studies [20], this model of Eq. (1) is
able to capture essential features of the neuronal transmis-
sion, i.e. the presence of both threshold and saturation and
in-between an intermediate curvilinear response. At the
same time, it is known that stochastic resonance is usually a
general and robust nonlinear phenomenon, which persists
over many variations in the nonlinearities. More elaborate
neuron models, with possibly couplings in the arrays, could
next be tested to investigate how the basic properties
exposed here are preserved or evolved, and how they could
play a part in the highly efficient processing of information
accomplished by neural systems.
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