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a b s t r a c t

We analyze image transmission in a coherent imaging system, in the presence of speckle noise modeled
with the family of Gamma probability density functions of varying order. It is demonstrated that speckle
noise can improve the transmission of a coherent image. Exact analytical expressions are obtained for
both the best achievable performance and the optimal amount of speckle noise maximizing the transmis-
sion efficacy. These expressions allow us to analyze and control the conditions under which the coherent
imaging system can take advantage of the speckle noise. The influence of the contrast in the coherent
image, and of the order of the Gamma probability density describing the statistical fluctuations of the
speckle, are given special attention. These results make a contribution to the understanding of the mech-
anisms of improvement by noise in nonlinear information processing.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Speckle noise [1,2] is encountered in most coherent imaging
systems. Examples are active imaging systems with laser (light
amplification by simulated emission of radiation) or synthetic-
aperture radar (SAR) systems [3–5], or digital holography [6], or sa-
tellite image processing [7], or sonar and echographic imagery
with acoustic waves [8,9]. It has been recently shown [10,11] that
speckle noise is able, in some cases, to assist the transmission of a
coherent image. Comparable constructive effects of noise have also
been reported in other imaging systems, in the visual system [12–
15] as well as in other optical processes [16–20]. These demonstra-
tions of the possibility of mechanisms of improvement by noise
open new perspectives for image and information processing.
The results of the present paper seek to contribute in this direction.

A specificity which occurs with speckle noise is the multiplica-
tive action of the noise. This type of multiplicative signal–noise cou-
pling has not been much investigated in the context of the effects of
improvement by noise [21–25]. Yet, multiplicative coupling reveals
new properties of the effect, especially relevant for coherent imag-
ing. This has been recently illustrated by Ref. [11] which presented
for the first time experimental evidence of a noise-aided transmis-
sion in the case of a simple model of speckle noise. In the present
paper, we also consider the transmission of an image by a coherent
imaging system as in [11]. We extend the investigation to a family
of speckle noises, modeled by Gamma probability density functions
of varying order. For a simple coherent imaging system as in [11],
ll rights reserved.
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we here work out a detailed theoretical study analyzing the con-
structive action of speckle noise. We derive exact analytical expres-
sions for both the best achievable performance and the optimal
amount of speckle noise maximizing the transmission efficacy.
These expressions describe the influence of the relevant parameters
of the system, especially the order of the Gamma probability den-
sity modeling the fluctuations of the speckle, and the contrast in
the coherent image. We establish that a constructive role of the
speckle noise is accessible for every value of the order of the Gam-
ma probability density, with a more pronounced efficacy as the or-
der increases. The analysis allows us to predict how much benefit
the coherent imaging system can get from speckle noise, and also
to control the conditions on the system parameters under which
the transmission can benefit from the speckle.

2. Coherent imaging model

In coherent imaging a physical scene, modeled by an input im-
age Sðu; vÞ where ðu; vÞ are the spatial coordinates of the pixels, is
illuminated by a coherent wave. This scene consists in objects with
irregularities at the wavelength scale. As a consequence, the phases
of the transmitted or backscattered wavefront interfere with one
another, in either a constructive or destructive way. On the imag-
ing sensor, the acquisition with these interferences results in an
intermediate image Xðu; vÞ with intensity fluctuations, superim-
posed on the intensity from the imaged scene [26]. The fluctua-
tions observed on image Xðu; vÞ have a grainy appearance and
are called speckle noise. Image Xðu; vÞ can be modeled by a mixture
between the physical scene Sðu; vÞ and a speckle noise Nðu; vÞ
according to the multiplicative relation [27]
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Xðu; vÞ ¼ Sðu; vÞ � Nðu; vÞ: ð1Þ

Different statistical models exist to represent speckle noise in
coherent imaging. A frequently chosen model, valid if the detector
pixel size is smaller than the speckle grain size, is given by the expo-
nential probability density function [26]

p1
NðrÞ ¼

1
rN

exp
�r
rN

� �
; for r P 0: ð2Þ

In the probability density function of Eq. (2), r is a dummy variable
representing the values accessible to the intensity of the speckle,
and rN is at the same time the mean and the standard deviation
of the speckle.

The statistical properties of the speckle can be further affected
in several ways. For example, it is not unusual in SAR imaging for
several acquisitions of the same scene to be combined. Also, ele-
ments of the coherent imaging system, like for example the source
of the incident wave, may move faster than the time exposure of
the sensor. This movement affects the statistical properties of the
speckle noise contained in the acquired image. These different sit-
uations are equivalent to the situation where the speckle noise
contained in image Xðu; vÞ comes from an average, on intensity ba-
sis, of L images. In such cases of an average of L independent
speckle realizations, the probability density function results as an
L-fold convolution of the probability density function of Eq. (2).
This L-fold convolution leads, after the averaging process, to a
speckle image Nðu; vÞ with speckle intensities following a Gamma
probability density function of order L [26]

pL
NðrÞ ¼

L
rN

� �L rL�1

CðLÞ exp
�Lr
rN

� �
; for r P 0: ð3Þ

In the probability density function model of Eq. (3), the noise level
rN controls both the mean E½Nðu; vÞ� ¼ rN and the standard devia-
tion rN=

ffiffiffi
L
p

of the speckle noise Nðu; vÞ. In Eq. (3) the parameter L,
called the speckle order, is an integer and the Gamma function
can be written CðLÞ ¼ ðL� 1Þ!. For example, a non polarized incident
wave, as it contains two independent polarizations, will lead to a
speckle noise that can be modeled with Eq. (3) for L ¼ 2 [28]. The
probability density function of Eq. (3) can also model situations
where speckle noise arises with an unknown order L like in the case
of a fast movement of the elements as described before.

The intermediate image Xðu; vÞ resulting from the coupling
modeled by Eq. (1) is then acquired by the sensor of the imaging
system described by the characteristic function gð�Þ, producing an
output image Yðu; vÞ so that
Yðu; vÞ ¼ g½Xðu; vÞ�: ð4Þ

We shall study the impact of speckle noise on the efficacy of the
transmission. We assess this impact with a measure of performance
as explained in the following section.

3. Assessment of the transmission

A meaningful input–output measure of similarity in image pro-
cessing is the root mean square error (rms error) [29]. We use here
the rms error to measure the similarity between the input image
Sðu; vÞ and the output image Yðu; vÞ, which is defined by

Q SY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðY � SÞ2i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hY2i þ hS2i � 2hSYi

q
; ð5Þ

where h� � �i denotes an average over the images. The effect of
speckle noise Nðu; vÞ on the transmission of the physical scene
Sðu; vÞ, through this measure, will be studied in terms of statistical
properties of the images. We consider the case of a binary image
for Sðu; vÞ, consisting of an object of interest characterized by its
intensity I1, on a background of intensity I0. Without loss of gener-
ality, we assume that 0 6 I0=I1 < 1. We take for the imaging sensor
described by gð�Þ in Eq. (4) a hard limiter function with a threshold
h. This function gð�Þ implements a rectangular function under the
form

g½Xðu; vÞ� ¼
1 for Xðu; vÞ > h

0 for Xðu; vÞ 6 h:

�
ð6Þ

This model permits to carry out a complete analytical treatment.
This type of sensor captures the basic characteristics of more
sophisticated systems. Multilevel quantizers or high-level process-
ing tasks like for example binary decision tasks are among these
systems. Furthermore, neurons building the visual system are often
modeled with a hard limiter. For these reasons, the hard limiter of
Eq. (6) is a useful model for imaging systems when they operate
at low flux domains. With this imaging sensor, the output image
Yðu; vÞ takes its values in the binary set f0;1g. We compare image
Yðu; vÞ with a binary reference pattern S0ðu; vÞ which equals Sðu; vÞ
when I0 ¼ 0 and I1 ¼ 1. The rms error between S0ðu; vÞ and Yðu; vÞ
is obtained by replacing Sðu; vÞ by S0ðu; vÞ in Eq. (5). We assume that
Sðu; vÞ (as well as S0ðu; vÞ) is large enough to consider that a statisti-
cal approach has sense and we define the probabilities

p1 ¼ PrfS ¼ I1g ¼ 1� PrfS ¼ I0g ¼ PrfS0 ¼ 1g ð7Þ

and

q1 ¼ PrfY ¼ 1g: ð8Þ

We also introduce the conditional probabilities

p10 ¼ PrfY ¼ 1jS ¼ I0g ¼ PrfY ¼ 1jS0 ¼ 0g ð9Þ

and

p11 ¼ PrfY ¼ 1jS ¼ I1g ¼ PrfY ¼ 1jS0 ¼ 1g: ð10Þ

With these definitions, the average hS02i ¼ PrfS0 ¼ 1g ¼ p1 and the
average hY2i ¼ PrfY ¼ 1g ¼ q1. Besides, this probability is express-
ible as

q1 ¼ p1p11 þ ð1� p1Þp10: ð11Þ

The computation of QS0Y also requires the average

hS0Yi ¼ PrfY ¼ 1; S0 ¼ 1g ¼ PrfY ¼ 1jS0 ¼ 1gPrfS0 ¼ 1g
¼ p1p11: ð12Þ

The output image Yðu; vÞ depends on the relation between the input
mixture Sðu; vÞ � Nðu; vÞ and the threshold h of the imaging sensor.
Thus, the conditional probabilities described before can be written

p1k ¼ PrfS� N > hjS ¼ Ikg ¼ PrfN > h=Ikg with k 2 f0;1g: ð13Þ

We have then

p1k ¼ 1� FL
Nðh=IkÞ with k 2 f0;1g; ð14Þ

where FL
Nð�Þ is the cumulative distribution function of the speckle

noise defined by FL
NðuÞ ¼

R u
�1 pL

NðxÞdx. It is possible to get an analyt-
ical expression of the cumulative distribution function from the
probability density function of Eq. (3). We have the integral

FL
NðrÞ ¼

L
rN

� �L 1
CðLÞ

Z r

0
xL�1 exp

�Lx
rN

� �
dx; ð15Þ

and successive integrations by parts lead to the expression

FL
NðrÞ ¼ 1� exp

�Lr
rN

� �XL�1

n¼0

1
n!

Lr
rN

� �n

: ð16Þ

All put together the rms error can be rewritten

QS0Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1 þ ð1� p1Þp10 � p1p11

p
; ð17Þ

with conditional probabilities p10 and p11 depending on rN , L and
the quantities {I0; I1; h} through the cumulative distribution
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function. This expression gives access to a complete analytical form
for QS0Y through Eqs. (14) and (16), thanks to the simple choices for
the imaging sensor and the input image. With the form of Eq. (17),
we can study the impact of the parameters of the system and the
speckle noise on the coherent imaging transmission.

4. Constructive role of speckle noise

We now demonstrate that, in some conditions, speckle noise
can be useful in the transmission of the input image Sðu; vÞ. Fig. 1
shows the evolution of the rms error Q S0Y as a function of the noise
level rN , for different values of the speckle order L and with other
parameters being fixed. We can see in Fig. 1 that the analytical pre-
dictions in solid lines are in close agreement with the numerical
simulations in discrete points. Curves present a nonmonotonic
evolution with a minimum value of the rms error for a nonzero va-
lue of the noise level rN . This means that it is possible to improve
the transmission of a scene in a coherent imaging system by raising
the level of speckle noise. We have the possibility to study the
mechanism of improvement by noise through the influence of
the speckle order L on the transmission. The effect is already visible
at L ¼ 1, as also seen experimentally in [11]. It is shown in Fig. 1
that the effect is preserved for every order L. Besides, we can see
in Fig. 1 that the minimum value of the rms error, reflecting an
optimal noise-aided transmission, is decreased when L is raised.
In the limit case L!1, the minimal rms error tends to zero. An
example of this beneficial impact of the speckle noise on the
transmission is shown in Fig. 2. The shape of the object in the illus-
trated output images Yðu; vÞ can be compared to the one in the bin-
ary input image Sðu; vÞ as a visual appreciation of the efficacy of the
transmission. The upper panel of the figure illustrates that the best
transmission is obtained at the intermediate level rN ¼ ropt of the
speckle noise. The influence of the order L is shown in the lower
panel, where increasing L from Fig. 2d–f leads to an improved
transmission.

We now propose a qualitative explanation of the constructive
action of speckle noise as a function of the order L. Introducing
the probability p0 ¼ PrfS ¼ I0g ¼ 1� p1, intermediate image
Xðu; vÞ can be described by the conditional probability density
functions
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Fig. 1. rms error of Eq. (17) as a function of the level rN of the speckle noise, for
different values of the speckle order L at threshold h ¼ 0:75. The characteristics of
the input image Sðu; vÞ are I0 ¼ 0:5, I1 ¼ 1 and p1 ¼ 0:28. Solid lines correspond to
the analytical predictions of Eq. (17). Discrete points correspond to numerical
simulations, averaging L independent realizations of a speckle noise with proba-
bility density function of Eq. (2).
pXjS¼Ik
ðrÞ ¼ pk

Ik
pL

N
r
Ik

� �
with k 2 f0;1g: ð18Þ

Fig. 3 shows the conditional probability density functions pXjS¼I0
ðrÞ

and pXjS¼I1
ðrÞ for distinct values of the speckle order L, at a fixed va-

lue of rN . Threshold h is fixed and represented by the vertical
dashed line. The black zone, located under the curve pXjS¼I0

ðrÞ, rep-
resents the probability of error to transmit a pixel value of I1 instead
of the correct value I0 for the background. In the same way the gray
zone, located under the curve pXjS¼I1

ðrÞ, represents the probability of
error to transmit a pixel value of I0 instead of I1 in the region of the
object. Thus, a reduction of both zones means an improved trans-
mission of the input image Sðu; vÞ. This is obtained by raising the
speckle order L as illustrated in Fig. 3. As L increases, the variance
r2

N=L of the speckle noise decreases. Therefore, when L!1, the
conditional probability density functions pXjS¼I0

ðrÞ and pXjS¼I1
ðrÞ

evolve to Dirac delta functions, creating the particular shape of
the rms error in Fig. 1 at this limit case. When a constructive role
of speckle noise is possible, it is of interest to know exactly how
to get the best benefit. This point is described in the following
section.

4.1. Optimal level of noise

It is possible to theoretically predict the optimal level of noise
that minimizes the error, i.e. the value of rN for which the deriva-
tive of Q S0Y of Eq. (17) is zero. This is expressed by the equation

ð1� p1Þ
op10

orN
� p1

op11

orN
¼ 0: ð19Þ

Using a change of variable, we introduce the standardized probabil-
ity density function pstandðuÞ ¼ rNpL

NðrNuÞ, with cumulative distri-
bution function FstandðuÞ ¼ FNðrNuÞ. The conditional probabilities
of Eq. (14) become

p1k ¼ 1� Fstand
h

rNIk

� �
with k 2 f0;1g: ð20Þ

We obtain the derivatives

op1k

orN
¼ h

Ikr2
N

pstand
h

rNIk

� �
with k 2 f0;1g; ð21Þ

and Eq. (19) leads to

pstand
h

I0rN

� �
pstand

h
I1rN

� � ¼ I0

I1

p1

1� p1
: ð22Þ

Considering the hypothesis h 6¼ 0 and p1 6¼ 1, one can find that the
optimal value for rN which minimizes the input–output rms error
when using a speckle noise of order L is

ropt ¼
I0 � I1

I0I1

Lh
lnðKÞ with K ¼ I0

I1

� �L p1

1� p1
: ð23Þ

Expression of Eq. (23) can be rewritten

ropt ¼
hð1=I1 � 1=I0Þ

1
L ln p1

1�p1

� �
þ ln I0

I1

� � ; ð24Þ

illustrating how this quantity depends on the order L. This is de-
picted in Fig. 4 showing the values taken by the optimal level of
speckle noise ropt as a function of L. Raising L implies a better con-
trast in the intermediate image Xðu; vÞ so that, in order to keep the
transmission in optimal conditions, the value of ropt needs to be in-
creased to a lesser extent for high values of the order L. This increase
of ropt leads to a maximum value rlim obtained when L!1, that
can be expressed by



Fig. 2. Examples of simulated images for Yðu; vÞ of Eq. (4) at the output of the sensor, varying the level rN of the speckle noise (upper panel) and the order L (lower panel). In
the upper panel, the order is fixed to L ¼ 2 and the level of the speckle is (a) rN ¼ 0:2 (b) rN ¼ ropt ¼ 0:55 and (c) rN ¼ 3. The rms error is minimized at the intermediate noise
level rN ¼ ropt in (b). In the lower panel, the level of the speckle noise is rN ¼ 1 and its order is (d) L ¼ 2, (e) L ¼ 5 and (f) L ¼ 30. The rms error decreases monotonically as L is
raised from (d) to (f). For all these images, Sðu; vÞ is a 500� 500 image with probability p1 ¼ 0:2, with intensities I0 ¼ 0:4 and I1 ¼ 0:8. The threshold of the sensor is h ¼ 0:6.
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Fig. 3. Probability density functions pXjS¼I0
ðrÞ and pXjS¼I1

ðrÞ of Eq. (18) at threshold h ¼ 0:75 and rN ¼ 0:85, for (a) L ¼ 1 (b) L ¼ 5 and (c) L ¼ 30. Same input image conditions
as in Fig. 1. Black and gray zones correspond to the probability of wrong transmission, respectively in the object region and in the background region, of input image Sðu; vÞ.
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rlim ¼ h
ðI0 � I1Þ

I0I1 lnðI0=I1Þ
: ð25Þ

The opportunity to find an analytical expression for the optimal le-
vel of noise is quite rare in the literature of useful noise effects,
where studies are usually limited to explore the phenomenon
numerically. The expression of Eq. (23) also points out the influence
of the different parameters of the system, providing a better under-
standing of the mechanism of transmission improvement by noise.

4.2. Conditions for a constructive role of speckle noise

It is interesting to know for a given scene whether speckle noise
can have or not a constructive role on the transmission. This is
characterized by a nonmonotone evolution of a performance mea-
sure, with a determined set of parameters. This particular set of
parameters is usually chosen in order to illustrate the possibility
of an improvement by noise. We now define constraints on this
set that one must verify in order to get the effect. These constraints
are given by the analytical expression of ropt. The optimal level of
speckle noise ropt must be positive, therefore Eq. (23) must verify
the condition K < 1. This leads to the inequality

I0

I1

� �L

<
1� p1

p1
; ð26Þ

which gives a condition of a noise-aided transmission as a function
of the parameters of the coherent imaging system. Condition of Eq.
(26) can also be written

I0

I1
< hðp1Þ with hðp1Þ ¼

1� p1

p1

� �1=L

: ð27Þ

As we have supposed 0 6 I0=I1 < 1, the condition of Eq. (26) is al-
ways verified when 1 < 1�p1

p1
which is the same as p1 < 1� p1 or

2p1 < 1. In other words, an input image with p1 < 1=2 can always
get benefit from speckle noise. This is depicted in Fig. 5a showing



0 10 20 30 40 50
0

0.5

1

1.5

2

speckle order L

σ op
t

σlim

Fig. 4. Optimal value ropt of the speckle noise as a function of the speckle order L
(integer values) at threshold h ¼ 1:5 with rlim given in Eq. (25). Same input image
conditions as in Fig. 1.

S. Blanchard et al. / Optics Communications 281 (2008) 4173–4179 4177
the function hð�Þ as a function of the parameter p1, for distinct val-
ues of the speckle order L. The hypothesis 0 6 I0=I1 < 1 corresponds
to the lower part of the figure, under the dashed line. This ratio
must also verify the condition of Eq. (27), thus the value I0=I1 must
be located under the curve at given L. It is the case for all values of L
when 0 < p1 < 1=2. For higher values of p1, the domain of the con-
trast ratio I0=I1 where speckle noise can improve the transmission is
constrained by the curves, and this condition is less restrictive as L
is increased. This corroborates the idea that improvement by
speckle noise appears more easily for high values of the order L.
The limit of function hð�Þwhen L!1 equals 1, reflecting that there
is no condition for the effect to occur in the limit case. To summa-
rize, the set of conditions 0 6 I0=I1 < 1, 0 < p1 < 1 and Eq. (27) give
the domain where the transmission can get benefit from speckle
noise, represented for the case L ¼ 1 by the gray area in Fig. 5a.
On the contrary, it is not possible to get benefit from speckle noise
with parameters corresponding to outside the gray area. As pointed
out by Eq. (27), the contrast in the input image I0=I1 plays an
a b

p1

h 
(p

1)

Fig. 5. (a) Evolution of the function hð�Þ of Eq. (27) as a function of the probability p1, for
L ¼ 1 the domain where speckle noise has a constructive role on the transmission. (b) rm
of the contrast ratio I0=I1. The other parameters are fixed to p1 ¼ 0:7, L ¼ 2 and h ¼ 0:5.
important role in the effect. Fig. 5b shows the rms error QS0Y as a
function of the noise level rN , at p1 ¼ 0:7 and L ¼ 2. The situation
where L ¼ 2 corresponds to an intermediate curve of Fig. 5a.
Fig. 5b illustrates the influence of the contrast ratio I0=I1 on the
noise-aided transmission. For strong contrasts between the object
and the background, i.e. when I0=I1 is small, speckle noise has a
more constructive effect on the transmission. When I0=I1 takes high
values, hðp1Þ must be sufficiently high to verify Eq. (27). For high
values of hðp1Þ, the range of the corresponding values of p1 is smal-
ler than for small values of hðp1Þ. Thus, when the contrast ratio I0=I1

increases, p1 must be reduced in order to get the effect, correspond-
ing to a small object of interest in relation to the input image size.

4.3. Best achievable performance

The analytical form of the optimal level of noise permits to have
direct access to the best performance that is possible to obtain,
which is the minimal rms error Q min between input image Sðu; vÞ
and output image Yðu; vÞ. It is enough to inject ropt of Eq. (23) in
the expression of QS0Y of Eq. (17). This leads to the theoretical
prediction

Q2
min ¼ p1 þ ð1� p1ÞK

1
1�I0=I1

XL�1

n¼0

1
n!

lnðKÞ
I0
I1
� 1

" #n

� p1K
I0=I1

1�I0=I1

XL�1

n¼0

1
n!

I0
I1

lnðKÞ
I0
I1
� 1

" #n

; ð28Þ

with K ¼ ðI0
I1
ÞL p1

1�p1
. With the expression of Eq. (28), one is able to

know exactly the best performance that is possible to obtain with
speckle noise, as a function of the order L of its probability density
function and the input image characteristics. Fig. 6a shows the evo-
lution of the minimal value Qmin for the rms error as a function of
the speckle order L. As already seen in Fig. 1, speckle noise has a
more important effect on the transmission when L is increased,
leading to a lower value of the minimal rms error. When the order
tends to the limit case L!1, the speckle noise probability density
function tends to the Dirac delta function at the mean value rN

which is

pDðrÞ ¼ dðr � rNÞ: ð29Þ

Then the conditional probabilities become
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p1k ¼
1 if h

Ik
< rlim

0 otherwise

(
with k 2 f0;1g: ð30Þ

Together with the expression of the rms error of Eq. (17), one can
find that the minimal rms error tends to zero corresponding to a
perfect transmission, here in the simple case of binary images.
The contrast I0=I1 appears in the best achievable performance of
Eq. (28). This corroborates this idea that this ratio has an important
effect on the noise-aided transmission. The minimal rms error as a
function of I0=I1 follows a monotone evolution, as depicted in Fig. 6b
for distinct values of L. When input image has a low contrast be-
tween the object and the background, i.e. when I0=I1 is close to 1,
the minimal rms error Qmin is high and it can be found from Eq.
(27) that Qmin tends to

ffiffiffi
p
p

1, the same value for every order L of
the speckle noise. This means that when I0=I1 is close to 1 (low con-
trasts), the optimal transmission depends on the image but not on
the order L. When I0=I1 ! 0 (strong contrasts) the best rms error
Qmin which is possible to obtain tends to zero for every speckle or-
der L.

5. Discussion

We studied the possibility of a constructive action of a family of
speckle noises of varying order L on a coherent imaging transmis-
sion. This constructive action of speckle noise has been experimen-
tally observed at the order L ¼ 1 in [11]. We have demonstrated
here that an improvement by speckle noise is achievable for every
value of the order L, illustrating the sturdiness of the effect. We
have shown that best performances are obtained for high values
of the speckle order L. Thus, it could be interesting to work in
coherent imaging conditions with high values of L, but this may
have to be traded off with a possible loss of spatial resolution
[30]. An analytical expression of the optimal level of noise maxi-
mizing the transmission efficacy is obtained, as a function of the
system parameters which include the speckle order. Whatever
the value of the speckle order L, we are thus able to know how
to get the best benefit from speckle noise. The different parameters
of the system can be controlled experimentally. The level rN of the
speckle noise is directly linked to the intensity A of the incident
wave through the relation rN ¼ A� R, where R is the reflection
coefficient on the scattering surface. The level rN of the speckle
noise can thus be tuned by the intensity of the incident wave. This
possibility to control the level of the speckle has been experimen-
tally implemented in [11]. The order L of the speckle noise can be
controlled, for instance, by moving the diffuser within the time
exposure of the camera [2].

The exact analytical expression of the best achievable perfor-
mance is also obtained. For a simple model of coherent imaging sys-
tem, this expression allows to know how much benefit this system
can gain from speckle noise, by means of noise-aided transmission.
Besides, the theoretical analysis allows one to precisely define the
characteristics of the coherent image for which speckle noise can
have a constructive action on the transmission. This is obtained in
the form of constraints on the characteristics of the coherent image,
like its contrast. The present study shows that the object/back-
ground contrast in the coherent image is an important parameter
for the feasibility of the improvement by speckle noise. For further
analysis of the effect, more complex image models could be inves-
tigated, with distributed values of gray levels over the object and
over the background. Also, we used here a hard limiter to represent
the imaging system, implementing a binary object/background seg-
mentation. More sophisticated models for the imaging system
could also be investigated, in order to appreciate how the benefits
from the speckle noise evolve in such conditions.
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