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Abstract--In this paper we consider simple neural network models consisting, o/two to three continuous nonlinear 
neurons, with no intrinsic svnaptic plasticity and with delay in neural signal transmission. I1~,, investL¢ate the 
diJferent dynamic regimes which may ~:xist ./or these "minimal" neural network structures. Examples of  stable. 
oscillatory (periodic or quasi-periodic), and chaotic re¢imes are reported arid ana/.l'zed. For chaotic re~imes, classical 
characteristicw sttch as b~[itrcation diagrams, sensitive dependellce oil initial conditions. L)'apttnov ~:\-pollenls. pseudo 
phase space attractors, are presented. It is shown that the d)'namic regime o / a  network call be changed through 
mod~/k'ations o.f either internal or evterna/ parametetw, such as a s)'naplic weight or an c~vternal neuron input. The 
resulting d)'namic regimes o[]'er fi'anleworks to represent various nettra/./imctions. For instance, oscil/atoo' regimes 
provide a mechanism to implement controllable neltra/ oscillators. The sensitive dependence oil initial conditions. 
which is shon'n to ¢:\'ist even for veo' small networks, sets a limit to an)' hm.~,, term predictiot? eoncertting the evolution 
o f  the nettral O,stem. tmless the network adjust its parameters through plasticiO' ill order tO avoid chaotic re, ffimes. 
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1. INTRODUCTION 

Complex dynamic evolutions, that lead to chaotic re- 
gimes, recently have been experimentally observed in 
neural systems (Babloyantz & Destexhe, 1986: Bab- 
Ioyantz & Salazar, 1985: Holden, Winlow, & Haydon, 
1982: King, Barchas, & Huberman, 1984: Skarda & 
Freeman, 1987). In contrast, in theoretical modeling 
of neural systems, the emphasis has been put mainly 
on either stable or cyclic behaviors (Grondin, Porod, 
Loeffler, & Ferry, 1983: Hirsch, 1989). Nevertheless, a 
few theoretical models have been proposed, that illus- 
trate the existence of chaos in neural networks (Choi 
& Huberman, 1983; Guevara, Glass, Mackey, & Shrier, 
1983: Riedel, Ktihn, & van Hemmen, 1988: van der 
Maas, Verschure, & Molenaar, 1990). These models, 
to display chaotic behavior, generally rely on complex 
architectures, or complex equations for both neuron 
and synapse dynamics, or they incorporate stochastic 
elements. Sometimes also, the quantities which exhibit 
chaotic evolutions in these models, have no direct 
physiological interpretation. An example of this is 
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found in van der Maas et al. (1990), where chaos ap- 
pears in the evolution of the sum of the absolute values 
of the synaptic weights of a network. 

In this paper we consider small neural circuits that 
contain no more than two or three nonlinear neurons. 
The equations governing these models are classical in 
neural modeling, although the investigation of their 
unstable behaviors has seldom been undertaken. Each 
neuron has a sigmoid transfer function, and a contin- 
uous positive and bounded output activity that evolves 
according to weighted sums of the activities in the net- 
work. In order to focus the analysis on the dynamics 
of neuron activities, no intrinsic synaptic plasticity is 
incorporated. No special conditions, like symmetry, are 
imposed to restrict synaptic values. We then study, 
through numerical simulations, the time evolution of 
the output activities of the neurons. We report and an- 
alyze the different dynamic regimes which can be ob- 
served for these quantities under various conditions. In 
particular, we show direct evidence of the possibility of 
chaotic regimes in individual neuron output activities, 
in very small networks. Some biological implications 
of the results are discussed. 

2. STRUCTURE A N D  D Y N A M I C S  
OF THE N E T W O R K S  

We consider small neural networks, consisting of two 
or three neurons, connected as depicted in Figure 1. 
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FIGURE 1. Structure of the two neural networks investigated 
here. 

S,(t) is the output activity of neuron i at time t, and wij 
is the weight of the synaptic connection from neuron 
i to neuron j. The neurons have a sigmoid transfer 
function, whose expression, for neuron i, is: 

./i(l') = (I + exp - / % ( V -  0,)) ~. (1) 

Both the threshold 0i and the slope/% of the sigmoid 
are considered as adjustable parameters for neuron i. 

We chose a discrete-time dynamics for the evolution 
of the activities, that seeks to represent the effect of 
delays in the transmission of neural signals. 

The dynamics of the two-neuron network in Figure 
la is taken as: 

S,(t + At) = .l;[w,,S,(t) + w2,S2(t)], (2) 

S2(t + At) = f2[S,(t)]. (3) 

To examine the influence of delays in various set- 
tings, we consider two possible types of dynamics for 
the three-neuron network in Figure lb. The first one, 
which will be called "dynamics with full delay," is gov- 
erned by: 

S,(t + At) =.li[w2lS,_(t) + w31S3(l)], (4) 

S,_(t + At) = f,[S,(t)], (5) 

S~(t + At) = .f3[S,(t)]. (6) 

This dynamics assumes that delays are significant for 
all transmission paths. 

The second one, called "dynamics with partial de- 
lay," assumes significant delays in only part of the 

transmission paths (namely the incoming paths to neu- 
ron l). It is governed by: 

S,(t + zXt) =.fj[w,_,S2(t) + w3,S~(t)], (7) 

S2(t + At) = f2[S,(t + At)], (8) 

S3(t + AI) =.f3[S,(I + A/)]. (9) 

Equations (1-9) endow the neurons with a contin- 
uous positive and bounded output activity. Such an 
output activity 5', is interpretable as a short-term average 
of the firing rate of the neuron. This mode of repre- 
sentation of neuron activities has frequently been as- 
sumed in modeling, (see Amari, 1989, for a recent ex- 
ample), and its relevance to describe information ex- 
change in neural systems was previously mentioned 
(Hopfield, 1982). 

Now, as we said, the relevance of a discrete-time 
dynamics for natural systems that involve continuous 
time, arises from the possibility of having significant 
delays in neural signal transmission along certain paths. 
In such a case, if neurons in a circuit change their out- 
puts at a given time, it is only after a finite transit time 
that these changes of activity are received by other neu- 
rons as inputs capable of inducing, in turn, evolution 
of their own outputs. The transmission delays can be 
attributed, for an important part, to delays in synaptic 
responses. In the framework of the present model, a 
train of action potentials with given short-term average 
frequency S,(t) is emitted by a neuron i. In the presence 
of transmission delay, this train begins to be felt by 
another neuron j after a time At, after which time, as 
a response, the receiving neuronj  starts to emit its own 
train of action potentials with its own short-term av- 
erage frequency represented by S~(t + At). The trans- 
mission delay At is of partially stochastic character, it 
is modelled here in eqns (2-9) by a single parameter 
interpretable as an average transmission delay, and with 
an appropriate choice of the unit oft ime,  we shall take 
now on At = 1. 

To complete the justification of the relevance of a 
discrete-time dynamics, one can add that this assump- 
tion has emerged as a convenient and fruitful choice 
in neural modeling since the early days (Little & Shaw, 
1975; McCulloch & Pitts, 1943). On this basis, spin 
glass-like neural networks (Amit, 1989; Hopfleld, 1982) 
have been extensively developed. These models provide 
a most valuable paradigm to represent and interpret 
learning and retrieval of information capabilities in 
neural systems. The present model brings elements to 
further characterize such neural networks, especially 
when two major constraints are relaxed in the direction 
of higher biological plausibility, that is when neuron 
activities are allowed to vary continuously and when 
synaptic symmetry ensuring stability breaks. 

The salient feature with the model summarized in 
eqs (1-9) and the simple architectures of Figure 1, is 
that qualitatively quite different dynamic regimes can 
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be observed for the neuron activities. By varying the 
parameters fli, 0~, and wij of a network, stable, oscilla- 
tory, and chaotic regimes are accessible. This is dem- 
onstrated by the results presented in the following sec- 
tions. 

3. PROPERTIES OF T H E  THRE E 
NEURON NETWORK 

3.1. Dynamics with Partial Delay 

For the network of Figure l b, let us consider the dy- 
namics with partial delays of eqns (7-9), with the fol- 
lowing fixed values for the parameters:/3~ = ~2 = 7.0, 
/33 = 13.0, 0j = 0.5, 02 = 0.3, 03 = 0.7, and w21 = 1.0. 
The remaining adjustable parameter w3~, will serve as 
a control parameter to change the dynamic regime of 
the system. Interesting behaviors arise when the synapse 
w3j is given negative values, to supplement with an in- 
hibitory action on neuron 1, the excitatory action of 
w2~. In such a case, the competition of the inhibitory 
and excitatory actions in the network can yield complex 
dynamics, as we shall see. 

We can focus on the time evolution of S~(t), the out- 
put of neuron 1. For low values of Iw3,1 (w3, is nega- 
tive), S~(t) rapidly reaches a stable activated state, as 
exemplified by Figure 2a for Iw3tl = 0.3. For higher 
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FIGURE 2. T ime evolutions of the output act iv i ty  Sl( t)  showing 
different access ib le  dynamic  regimes for neuron  1 of Figure 
1 b, for decreasing values of the synaptic weight wa~ : (a) Stable 
activated, for w31 = - -0 .3 .  (b )  Periodic, for wa~ = -0 .5 .  (c) Chaotic, 
for w3~ = - 0 .8 .  (d) "Bu rs t i ng "  chaot ic ,  for w3~ = -5 .0 .  (e)  Stab le  
inhibi ted, for w3~ = -8 .0 .  The other parameters of the network 
are: BI =/5'= = 7.0, Ba = 13.0, #~ = 0.5, 0= = 0.3, 03 = 0.7, and w=~ 
= 1.0. 

values of Iw3tl a periodic regime of Sl(t) can be 
reached, as Figure 2b shows for Iw3tl = 0.5. When 
Iw3~[ is further increased the periodic regime trans- 
forms into a chaotic regime, which subsists over a wide 
range of values of I w3tl. Figures 2c and 2d show two 
examples of the chaotic evolution of St(t), obtained for 
[w3tl = 0.8, and ]w311 = 5.0, respectively. For high 
values of the inhibitory synapse I w3~l, the dynamics 
returns to a stable regime in which S~(t) converges to 
a fixed inhibited state, as illustrated in Figure 2e for 
[w31[ = 8.0. 

The route by which the system evolves from a stable 
regime to a chaotic regime as Iw3tl increases, consists 
of a cascade of period doublings, depicted by the bi- 
furcation diagram in Figure 3. This type of bifurcation 
diagram is a characteristic way by which a system can 
evolve towards chaos. It is found in simple mathemat- 
ical models exhibiting deterministic chaos, as for in- 
stance the so-called logistic map (Schuster, 1988). 

The inverse route, leading from chaos to a stable 
inhibited state as [ w3~ I further increases, passes through 
intermittency, with chaotic bursts of activity separated 
by intervals of quasi-stability of increasing durations. 
An interval of quasi-stability is understood as an in- 
terval in which the variation of: S~(t) between to suc- 
cessive time steps, does not exceed a given small 
threshold. Let Tstab be the maximum duration of these 
intervals of quasi-stability encountered in a signal St(t) 
having the global appearance of Figure 2d. In Figure 
4 is plotted the value of Tstab recorded for a given value 
of Iw3~l, against [w3tl. We found that this variation 
of Tstab as a function of Iw3tl can be fitted by a power 
law of the form (w,. - [w31 l) -v, with w,. = 7.63 and 3' 
= 0.67. The transition between the chaotic regime and 
the stable regime as Iw3Jl increases, thus appears to 
be similar to a phase transition in solid state physics. 
It is possible to define an order parameter as 1/Tstab, 
which is zero in the stable regime, and nonzero in the 
chaotic regime. The phase transition (of second order) 
occurs for a critical value w,. of the control parameter 
Iw3j[, and the variation of the order parameter is a 
power law with critical exponent 3". 

From a biological standpoint, such a behavior of the 
network in the region before w,. is interesting, as it pro- 
vides a model in which a signal shows bursts of activity 
(see Figure 2d) with a repetition rate modifiable through 
the value of a synaptic weight. The outcome of such 
behavior is an internally controllable neural oscillator 

Another element which clearly indicates the presence 
of chaos, is the sensitive dependence on initial condi- 
tions in the time evolution of S~(t). In a chaotic regime, 
once the attractor of the dynamics has been reached 
after a few iterations, the distance between two distinct 
sequences of iterates rapidly diverges (see Figure 5a), 
at least within the limit of the size of the attractor itself. 
Figure 5b shows the time evolution of the distance D(t) 
-- I S't(t) - St(t)[ between two distinct trajectories S,(t) 
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FIGURE 3. Bifurcation diagram of the output activity SI(t) of 
neuron 1 of Figure lb ,  as a function of synaptic weight I w~ll, 
and showing the evolution of the dynamics from stability to 
chaos through a cascade of period doublings. 

and S'~(t) on the attractor, for the value w3~ = -0 .8  of 
the control parameter. In a semilogarithmic plot, the 
points which can be fitted to a straight line, reveal the 
exponential divergence of the trajectories. The slope of 
the line gives a kyapunov exponent of 0.62 for the dy- 
namics. This type of exponential divergence of the tra- 
jectories is characteristic of chaotic systems, and is also 
a property of the deterministic chaotic logistic map 
(BergS, Pomeau, & Vidal, 1986). 

The existence of different dynamic regimes for the 
neural network in Figure lb with partial delay, can be 
understood on the basis of the iteration map for S~(t) 
which follows from eqns (7-9) with At = I: 

S~(t + l) =/;[w,,f,(S~(t)) + w~t/;(S,(t))]. (10) 

A typical form of this map is represented in Figure 
6. This form can be varied in many different ways by 
alteration of the parameters/3,, 0~, and w 0. A general 
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FIGURE 4. Quasi-stability period Ts=b of the output activity S+(t) 
of neuron 1 of Figure lb ,  versus synaptic weight I w3,1. This 
evolution is interpretable as a phase transition with order pa- 
rameter 1/To=b occurring at the critical value wc = 7.63 of the 
control parameter I ws+l. With such a dynamics the network 
behaves as an internally controllable neural oscillator. 
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FIGURE 5. Sensitive dependence on initial conditions for the 
output activity Sl(t) for conditions of Figure 2c: (a) Divergence 
of two distinct sequences of iterates separated at t = 0 by a 
distance of 10 -12. (b) Time evolution of the distance D(t) be- 
tween two distinct sequences of iterates separated at t = 0 by 
a distance of 10-14; the exponential divergence of the trajec- 
tories can be characterized by the slope of the line which gives 
a Lyapunov exponent of 0.62 for the dynamics. 

condition that ensures the existence of unstable dy- 
namics, is to have a nonmonotone map which intersects 
the first bisecant with a slope whose absolute value is 
always larger than 1. This condition can be fulfilled 
over wide parameter ranges, and the values assigned to 
the parameters in the examples presented here are 
merely illustrative, and by no means critical for the 
existence of oscillatory or chaotic regimes. 

Such a first order nonmonotone iteration map forms 
the basis of the chaotic behaviors of many simple 
mathematical models, as for instance the logistic map 
(Berg~ et al., 1986; Schuster, 1988). In these mathe- 
matical models the nonmonotone nonlinearity is built- 
in from the start; here in our neural networks it arises 

/ 
+ 

0 0 
S 1 (t) 

FIGURE 6. Nonmonotone iteration map that results from eqn 
(10), with the parameter values B+ = B2 = 7.0, fla = 13.0, 0+ = 
0.5, 02 = 0.3, 63 = 0.7, w2+ = 1.0, and w31 = -0 .8 .  
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from the interactions of monotone nonlinear neurons 
with appropriate signs for the couplings. 

We note in Figure 6, the presence of a "canal" be- 
tween the iteration map and the first bisecant for low 
values of  St. As the control parameter  Iw3tl is in- 
creased, this canal becomes narrower and narrower. As 
a result, the iteration of the dynamics spends more time 
in the region of small values of S~. This leads to a be- 
havior of  St(t) that is characterized by long intervals of 
low activity separated by short bursts of high activity, 
as displayed in Figure 2d. The reduction of the width 
of the canal to zero then creates a stable fixed point in 
the dynamics. This type of behavior is known as inter- 
mittency in the mathematical theory of chaotic systems 
(Berg6 et al., 1986), and is also a property of the logistic 
map (Schuster, 1988). 

3 . 2 .  D y n a m i c s  w i t h  F u l l  D e l a y  

For the dynamics with full delay in the network of Fig- 
ure lb, the qualitative dynamic properties are pre- 
served. Stable, oscillatory, and chaotic regimes also ex- 
ist, and bifurcation diagrams as shown in Figure 3 can 
be observed. However, no first order iteration map exits 
with full delay. Instead, eqns (4-6) lead to the second 
order iteration map for S~(I): 

S,(t  + 2) = /;[w,_t.f,_(S,(t)) + w3d~(S,(t))]. ([ ]) 

The resulting dynamics of S~(t) can be viewed as 
consisting of two interlaced time sequences, which are 
separately initialized, and each governed by a first order 
map of type (10). 

The plotting ofS,(t  + 1 ) against St(/) for the dynam- 
ics with full delay, generally will yield a phase trajectory 
that densely fills a finite portion of the accessible phase 
space region. Figure 7 shows the attractor described by 
a phase trajectory after the initial transient has van- 
ished. The plot was obtained with the parameters set 
to #~ = 132 = 7.0,/33 = 13.0, O~ = 0.5, 02 = 0.3, 03 = 
0.7, w_,~ = 1.0, and w31 = --0.8. Such an attractor does 
not uniformly fill the phase space region it occupies, 
as it would be the case if the values of S~ were purely 
random. 

To characterize the structure of the attractor, we have 
computed the correlation function of the attractor, with 
its classical definition as given in Berg6 et al. (1986). 
We start with a series of N + n successive values ofS~, 
and we represent a point i in a n-dimensional phase 
space by the vector S ~ of components [St(i) ,  S t ( i  + I), 
. . . .  S~(i  + n - 1)]. We denote by IS ~ - SJl the eu- 
clidian distance of two points i and j. The correlation 
function C(r) then follows as: 

1 
F ( r -  IS ~-  S~[), (12) C(r) = N---- 5 i j= 

where I'  is the Heaviside function, such that F(x) = 0 
if x_< 0 and F(x) = I i f x  > O. 

+ 
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~?j~. - ~.~. . 

0 I 

o $i(0 I 
FIGURE 7. Pseudo phase space attractor for iteration map (1 1) 
with the parameter  values #1 = #z = 7.0, #a = 13.0, 01 = 0.5, 02 
= 0.3, 83 = 0.7, w21 = 1.0, and wzl = - 0 . 8 .  The attractor does 
not uniformly fill the phase space region it occupies, as it would 
be the case with a purely random process.  

We have verified that for the data points plotted in 
Figure 7, C(r) varies as r a, for small r's. When the di- 
mension n of the phase space was increased, a saturation 
for tile exponent d was observed, as shown in Figure 
8. The saturation value d = 2 is interpreted as the cor- 
relation dimension of the attractor. We note that the 
form of iteration map ( l I) ensures that the phase tra- 
jectory lies on a two-dimensional manyfold, and con- 
sequently that d cannot be found larger than 2. The 
finding ofa  noninteger value for d would have revealed 
a fractal attractor on the two-dimensional manyfold. 
With d = 2 here, the attractor itself is a two-dimensional 
manyfold. The saturation of the correlation dimension 
d as the phase space dimension n is increased, is typical 
of deterministic chaotic systems. It can be observed for 
instance in fluid turbulence (Berg6 et al., 1986). In con- 
trast, a stochastic system like random noise would show 
no such saturation, but a continued increase of d 
with n. 

The same type of attractors that densely fill a finite 
portion of the phase plane, have been experimentally 
observed in biological neural systems. Babloyantz and 
Destexhe (1986) report similar attractors obtained from 
electroencephalograms of epileptics, for which the 
characterization based on the correlation function gives 
a correlation dimension of 2.05 _+ 0.09. A different at- 
tractor (see Figure 9), obtained with /33 = 23.16 this 
time, clearly exhibits in its structure self-similarity typ- 
ical of fractal sets. 

4. PROPERTIES OF T H E  T W O  
NEURON NETWORK 

An even smaller neural structure, constituted by the 
network shown in Figure la, also exhibits several dis- 
tinct dynamic regimes. The time evolution of the ac- 
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o f  d with n is charac ter is t i c  o f  de termin is t ic  chaot ic  systems. 

tivities in this network are governed by eqns (2 and 3). 
Figure 10 shows different evolutions of the activity St(I), 
obtained with the following fixed values for the param- 
eters: fil = 15.0, fi2 = 10.0, Ot = 0.2, wll = 0.6, and 
w_~ = -0.4.  The control parameter is now 02, the 
threshold of neuron 2. For low values of ~2, neuron 2 
exerts a strong inhibiting action on neuron 1 through 
the negative synapse w2~, maintaining St(I) in a stable 
inhibited state (Figure 10a). As 02 is increased, the in- 
hibitory action of neuron 2 diminishes, and St(f) ex- 
periences oscillatory regimes (Figs. 10b-10d). For large 
values of 02, there is no longer a significant inhibiting 
action from neuron 2, and St(l) attains a stable activated 
state (Figure 10e). 

It is interesting to note that the oscillatory regimes 
displayed by the network are not necessarily periodic, 
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FIGURE 9. Pseudo phase space attractor for iteration map (11 ) 
with the parameter values/5'~ =/5'2 = 7.0, ~3 = 23.16, 01 = 0.5, 
02 = 0.3, /92 = 0.7, w21 = 1.0, and w3~ = -0 .8 .  The attractor 
displays self-similarity typical of fractal sets. 

1 

S, 

0 

1 

E Chapeatt-Bhmdeau and G. Cham,et 

S t  

0 

1 

S, 

0 

10 20 30 40 50 7 80 

~ 0  

st e 

0 0 10 20 30 40 50 60 70 80 
time t 

FIGURE 10. T ime evo lu t ions  of  the ou tpu t  act iv i ty  S~(t) show ing  
d i f fe rent  access ib le  dynamic  regimes for neuron  1 o f  Figure 
l a ,  for increasing values of  the synapt ic  threshold/9=: (a) Stable 
inhibited, for  82 = 0.5. (b) Quasi -per iodic ,  for  8= = 0.6. (c) Periodic, 
for/92 = 0.75. (d) Quas i -per iod ic ,  for  02 = 0.85. (e) Stab le  act i -  
vated,  for  #2 = 1.0. The other parameters of  the network are: 
B1 = 15.0,/5'2 = 10.0, 81 = 0.2, w ,  = 0.6, and w2~ = -0 .4 .  

but also may be quasi-periodic. For instance, the signal 
St(t) in Figure 10c is strictly periodic, with a period of 
24 time steps, whereas the signals S~(t) in Figs. 10b and 
10d are only quasi-periodic (i.e., they do not exhibit 
exact periodicity). This difference appears clearly on 
the autocorrelation signals presented in Figure 1 1. For 
the periodic Sj(t) in Figure 10c, the corresponding au- 
tocorrelation signal in Figure 1 la is periodic with the 
same period as S~(t), and exhibits peaks of magnitude 
1 every time the delay is an integer multiple of the pe- 
riod. In contrast, for the quasi-periodic S~(t) in Figure 

t -  
O 

t.- 0 
o 
o 
0 

-1 

I / , ,a  

/ - -  . . . .  

0 10 20 30 40 50 60 
time delay 

FIGURE 11. Autocorrelation signal of output  act iv i ty  Sl(t), for: 
(a) the periodic regime of Figure 10c, (b) the quasi-periodic 
regime of Figure 10d. 
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10d, the corresponding autocorrelation signal in Figure 
1 l b shows no periodicity. Nevertheless, it also contains 
peaks (separated here by about 16 time steps), which 
characterize the "quasi-period" of Sz(t), but whose 
magnitudes uniformly decay as the delay increases. The 
quasi-periodicity as it is observed here may result from 
the incommensurability of the iteration time step At 
and an underlying possible period of oscillation in the 
system. However, in the framework of this model At is 
not arbitrary, but represents an average delay for trans- 
mission of activity from one neuron to another. Quasi- 
periodicity may thus be expected to be an actual prop- 
erty of the systems which are modelled here. 

The period (or quasi-period) of the oscillatory signal 
S~(t) can be continuously modified, within a certain 
range, by alteration of the value of the control param- 
eter. Figure 12 shows the variation of the period, or 
quasi-period, 7", of SE(t) as a function of the control 
parameter 02. 

The role of control parameter played by the threshold 
02 could be played identically by an external input sig- 
nal, which would be applied to neuron 2 endowed with 
a fixed threshold, to act as an offset signal. In such a 
situation, the neural network considered here can be 
interpreted as representing an externalO' controllable 
neural oscillator 

A second order iteration map that governs the time 
evolution of S~(t), can be deduced. From eqns (2 and 
3) with At = 1, it follows: 

Sl(t + 1) =./i[wliSl(t) + w_,J4(Sl(t - I))]. (13) 

A pseudo phase space attractor for the system can 
be obtained by plotting the values ofS~(t + 1) against 
S~(I) once the initial transient has vanished. Figure 13 
shows this plot for the signal S~ in Figure 10d. In Figure 
13, the points are not distributed randomly in the 
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FIGURE 12. Continuous variation of the period or quasi-period 
T of the output activity Sl(t) of neuron 1 of Figure la, as a 
function of neuron threshold 0=. With such a dynamics the net- 
work behaves as an externally controllable neural oscillator. 
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FIGURE 13, Pseudo phase space attractor resulting from lhe 
iteration map (13) with the parameter values ~'1 = 15.0, 82 = 
10.0, 81 = 0.2, 82 = 0.85, w l l  = 0.6, and w=l = -0 .4 .  Th is  type 
of attractor is characteristic of a quasi-periodic dynamics. 

pseudo phase plane; instead, they all lie on a curve in 
this plane. This outcome is characteristic of the presence 
of quasi-periodicity in the system (Berg6 et al., 1986). 
For a quasi-periodic regime, the points of the pseudo 
phase space attractor fill the curve in a continuous 
fashion, whereas for a periodic regime only a finite 
number of points appear on the curve. Comparable 
cyclic phase space trajectories have been derived from 
a theoretical model of the olfactory bulb (Freeman, 
1987). 

5. DISCUSSION OF THE RESULTS 

The dynamic behaviors of small neural networks that 
we report here, can be compared to those of simple 
mathematical models based on time-iterated nonlinear 
equations and exhibiting deterministic chaos (May, 
1976). As we mentioned throughout their analysis, our 
network models share several properties with these 
simple mathematical models. Such similarities are 
conveyed by characteristics like bifurcation diagrams, 
sensitive dependence on initial conditions, strange at- 
tractors, which are in fact the signatures of deterministic 
chaos itself. Beyond these similarities, our network 
models show some specificities of their own. 

First of all the quantities in our models are not mere 
mathematical variables, as they often appear in inves- 
tigations of deterministic chaos. Here the quantities are 
interpretable in neurophysiological terms: the chaotic 
variables are neuron output activities, the control pa- 
rameters are synaptic weights or external neuron inputs 
(equivalent to neuron thresholds). When related to 
biological systems, the concepts of deterministic chaos 
have been first applied to ecology, population dynamics, 
genetics, biochemistry (May, 1976). It is only recently 
that they have been applied to neural networks, and 
very few models have put in light the possibility of chaos 



742 F Chapeau-Bhmdeau and G. Chauvet 

in individual neuron output activities, with control 
through a single synaptic weight, in very small neural 
circuits. 

Another specificity of our network models compared 
to simple mathematical chaotic models as those de- 
scribed for instance in May (1976), is that for these 
later models, the nonlinearities on which they rely to 
generate chaos are essentially nonmonotone nonlin- 
earities. This feature is essential for these systems to 
display chaos. In contrast, with neural networks, the 
basic nonlinearities in the system are that of the neuron 
input-output transfer functions, which are intrinsically 
monotone nonlinearities. Therefore, it is not a priori 
obvious, if, and how, chaos may show up in these sys- 
tems, especially when their size is small. We exemplify 
here how feedback of excitatory and inhibitory activi- 
ties, in networks incorporating no more than two or 
three neurons, can lead to the onset of chaos. 

Another element that appears to be essential for the 
existence of chaos in the networks discussed here, is 
the presence of finite delays (partial delays are sufficient) 
in eqns (2-9). Examples are known of continuous-time 
equations with very smooth and stable solutions, that, 
when approximated by discrete-time iterated equations 
can give way to chaotic evolutions. These conditions 
do not apply for the description of the networks we 
present here. We believe that there are no continuous- 
time equations with stable and smooth solutions, which 
could describe adequately the neural network dynam- 
ics, and for which eqns (2-9) would represent dis- 
crete-time approximations. Neural functioning is not 
smooth, but rather controlled by "discrete" events such 
as spike emissions, spike arrivals on a synaptic terminal, 
sudden release of a neurotransmitter, opening of ionic 
channels. The finite delays in eqns (2-9), interpreted 
as explained in Section 2, express a property inherent 
to the neural systems, where driving events appear at 
discrete times. The chaotic behaviors which then follow 
in certain conditions can thus be considered as bearing 
relevance for the description of the dynamics of the 
neural networks. They cannot be seen as mere artifacts 
introduced by discrete time in the dynamics of systems 
that otherwise would be smooth and stable. 

The results presented in Sections 3 and 4 show that 
qualitatively different dynamic regimes can exist in 
neural networks, even with very simple structures. Sta- 
ble, oscillatory (periodic and quasi-periodic), and cha- 
otic regimes are observable. It is interesting to note 
that this dynamic variability results from the sole evo- 
lution of the neuron activities. No intrinsic synaptic 
plasticity need be incorporated to obtain complex dy- 
namic behaviors. This contrasts with recent models, in 
which the joined effects of neuron dynamics and syn- 
apse dynamics are put in play, in order to generate 
chaotic evolutions in a neural network (van der Maas 
et al., 1990). 

The neural networks modelled here represent what 
can be viewed as "minimal structures" that give rise 
to complex dynamic behaviors. As was mentioned 
above, properties of the networks that appear to be cru- 
cial for the existence of unstable or chaotic regimes, 
are feedback of excitatory and inhibitory actions trans- 
mitted with delays. For the purpose of demonstration, 
in the present paper, these properties were concentrated 
in neural networks of very reduced size. Neural struc- 
tures as simple as that depicted in Figure 1 can be iden- 
tified in certain biological networks (e.g., in the cere- 
bellar cortex at the level of the granule and Golgi cells 
(Ito, 1984)). If large populations of neurons are con- 
sidered, the presence of feedbacks and delays is very 
probable. Jitter in individual signal delays is also prob- 
able in large neuron assemblies. Coherent oscillations 
that require durable synchronization of neuron activ- 
ities may be more difficult to maintain in large net- 
works. However, chaotic dynamics, together with stable 
dynamics, that do not require such synchronization, 
may be expected to also exist in large neural networks 
for some ranges of their parameters. In any case, the 
results reported here show that stability is not, in gen- 
eral, granted in neural systems, even with simple struc- 
tures. Specific tuning of the network parameters must 
be achieved in order to sustain stable patterns of acti- 
vation, and conditions that yield instability are not at 
all unlikely. 

The dynamic regime of a network can be changed 
through modifications of internal or external param- 
eters, such as synaptic weights or external neuron in- 
puts. Any one of the observed regimes possesses some 
degree of structural stability, for it can subsist over finite 
ranges of parameter values. With such properties, the 
different dynamic regimes of a neural network, can 
provide a basis for various "'cognitive" functions. Stable 
regimes, that are the most often evoked, usually to rep- 
resent memory processes, may not be the only regimes 
useful for neural information processing. Oscillatoo' 
regimes offer schemes for the control of rhythmic bio- 
logical functions such as respiration or locomotion. A 
question that is raised at this point, and that we are 
currently investigating, is the question of the determi- 
nation of the synaptic connections, or the synaptic 
plasticity mechanisms, that could yield a neural oscil- 
lator with specific repetition rate and signal form. The 
role of chaotic regimes in biological neural systems is 
not yet fully perceived, although different possibilities 
already have been suggested (Skarda & Freeman, 1987; 
Yao & Freeman, 1990). Anyhow, it is now clear, both 
from experimental and theoretical evidence, that cha- 
otic dynamics can exist in neural systems, even with 
quite simple structures, as demonstrated here. The 
possibility of chaotic dynamics in neural networks, in- 
troducing sensitive dependence on initial conditions, 
imposes a limit to any long term prediction concerning 
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t h e  e v o l u t i o n  o f  t he  s y s t em .  T h i s  appl ies ,  u n l e s s  a n  ex-  

p l ic i t  m e c h a n i s m  is i m p l e m e n t e d  by  the  n e t w o r k  to  

a d a p t  its p a r a m e t e r s  in  o r d e r  to  a v o i d  chaos ,  by  s y n a p t i c  

p las t i c i ty  t h r o u g h  l e a r n i n g  for  i n s t a n c e .  
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