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Abstract. A classical model of neuronal signal transmission describing the presence of both a
threshold and a saturation in the neuron response is considered. This model is used to analyze
the transduction by the neuron of various types of information-carrying input signals in the

presence of noise. Improvement by noise of the performance via stochastic resonance is
established for transmission in both the threshold and the saturation regimes. Stochastic
resonance at saturation is a novel form, expressing that the distortion experienced by large

input signals transmitted at saturation, can be reduced by addition of noise.
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1. Introduction

Stochastic resonance is a phenomenon which expresses the possibility of improving

the transmission of a signal by certain nonlinear systems, thanks to addition of noise

[1]. This paradoxical effect was introduced some 20 years ago in the context of

geophysical dynamics, and it has subsequently been observed in a growing variety of

processes, including electronic circuits, optical devices or chemical reactions. Neu-

rons constitute an important class of nonlinear systems that have been shown to lend

themselves to stochastic resonance. Various forms of neuronal signal transmission

aided by noise have been shown feasible, both in theoretical models [2–4] and in

experimental preparations [5–8].

So far, systems that were proven capable of stochastic resonance, essentially are

nonlinear systems with potential barriers or with thresholds. In such conditions, the

essence of the effect is that the information-carrying signal by itself is too small to

overcome a threshold or a barrier in the response of the system. Addition of noise

then allows some type of cooperation between the signal and the noise, so as to

overcome a threshold or barrier, and to elicit a response bearing stronger relation to

the signal thanks to assistance from the noise. These circumstances apply for neuronal

signal transmission aided by noise. It is essentially in the region of the neuron

threshold, or sensitivity threshold, that it has been demonstrated that the transmis-

sion of small subthreshold signals can be improved by the action of the noise.
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In the present report, we shall establish that stochastic resonance, or noise-im-

proved signal transmission, can also occur in the region of the saturation of the

neuronal response. Large signals transmitted by a saturating nonlinearity can

experience strong distortion in their transmission. Addition of noise can reduce this

distortion. This possibility was recently demonstrated in simple models of saturating

nonlinearities [9]. Here, we shall demonstrate that this possibility is also authorized

in a model of neuronal transmission which incorporates saturation in the response.

This is a novel form of stochastic resonance which is established for neuronal

transmission of large signals in the saturation region. The classical model of neu-

ronal transmission we consider, also incorporates the threshold in the response, in

addition to the saturation. It allows us to establish, with the same model of neuronal

transmission, that addition of noise can improve the performance for both small

signals below threshold as well as for large signals in the saturation. For a standard

neuronal response, with threshold and saturation, our results express that noise can

broaden the operating dynamic range of the neuron, from both ends.

2. The Model of Neuronal Signal Transmission

We consider a model of neuronal signal transmission in which the input signal to the

neuron, at time t, is taken as the total somatic current I(t). This electric current I(t)

results from the gating of ion channels in the neuronal membrane, trigged by syn-

aptic inputs or by physical stimuli from the environment for sensory neurons. The

output response of the neuron is taken as the short-term firing rate f(t) at which

action potentials are emitted in response to I(t). A classical modeling of the integrate-

and-fire dynamics of the neuron, allows one to deduce an input–output firing

function g(.), under the so-called Lapicque form [10, 11]

fðtÞ ¼ g½IðtÞ� ¼
0 for IðtÞ � Ith;

1=Tr

1�ðsm=TrÞ ln½1�Ith=IðtÞ� for IðtÞ > Ith:

(
ð1Þ

In the firing function of Equation (1), a threshold current is introduced as Ith ¼ Vth/

Rm with Vth the standard firing potential of the neuron, and Rm its total membrane

resistance. Also in Equation (1), sm is the membrane time constant, and Tr the

neuron refractory period. Typically Vth � 10 mV above the neuron resting potential,

and as an order of magnitude Rm � 100 MX; this leads to a current threshold of

order Ith � 0.1 nA. Other orders of magnitude are sm � 10 ms and Tr � 1 ms. The

neuron firing function of Equation (1) is depicted in Figure 1.

Although resulting from a very simplified description of the neuronal dynamics,

the firing function of Equation (1) is able to capture essential features of the neuron

response [10, 11]. As visible in Figure 1, the firing function of Equation (1) describes

the important qualitative properties of the existence of a threshold, at low input, and

of a saturation, at large input, in the neuron response. Furthermore, at a quantitative

level, Figure 1 shows the necessity of several decades (approximately three to five) of

variation in the input variable I(t), in order to make an effective use of the whole
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range of the response curve, from the subthreshold region up to the saturation

through the curvilinear part. The curvilinear part of the response, above threshold

and before saturation, is covered roughly by three decades of variation; an additional

decade can be used to operate the neuron below threshold for subthreshold

dynamics, symmetrically an additional decade will operate the neuron in the satu-

ration region. These several decades of input variation can be related to the range of

several decades in the number of active synaptic inputs that a typical neuron may

receive. These several decades of input variation can also be related to the large

dynamics available to most sensory modalities, from vision to hearing, to touch.1

Our main point is to express that it is quite plausible, for a typical neuron, to have to

operate, in normal operating conditions, over the whole range of the response curve

of Figure 1, including the threshold and the saturation regions. We shall then show

that, both in the threshold and in the saturation regions, but not in the curvilinear

part in-between, noise can benefit to signal transmission by the neuron.

3. Assessing Nonlinear Signal Transmission

To demonstrate a neuronal transmission aided by noise, we consider that the input

current I(t) to the neuron is formed as

IðtÞ ¼ sðtÞ þ gðtÞ: ð2Þ
In Equation (2), s(t) is our information-carrying signal, which will be successively

considered to be a periodic and an aperiodic component. s(t) conveys an image of the

Figure 1. Output firing rate f(t) in units of fmax ¼ 1/Tr, as a function of the input somatic current I(t) in

units of Ith, according to the neuron firing function of Equation (1), in typical conditions with sm ¼ 10 ms,

Tr ¼ 1 ms and Ith ¼ 0.1 nA.

1 Vision is sensitive to light over several decades of luminance. Normal hearing operates over at least, a

100 dB range in acoustic pressure. Touch can accomodate stimuli from below a few grams to several

kilograms.
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information coming from presynaptic neurons or from the physical world for sen-

sory cells. Also in Equation (2), gðtÞ is a white noise, independent of s(t), with a

probability density function pgðuÞ. This noise gðtÞ may have its origin in random

gating of the ion channels of the membrane, or in random activities of presynaptic

neurons, or in the physical world.

The input signal-plus-noise mixture IðtÞ ¼ sðtÞ þ gðtÞ is transmitted by the neuron

nonlinearity g(.) of Equation (1), so as to produce the output signal

fðtÞ ¼ g½sðtÞ þ gðtÞ�: ð3Þ
We shall now apply techniques from stochastic resonance theory, in order to

quantify how the output firing rate f(t) is related to the information-carrying input

s(t).We shall show that, depending of the conditions of operation of the nonlinearity

g(.) in Equation (3), regimes exist where enhancement of the noise gðtÞ can result in

improved transmission of s(t) onto f(t), i.e. stoehastic resonance.

3.1. PERIODIC SIGNAL TRANSMISSION

In the case of a periodic information-carrying signal s(t), the standard measure of

stochastic resonance is a signal-to-noise ratio, defined in the frequency domain, and

which measures, in the output signal, the part contributed by the periodic input and

the part contributed by the noise [1, 12]. When s(t) in Equation (2) is deterministic

periodic with period Ts, the output signal f(t) of Equation (3) generally is a cyclo-

stationary random signal, with a power spectrum containing spectral lines at integer

multiples of 1/Ts emerging out of a continuous noise background [12]. A standard

measure of similarity of f(t) with the Ts-periodic input s(t), is a signal-to-noise ratio

defined as the power contained in the output spectral line at the fundamental 1/Ts

divided by the power contained in the noise background in a small frequency band

DB around 1/Ts.

For the input–output relationship of Equation (3). the power contained in the

output spectral line at the frequency n/Ts is given [12] by jFnj2 where Fn is the

order n Fourier coefficient of the Ts-periodic nonstationary output expectation

E½fðtÞ�, i.e.,

Fn ¼ E½fðtÞ�exp �in
2p
Ts

t

� �� �
; ð4Þ

with the time average defined as

h:::i ¼ 1

Ts

Z Ts

0

:::dt: ð5Þ

The output expectation E[f(t)] at a fixed time t is computable as

E½fðtÞ� ¼
Z þ1

�1
gðuÞpg½u� sðtÞ�du: ð6Þ
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The magnitude of the continuous noise background in the output spectrum is

measured [12] by the stationarized output variance hvar½fðtÞ�i, with the nonstationary

variance var½fðtÞ� ¼ E½f 2ðtÞ� � E½fðtÞ�2 at a fixed time t, and

E½f 2ðtÞ� ¼
Z þ1

�1
g2ðuÞpg½u� sðtÞ�du: ð7Þ

A signal-to-noise ratio Rn, for the harmonic n/Ts in the output f(t), follows as

Rn ¼
jFnj2

hvar½fðtÞ�iDtDB ; ð8Þ

where Dt is the time resolution of the measurement (i.e., the signal sampling period in

a discrete-time implementation).

In practice, an expectation like E[.] in Equations (6) or (7) expresses an average

which is performed over independent realizations of the noise gðtÞ in presence of the

same signal s(t). The average of Equation (5) denotes an average over one temporal

period Ts of s(t), i.e. over all time configurations of the input periodic waveform. The

signal-to-noise ratioRn of Equation (8) therefore quantifies the average performance

of the transmission of s(t) onto f(t), both averaged in time over one period Ts and

averaged according to the noise realizations. In addition to the theoretical expression

of Rn of Equation (8), many practical calculations of Rn from observed data have

appeared, and specially in the context of neuronal signals to characterize periodic

stochastic resonance [5, 8].

3.2. APERIODIC SIGNAL TRANSMISSION

When the information-carrying input signal s(t) we seek to extract out of the output

rate f(t) is no longer periodic, then the signal-to-noise ratio Rn of Equation (8) is no

longer available as a meaningful input–output measure of similarity. Consider s(t) a

deterministic aperiodic signal existing over the duration Ts. In such a case, mean-

ingful input-output measures of similarity are provided by cross-correlations as used

for instance in [13, 14]. We choose here to use the normalized time-averaged cross-

covariance between input s(t) and output f(t); it provides a similarity measure

insensitive to both scaling and translation in signal amplitude. We introduce the

signals centered around their time-averaged statistical expectation,

esðtÞ ¼ sðtÞ � hsðtÞi ð9Þ
and

efðtÞ ¼ fðtÞ � hE½fðtÞ�i; ð10Þ
with the time average again defined by Equation (5). The normalized time-averaged

cross-covariance is
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Csf ¼
hE½esðtÞefðtÞ�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hE½es2ðtÞ�ihE½ef2ðtÞ�iq ; ð11Þ

or equivalently, since s(t) is deterministic,

Csf ¼
hsðtÞE½fðtÞ�i � hsðtÞihE½fðtÞ�iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½hsðtÞ2i � hsðtÞi2�½hE½f2ðtÞ�i � hE½fðtÞ�i2�
q ; ð12Þ

with E[f(t)] and E2[f(t)] again given by Equations (6) and (7).

In the same way as the signal-to-noise ratio Rn of Equation (8) for periodic s(t),

the cross-covariancc Csf of Equation (12) for aperiodic s(t) is an average quantity,

quantifying the average performance of the transmission, averaged both over the

time waveform s(t) and over the noise realizations. Also, in addition to the theo-

retical expression of Csf of Equation (12), practical calculations of Csf from observed

data have appeared, specially for neuronal signals [13, 15].

With the measures of performance Rn of Equation (8) and Csf of Equation (12),

we are now in a position to study specifically the neuronal transmission realized by

Equation (1) and to show that it allows noise-aided transmission of the signal in

several distinct regimes of operation.

4. Neuronal Transmission Aided by Noise

We shall now illustrate various possibilities of stochastic resonance in the neuronal

transmission described by Equation (1). For the case of periodic signal transmission,

we shall consider the information-carrying input s(t) under the form

sðtÞ ¼ I0 þ I1 sinð2pt=TsÞ; 8t: ð13Þ
In this case, we shall assess the transmission performance by means of the signal-to-

noise ratio R1 at the fundamental frequency 1/Ts, from Equation (8) with

DtDB ¼ 10�3, which measures in the output f(t) how the coherent spectral line at the

fundamental 1/Ts emerges out of the noise background.

For the case of aperiodic signal transmission, we shall choose the input s(t) as the

transient waveform

sðtÞ ¼ I0 þ I1 sinð2pt=TsÞ for t 2 ½0;Ts�;
0 otherwise:

�
ð14Þ

In this case, we shall assess the transmission performance with the input–output

normalized cross-covariance Csf of Equation (12), which quantifies the similarity in

shape of the output rate f(t) with the transient waveform s(t).

The parameters I0 (offset) and I1 (amplitude) of the coherent input s(t) of Equa-

tions (13) or (14) will be varied, in order to solicit the neuronal nonlinearity of

Figure 1 in various operation ranges, successively, the threshold region, the curvi-

linear intermediate part, and the saturation region.
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4.1. TRANSMISSION AT THRESHOLD

We first tune I0 and I1 in both Equations (13) and (14), so as to make the infor-

mation-carrying input s(t) a small subthreshold signal evolving always below the

neuron firing threshold Ith. In this case, when the noise gðtÞ is absent in Equation (2),

the input current I(t) ¼ s(t) is too small to trigger any response from the neuron, and

the output firing rate f(t) of Equation (1) remains stuck to zero. Next, in such a

situation, if we start to add some noise gðtÞ in Equation (2), then a cooperative effect

becomes possible, in which the noise gðtÞ assists the signal s(t) to overcome the

threshold Ith and trigger some output activity on f(t). This activity will be correlated

with the coherent input s(t) which is, for a part, at its origin. It turns out that the

efficacy of this cooperative effect increases as the noise level rises above zero, and it is

maximized by a nonzero optimal amount of the noise gðtÞ. This beneficial outcome

can be precisely quantified by means of the measures of performance introduced in

Section 3. Figure 2A represents the output signal-to-noise ratio R1 from Equation

(8), for the transmission of the periodic input s(t) of Equation (13). Figure 2B shows

the input–output normalized cross-covariance Csf of Equation (12). for the trans-

mission of the aperiodic input s(t) of Equation (14).

The results of Figure 2 illustrate the noise-aided signal transmission, for both the

periodic and the aperiodic cases of the coherent subthreshold input s(t). Both

measures of performance, R1 of Figure 2A and Csf of Figure 2B, when the level of

the input noise gðtÞ is increased, experience nonmonotonic resonant evolutions

which culminate for a nonzero optimal amount of noise. In Figure 2, because the

input s(t) is strictly subthreshold, the transmission efficacy measured byR1 and Csf is

strictly zero at zero noise. When the rms amplitude rg of the noise gðtÞ is raised from

zero, the performancesR1 and Csf start to increase, and they culminate for a nonzero

level of rg (whose precise value depends on the detail of the conditions). For larger

levels of gðtÞ, the detrimental influence of the noise progressively replaces its con-

Figure 2. Transmission at threshold by the neuron nonlinearity of Equation (1), as a function of the rms

amplitude rg=Ith of the zero-mean Gaussian noise gðtÞ, with I0 ¼ 0:5Ith and (a) I1 ¼ 0:1Ith (b) I1 ¼ 0:3Ith
(c) I1 ¼ 0:4Ith and (d) I1 ¼ 0:49Ith Panel A: Output signal-to-noise ratio R1 from Equation (8) for the

Ts-periodic input s(t) of Equation (13). Panel B: Input–output normalized cross-covariance Csf of

Equation (12) for the aperiodic input s(t) of Equation (14).
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structive action, andR1 and Csf gradually diminish, down to zero for very high noise

levels. This is the stochastic resonance effect, under the form of a noise-aided

transmission of a small subthreshold signal.

4.2. TRANSMISSION AT MEDIUM RANGE

The parameters I0 and I1 in both Equations (13) and (14) are now set in a medium

range, neither too small nor too large, so as to make the information-carrying input

s(t) solicit the neuronal nonlinearity of Figure 1 in its curvilinear intermediate part,

away from both the threshold and the saturation regions. In this case the input

I(t) ¼ s(t), by itself, can be transmitted efficiently; it does not need assistance from

the noise. If some noise gðtÞ is added to I(t) as in Equation (2), it is a degradation of

the transmission which ensues. This is observed both for the transmission of the

periodic s(t) of Equation (13) and for the aperiodic s(t) of Equation (14). The cor-

responding measures of performance, the signal-to-noise ratio R1 of Equation (8)

and the cross-covariance Csf of Equation (12), are at their maximum at zero noise,

and they experience monotonic decays as the noise level is raised above zero, as

shown by Figure 3. No stochastic resonance occurs in this regime of transmission.

4.3. TRANSMISSION AT SATURATION

We now set the parameters I0 and I1 of Equations (13) and (14) at large values, in

such a way that the information-carrying input s(t) operates the neuronal nonlin-

earity of Figure 1 in its saturation region. The measures of performance R1 and Csf

for the resulting periodic and aperiodic transmissions, are represented in Figure 4.

Figure 4 shows (except in Figure 4B(d) with very strong saturation) that when the

noise is strictly zero, both performance measures R1 and Csf are at their best. This is

due to the smooth character of the nonlinearity of Equation (1) in its saturation

region (as opposed to the threshold region of Figure 2). A smooth response curve

Figure 3. Transmission at medium range by the neuron nonlinearity of Equation (1), as a function of the

rms amplitude rg=Ith of the zero-mean Gaussian noise gðtÞ with I1 ¼ I0=2 and (a) I0 ¼ 10Ith (b) I0 ¼ 50Ith
and (c) I0 ¼ 100Ith. Panel A: Output signal-to-noise ratio R1 from Equation (8) for the Ts-periodic input

s(t) of Equation (13). Panel B: Input–output normalized cross-covariance Csf of Equation (12) for the

aperiodic input s(t) of Equation (14).
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generally enables complete signal transmission, as measured by R1 and Csf, at zero

noise. This translates into an infinite signal-to-noise ratio R1 in Figure 4A, and a

normalized cross-covariance Csf which is close to unity in Figure 4B, when the noise

level rg is strictly zero.

Yet, this condition with strictly no noise may not be realistic in practice, and a pre-

existing amount of noise is a quite plausible feature. Figure 4 shows that the per-

formance measures R1 and Csf degrade rapidly when a small amount of noise gðtÞ
pre-exists with the coherent input s(t). However, this degradation does not develop

monotonically. When more noise is added, a constructive action of the noise is

recovered. This is conveyed in Figure 4 by a range of the noise level rg where the

performance measures R1 and Csf improve as rg grows. These nonmonotonic evo-

lutions of the performance in Figure 4, as the noise grows, instead of monotonie

degradations, is another form of stochastic resonance, or improvement by noise, in

neuronal transmission near saturation this time. When a small amount of noise pre-

exists, further addition of noise may bring improvement to the transmission near

saturation.

The benefit afforded by the noise is even more pronouced in the case of

Figure 4B(d). This is the case of very strong saturation for the transmission of an

aperiodic signal assessed by the cross-eovariance Csf. In this case, Figure 4B(d)

shows that, because of the strong saturation, the performance measured by Csf is

rather poor at zero noise. Moreover, at the optimum nonzero noise level, the per-

formance Csf is striclty better than its value at zero noise.

A qualitative explanation for the benefits in Figure 4, is that the added noise, on

average, has the ability to pull the neuron response out of the saturation region, back

into its curvilinear part, more favorable to an efficient signal transmission. This is a

mode of operation of the added noise, which is symmetrical in some sense, with its

action in the threshold region. The common feature is that the added noise has the

Figure 4. Transmission at saturation by the neuron nonlinearity of Equation (1), as a function of the rms

amplitude rg=Ith of the zero-mean Gaussian noise gðtÞ, with I0 ¼ 104Ith and (a) I1 ¼ 5� 103Ith, (b)

I1 ¼ 7� 103Ith, (c) I1 ¼ 9� 103Ith and (d) I1 ¼ 104Ith. Panel A: Output signal-to-noise ratio R1 from

Equation (8) for the Ts-periodic input s(t) of Equation (13). Panel B: Input–output normalized cross-

covariance Csf of Equation (12) for the aperiodic input s(t) of Equation (14).
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ability, on average, to shift the operating zone of the neuron nonlinearity into a

region more favorable to the signal transmission, avoiding both the threshold and

the saturation regions. The phenomenon of stochastic resonance was known to occur

in neuronal transmission in the threshold region, but its feasibility in the saturation

region as demonstrated here is a novel feature.

5. Discussion

We have demonstrated a novel form of stochastic resonance, or noise-aided signal

transmission, in the saturation region of a nonlinear neuronal response, where

addition of noise can reduce the distortion of large signals in their transduction. This

novel form of stochastic resonance complements the other form which was known to

occur in the threshold region of the neuronal response. Both forms of stochastic

resonance, at threshold and at saturation, were shown feasible here in the same

model of neuronal signal transduction. Our results therefore also establish the

possibility of broadening the dynamic range of operation of a neuron, from both

ends, at threshold for small inputs and at saturation for large inputs, thanks to

addition of noise.

Another vision which summarizes the beneficial action of the noise can be ob-

tained if we consider that the input current of Equation (2) is realized as I(t) ¼ s +

gðtÞ where s is a constant value. We then measure the output firing rate with the

statistical average E(f) as it results from Equation (6) with a constant input s. The

noise gðtÞ is added as a zero-mean Gaussian noise whose rms amplitude rg is varied
according to

rg ¼ Is lnð1þ s=IsÞ: ð15Þ
Figures 2 and 4 reveal that the optimal level of noise that maximizes the transmission

efficacy will take a precise value whose detail depends on the choice of the measure of

performance and on the input signal s(t), but that in general its order of magnitude

will be comparable, or slightly below, the level of the information-carrying input.

Accordingly, Equation (15) is an empirical law which aims at controlling that the

amount rg of the noise is at a level comparable to, or slightly below, that of the

information-carrying input s. When s in Equation (15) is significantly below the

current parameter Is then rg grows linearly with s, and when s is above Is then rg
grows logarithmically with s. With added noise injected according to Equation (15),

Figure 5 represents the input–output relationship of the output rate E(f) versus the

input current s.

Figure 5 shows that the noise realizes a ‘softening’ of the input–output neuron

characteristic, both in the region of the threshold and in the region of the saturation,

compared to the noiseless characteristic of Figure 1. Another law comparable to

Equation (15) for varying the noise would lead to another softened input–output

characteristic for the neuron, but showing qualitatively a comparable effect of the

noise. It is to note that the softened characteristics of Figure 5 are not to be taken as
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the ultimate expression of the possibilities of improvement brought in by the noise,

but merely as one possible expression in given conditions. The curves of Figure 5

essentially characterize the transmission of a static, constant, stimulus, with a per-

formance visually assessed by the softened aspect of the characteristics in Figure 5.

By contrast, Figure 2–4 characterize the transmission of dynamic, or time-varying

inputs, with a performance quantitatively assessed by a signal-to-noise ratio or a

cross-covariance measure, meaningful in this context. This picture is in fact consis-

tent with the current status of stochastic resonance: there is no unique way of

characterizing the benefit of noise in stochastic resonance. It depends on the type of

signal to be transmitted as well as on the type of measure of performance which is

selected as meaningful. The common qualitative feature is an improvement brought

to a signal by the noise, but the quantitative assessment of the improvement can take

various forms, depending on the context.

For the present demonstration of stochastic resonance in neural transmission at

threshold and at saturation, it should be noted that the conditions tested here for the

coherent input signal s(t) and for the noise gðtÞ (Gaussian), are merely illustrative.

The stochastic resonance at saturation, and also at threshold, are robustly preserved

in many other configurations for s(t) and gðtÞ. These can be investigated in more

detail with the exposed methodology.

The present demonstration of a novel form of stochastic resonance for neurons, is

based here on the simple model of neuronal signal transduction expressed by

Equation (1). As it has been pointed out in many other neuronal studies [10], this

model of Equation (1), although realizing a very simplified representation of the

neuron dynamics, is able to provide a useful description, at least qualitatively, of

important neuron properties. The model of Equation (1) conveys the key features of

Figure 5. Output firing rate in units of fmax ¼ l/Tr, as a function of the input current in units of Ith. Dotted

line: noiseless input–output relationship of Figure 1. Solid lines: input–output relationship with zero-mean

Gaussian noise gðtÞ of rms amplitude rg according to Equation (15) with Is ¼ 103Ith (a), Is ¼ 104Ith (b),

and Is ¼ 105Ith (c).
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the neuronal response that are formed by the threshold and the saturation. These

two features are the essential ingredients that allow the various forms of stochastic

resonance studied here to take place. The stochastic resonance of Figure 2 which we

have observed here with Equation (1) at threshold, has also been verified to exist in

more elaborate neuron models [2, 3, 13, 16–18] and also in experiments [5, 6, 8, 19].

In analogy, it is likely that the novel form of stochastic resonance at saturation,

whose feasibility in the neuron is reported here for the first time by means of

Equation (1), will be qualitatively preserved in more elaborate conditions.

For instance, with more elaborate neuron models taking into account the

dynamics of individual spikes, it has been shown in [16, 17] that stochastic resonance

occurs for transmission at threshold, confirming in some sense the results of

Figure 2. The mechanism is that coherent input spikes which are too rare or not

sufficiently active to trigger a response, can receive assistance from a homogenous

random excitatory activity from the noise. In a similar way for transmission at

saturation, it can be expected that coherent input spikes which would be too

numerous or overactive so that they saturate the response, could be mitigated by a

homogenous random inhibitory activity from the noise. Another recent study in [20]

also describes the output neuron activity with spikes, in an integrate-and-fire model

with refractory period, and shows noise-induced resonance effects. These effects are

assessed in [20] with statistical measures quantifying the coherence or incoherence of

the spiking activity, in place of the signal-to-noise ratio of Equation (8) or the cross-

covariance of Equation (12) that we use here. Noise-induced resonances are shown in

[20] both in small- and large-noise conditions, as also explored here, although large

time-varying information-carrying signals operating the neuron at saturation are not

explicitly considered in [20] for reduction of their distortion by addition of noise.

Such types of studies with more elaborate neuron models represent an open per-

spective useful to complement the report of the feasibility of stochastic resonance at

neuron saturation we have presented here. Another open perspective, to parallel the

case of stochastic resonance at threshold, is to look for evidence of stochastic res-

onance at saturation in neuronal experiments.
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