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An optical setup is proposed for the implementation of compressive sensing with coherent images. This setup
specifically exploits the natural multiplicative action of speckle noise occurring with coherent light, in order to
optically realize the essential step in compressive sensing which is the multiplication with known random
patterns of the image to be acquired. In the test of the implementation, we specifically examine the impact of
several departures, that exist in practice, from the ideal conditions of a pure multiplicative action of the
speckle. In such practical realistic conditions, we assess the feasibility, performance and robustness of the
optical scheme of compressive sensing.
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1. Introduction

Compressive sensing is a recent methodology [1–3] aiming at
improving the efficacy of acquisition for many natural information-
carrying signals. To exploit its innovative principle, practical implemen-
tation of compressive sensing calls for a new generation of acquisition
devices and remains an important challenge.Whendedicated to images,
practical implementationsof compressive sensing that have appeared in
the domain of optics mainly involved standard incoherent intensity
images, often associated with specialized electronic hardware [4–12].
Here, we propose and investigate another candidate approach for a
physical implementation of compressive-sensing imaging. We present
an optical setup using coherent light supporting a novel technique for
implementing compressive imaging. Especially, with coherent light,
one can exploit the natural multiplicative action of speckle noise
[13,14] in order to realize the essential step in compressive sensing
which is themultiplicationwithknownrandompatterns of the image to
be acquired. Such a proposal has recently [15] been made for ghost
imaging [16,17]. In [15], the speckle pattern produced by spatial light
modulator optoelectronic device are not measured but computed using
the Fresnel–Huygens propagator. In this paper, we propose, on the basis
of modeling and experimentation, to further analyze the use of the
natural multiplicative action of speckle noise to compressive sensing.
The speckle pattern here will be produced by a simple diffuser to
implement a minimal optical scheme for compressive sensing with
coherent light. We expect for compressive sensing a constructive
implication of the speckle noise, as it was obtained for another imaging
operation in Refs. [18,19]. We specifically study the robustness of the
compressive sensing when some departure from a perfect multiplica-
tive action of the speckle is present.

2. The compressive sensing scheme

In compressive sensing [1–3], a signal x with N scalar components
[x1, … xN]⊤=x in some original orthonormal basis of RN, is considered
K-sparsewith components [s1,… sN]⊤=s in a transformed orthonormal
basis of RN where only K components are non-negligible. The change of
coordinatesx=Ψsfs=Ψ−1x is expressed through theN×Nunitary
matrix Ψ. It is in general not possible to directly measure the K
components in the sparsity basis, because their number and locations
among N are usually not known, and are also signal-dependent. As a
more universal approach, compressive sensing chooses, from the
original basis, to measure M (with KbMbN) fixed independent linear
combinations of the vector x, under the form y=[y1,… yM]⊤=Φxwith
Φ an M×N measurement matrix, which is also y=ΦΨs=As with
A=ΦΨ an M×N reconstruction matrix. A specific input x=x0, with
sparse representation s0=Ψ−1x0, is associated with the measurement
vector y0=Φx0. The K-sparse vector s0 is thus the solution to the
underdetermined system As=y0. Compressive sensing proposes to
recover s0 by seeking the sparsest solution to this system. This is usually
done through solving

ŝ = argmin
s ∥As−y0∥2 + λ∥s∥1; ð1Þ

with λN0 a regularization parameter, which is a convex optimization
problemthat canbe solvedefficientlyby linearprogrammingtechniques.
The non-observed input x then follows as x̂ = Ψŝ. The effectiveness
of this scheme has been shown, for many natural signals, when the
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Fig. 1. Experimental setup for an optical implementation of compressive sensing with
coherent light. The intensity tuning block together with the spatial filter are used to
obtain an almost uniform beam with no saturation of the CCD camera. The laser light
traversing a static diffuser taken as a frosted glass produces the speckled beam, which
then illuminates the imaged scene, a slide with calibrated transparency levels carrying
the contrast of the input image to be compressed. The lens images the scene plane on
the CCD matrix of the camera.
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measurement matrix Φ is an M×N random matrix, realized by
assembling M random vectors ϕm=[ϕ1

m, … ϕN
m]⊤ with independent

components for m=1 to M, to yield Φ=[ϕ1|ϕ2| … |ϕM]⊤. Each
measurement ym is thus constructed as the inner product

ym = ϕm� �⊤x = ∑
N

n=1
ϕm
n xn; ð2Þ

interpretable as the random projections of the input vector x on M
random vectors ϕm.

For compressive imaging, we treat an image by vectorizing it into a
long N×1 column vector. It has recently been proposed to consider
images in 2-D matrices for compressive sensing to preserve the natural
spatial sparsity of images [20]. In this study, we choose to work with
images coded ina columnvector as theoriginal simplest transposition of
compressive sensing to images. An explicit transformed basis has to be
chosen inwhich the input vectorx is supposed tobe sparse. In this study,
we choose to work with binary images. An appropriate choice of basis
(although others may also do) for binary images is aWalsh basis, when
Ψ is a Hadamardmatrix implementing a Hadamard transform [21]. The
input binary image x is thus assumed sparse in this Walsh-Hadamard
basis. Fromthemeasurement vector y, reconstruction is thenperformed
by numerically solving the convex optimization problem of Eq. (1)with
the method of [22].
A B

Fig. 2. (A) One realization of the thermal noise B1(u, v) at the CCD sensor of the camera; (B)
1024×1024 resolution. The 0–1023 digital dynamic is normalized to a [0,1] intensity scale
3. An optical compressive imaging setup

An essential step in the compressive sensing scheme reviewed in
Section 2 is the random projections of Eq. (2). We describe the
experimental implementation of this essential step of the compressive
sensing by exploiting speckle noise. When a beam of light traverses a
transparent medium, the light intensity across the transmitted beam is
the product of the incident beam profile by the spatial transparency of
the medium [13,14]. An all-optical product is realized in this way, with
incoherent as well as with coherent light. In addition, with coherent
light, when the medium traversed by a coherent beam incorporates
strong spatial irregularities at the wavelength scale, a speckle pattern is
formed across the transmitted wavefront and acts multiplicatively on
the incident coherent beam. The speckle pattern exhibits a noise-like
grainy appearance but at the same time it is deterministically
determined by the microscale irregularities imprinted in the transpar-
ent medium. In this way, by exploiting a speckled beam, there is, in
principle, the possibility of obtaining the controllable random patterns
that will actmultiplicatively to realize the random projections of Eq. (2)
constructing the measurements in compressive sensing.

To test this proposal in practice, we build the optical setup presented
in Fig. 1. In this optical setup, a laser beam is passed through a static
diffuser with strong spatial irregularities at the wavelength scale, in
order to produce a speckled beam carrying a random pattern with
strong spatial irregularities. Different patterns of random speckle are
obtained by translating the static diffuser with an XY micro-sensitivity
stage at a step larger than the beam diameter. The input image to be
compressed, denoted as the scene in Fig. 1, is printed on a transparent
slide to perform a product when it receives the speckled beam. Each
speckle pattern Φ(u, v) where (u, v) are the spatial coordinates,
produced at the output of the diffuser isfirstmeasured separately, in the
absenceof the scene tobe imaged. Then, for each position of thediffuser,
the scene X(u, v) is introduced in the speckled beam to experience the
multiplication by the known random pattern in order to produce the
speckled scene

ΦX u; vð Þ = Φ u; vð Þ × X u; vð Þ: ð3Þ

From each such random projection seen by the CCD camera, a scalar
measurement ym is obtained and stored in the computer. With
incoherent light, this scalar measurement ym corresponding to the
summation of Eq. (2) can be performed with a lens focusing the
incoherent wavefield onto a single pixel detector for summation of the
intensities. In the coherent lighting conditions that we are investigating
for compressive imaging, such an optical summation on the speckled
field would produce interferences incompatible with Eq. (2). Instead,
Histogram of the intensities of panel (A). The camera used has a 10 bit dynamic with a
.
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Fig. 3. (A) One realization of speckle Φ(u, v); (B) image of the speckled scene ΦX(u, v) produced when the scene is placed in the speckle beam. (C) Ratio R u; vð Þ = ΦX u;vð Þ
Φ u;vð Þ between

panel (B) and (A).
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we propose to use a CCD as a means to perform a spatial conversion of
local coherent field amplitudes into photo-electrons. Then, only the
scalar value of the total number of photo-electrons created on thewhole
active surface of the CCD is required to obtain the scalar measurement
ym.Wedo thatwith a state-of-the-art CCDarray, allowingalso spatialXY
information on the incident light field. But this XY information is not
used, nor needed, for the compressive-imaging process. Only the total
electric current (a single scalar) generated by the CCD array when
illuminated is enough, in principle, for the compressive-imaging
reconstruction. In practice, this could be obtained with a CCD device
of much reduced complexity, specifically tailored for compressive
sensing, having a “monolithic” structure with a single active element
integrating the whole incident light field, and resembling more of a
single planar photodiode, instead of a spatial XY array of a large number
of active cells. But for convenience, to test the feasibility of the
compressive sensing approach with coherent light, we use a much
more common state-of-the-art CCD array, discard the spatial informa-
tion, and use only a scalar sum from the array. The process of Eq. (3) is
repeated for M distinct positions of the diffuser, to yield the M scalar
measurements ym of Eq. (2). The reproducibility of the positioningof the
scene can be achieved in practice by working with speckle field with
grain size much smaller than the typical dimension of the spatial
contrasts in the scene. This can be controlled with the choice of the
distance between the scene and the diffuser in Fig. 1. In case of a
convergent beam, the closer the scene from the diffuser the smaller the
grain size and reciprocally in case of a divergent beam. This is in perfect
experimental conditions. Inpractice, somedeparturemay exist from the
perfect multiplicative action of the speckle described by Eq. (3). In this
respect, the simple multiplication of two separate patterns in Eq. (3),
and used as the basis of the compressive sensing scheme, would only be
a useful approximation of the action of the speckle. In the sequel, we
A B

Fig. 4. (A) Histogram of the intensities of region R1 of Fig. 3(C) in log. (B) Histogram of the inte
Solid lines stand for a Gaussian pdf with mean and standard deviation calculated from exp
regions R0 and R1.
identify some relevant sources of departure existing in practice and
observable with the experimental setup of Fig. 1. Then, we model and
simulate their impact on the compressive sensing. And finally, we
confront the picture with experiment in the setup of Fig. 1, for an
assessment of the feasibility and robustness of the present optical
implementation of compressive sensing.

4. Sources of noise

A first source of noise in the experimental setup of Fig. 1 is located at
the sensor level due to thermal fluctuations in the CCDmatrix. Fig. 2(A)
presents one realization of this thermal noise acquired in darkness.
As seen in Fig. 2(B), this thermal noise of the camera can be modeled
as an additive Gaussian white noise B1(u, v) with standard deviation
σ1=0.0026. This constitutes a first perturbation to a pure recording
of themultiplicative action of the speckle. The spatial average of noise
B1(u, v) is found stationary for a given time exposure of the camera.
This spatial average of noise B1(u, v) corresponds to the noise floor of
the CCD camerawhich is systematically subtracted from the acquired
image in the following.

A second perturbation directly impacts on the multiplication
between the speckle beam Φ(u, v) and the scene to be imaged X(u, v).
Fig. 3(A) shows a speckle patternΦ(u, v) produced after the diffuser of
Fig. 1. When the scene X(u, v) in Fig. 1, composed of a slide with
calibrated levels carrying contrast, is placed in the speckle beam, the
acquired image of Fig. 3(B) is observed for the speckled sceneΦX(u, v).

Fig. 3(C) presents the ratio R u; vð Þ = ΦX u; vð Þ
Φ u; vð Þ between the speckled

scene ΦX(u, v) and the speckle pattern Φ(u, v). In first approximation,
the ratio image of R(u, v) corresponds to the contrast carried by the slide
introduced in the sceneX(u, v). Yet, asone inspects thehistogramsof the
nsities of region R0 in Fig. 3(C) in log. Discrete dots (•) stand for the experimental counts.
erimental counts in R0 or in R1. The standard deviation σ2=0.065 is the same in both



Fig. 5. Histogram of the intensities of Fig. 3(A). Solid line stand for a Gamma
distribution with order L=2 and standard deviation σS=0.23 corresponding to a
depolarized speckle pattern.
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two regions composing R(u, v), it appears that R(u, v) is only matching
X(u, v) on average. This is visible in Fig. 4 where the pixels in R(u, v) are
distributed around the mean values expected in a pure multiplicative
action of the speckle. This deviation from a puremultiplicative action of
the speckle can be attributed to various causes such as spatial non
uniformities of the calibrated slides in the scene X(u, v), non-strictly
planar incident wavefront of the laser beam, or residual mechanical
vibrations in the experimental setup or also from natural convection in
the air causing spatial fluctuations of the optical pathlength of the
speckle sceneΦX(u, v) randomly evolving in time. To better understand
the impact of theseperturbations on theexperimental setup of Fig. 1,we
propose to model this fluctuation with a multiplicative Gaussian white
noise B2(u, v) with standard deviation σ2=0.065 as observed from
Fig. 4. As visible in Fig. 4, this model is not perfectly matching the
experimentally observed histograms. We nevertheless consider this
proposal as good enough for a second approximationmodel as a source,
additional and independent from the sensor thermal noise, of departure
from a pure recording of the multiplicative action of the speckle. The
ratio of σ2/σ1≈25 is considered sufficiently large to neglect the impact
of the fluctuations of B1(u, v) in Fig. 3 once the noise floor has been
removed. The typical structured patterns that are observed in B2(u, v)
are not visible in B1(u, v), confirming a dominant character of the
fluctuations in B2(u, v) over those in B1(u, v). From these observations,
we consider that the influence of B1(u, v) on the estimation of B2(u, v)
can reasonablybeneglected.Asa consequence,wepropose tomodel the
experimental action of the speckle in the following way

ΦXb u; vð Þ = Φ u; vð Þ + B2 u; vð Þð Þ × X u; vð Þ + B1 u; vð Þ; ð4Þ

withΦXb(u, v) as the experimental image acquired by the camera. We
are now going to use this model to evaluate the robustness on the
A B

Fig. 6. (A) binary image with N=8×8 pixels and intensity levels I1=0.75 for the object a
(C) reconstructed image x̂ with M=53 scalar measurements ym.
compressive sensing scheme to the experimental noises B1(u, v) and
B2(u, v).

5. Simulation

We simulate the compressive imaging scheme in order to
reconstruct the N=8×8 binary image of Fig. 6(A) where the pixels
of the image to be compressed are set to an intensity I1=0.75 for the
pixels of the object while the pixels of the background are set to
I0=0.25, in the absence of noise. To simulate the speckle patterns, we
use the probability density pS(z), provided by the Gamma density

pLS rð Þ = L
σS

� �L rL−1

Γ Lð Þ exp
−Lr
σ S

� �
; for r≥ 0; ð5Þ

where parameter L, called the speckle order, is an integer, σS is the
standard deviation and the Gamma function can be written as Γ(L)=
(L−1)!. As visible in Fig. 5, the speckle pattern produced by the
experimental setup of Fig. 1 is in fair agreement with the Gamma
density model of Eq. (5). In the following we will model the speckle
pattern with a Gamma density of parameter L=2 corresponding to
the experimental conditions observed in Eq. (5) for a fully depolarized
speckle. Fig. 6(B) presents one realization of an N=8×8 pattern of
speckle with σS=0.23. Fig. 6(C) shows the reconstructed image x̂
obtained with M=53 scalar measurements ym. The quality of the
reconstructed image x̂ for a given numberM of measurements can be
assessed by the normalized cross-covariance Cx; x̂ given by

Cx;x̂ =
〈 x−〈x〉ð Þ x̂−〈x̂〉ð Þ〉ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈 x−〈x〉ð Þ2〉〈 x̂−〈x̂〉ð Þ2〉

q ; ð6Þ

where 〈..〉 denotes the spatial average. Fig. 7 shows the global
improvement of the normalized cross-covariance Cx;x̂ as a function of
the number M of measurements for the binary image of Fig. 6(A).
Additionally in Fig. 7, we compare, in terms of fraction of well-classified
pixels, the input binary image x with a binarized version of the
reconstructed image x̂. Perfect recovery is obtained inFig. 7withM=53
scalar measurements ym after binarization by thresholding of x̂ at
(I0+ I1)/2 for the binary reference image of Fig. 6(A). This possibility of
perfect recoverywas foundreproducible overmultiplenoise realizations
with ahighprobability.We consider this result as a situation of reference
for the compressive imaging scheme in absence of noise. We now study
the evolution of the performance of the compressive imaging scheme
for the reconstruction of the same image when the level of the two
noises B1 and B2 in Eq. (4) is introduced. Fig. 8 presents the impact of
the level of the additive Gaussian noise B1(u, v) or the multiplicative
Gaussian noise B2(u, v) of Eq. (4) on the reconstruction of the image
of Fig. 6(A) for the fixed number M=53 of scalar measurements ym.
Results from Fig. 8 are interesting since they allow to predict the
performanceof the compressive imaging scheme invarious experimental
C

nd I0=0.25 for the background; (B) one realization of speckle pattern with σS=0.23;



Fig. 7. Normalized cross-correlation (o) of Eq. (6) between the reference image of
Fig. 6(A) and the reconstructed image x̂ and fraction of well-classified pixels (×) on the
thresholded image of x̂ as a function of the number M of scalar measurements ym.
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conditions. For illustration, we have located the experimental levels of
noise measured in our experimental setup. As visible in Fig. 8 our model
predicts that, in such experimental conditions, the compressive imaging
scheme should still succeed in the reconstruction of the observed image
for M=53 scalar measurements ym.

6. Experimental results

We are now ready to test the compressive sensing based on the
experimental setup of Fig. 1. We propose to test it with a simple 8×8
binary input scenevisible in Fig. 9(A) to confrontourpredictivemodel to
experimentation. Fig. 10 presents the performance of reconstruction for
this input image and it appears that a perfect reconstruction is possible
from ym=20 measurement therefore performing a 64:20 lossless
compression ratio. For comparison, Fig. 10 also provides the simulation
of the compressive sensingon the input imageof Fig. 9(A) in the absence
of noise andwith the noisemodels tuned according to the experimental
conditions. As visible in Fig. 10 the performance of the simulation
reaches a perfect reconstruction almost for the same number of
measurement ym=20. This validates the capability of the noise model
proposed in Eq. (4) to predict performance of the experimental optical
implementation of the compressive sensing given in Fig. 1.

7. Discussion and conclusion

We have devised and tested an optical setup for an experimental
implementation of compressive-sensing imaging. The key proposal
A B

Fig. 8. (A) Normalized cross-correlation (o) of Eq. (6) between the reference image Fig. 6(A)
thresholded image of x̂ as a function of the standard deviation σ1 of the noise B1(u, v) for a fix
same as panel (A) but noise level of noise B1(u, v) is zero and the level σ2 of noise B2(u, v) is
experimental setup.
is to exploit the speckle images arising with coherent light in order
to realize theessential stepof themultiplicationwith randomreferences.
An experimental setup for compressive imaging based on this proposal
has been assembled and tested in its principle with simple 8×8 binary
images. The results demonstrate the feasibility of the principle for
compressive sensing, by achieving perfect experimental recovery of a
compressed image of a typical 64:20 ratio. Compressive sensing has
previously been implemented experimentally with Gaussian distribu-
tions or Bernoulli binary distributions. The speckle intensity is following
exponential distributions. Our result therefore extends the scope of
distributions that can be found in practice and that can be used for
practical implementation of compressive sensing. Concerning the
compression performances, the compression rate achieved depends on
variousparameters since it is not only imagedependent but also relies on
the projection basis used for the compressive sensing. Therefore, the
compression performance is essentially given here as a typical value and
as an additional proof of feasibility. As another original contribution of
thepresent report,wehave identified some relevant sources of noise and
simulate their impact on the compressive sensing. This quantitatively
establishes the robustness of the optical compressive-sensing imaging
scheme introduced in this report.

In the previously proposed experimental setups for compressive
imaging, the random projections of Eq. (2) are usually realized through
the intervention of mechanical material elements. For instance, in the
incoherent optical imaging system of [4,5], an array of micro-mirrors is
electrically flipped to create pseudo-random patterns that are succes-
sively applied to affect the transmission of an input image. In the
terahertz imaging systemof [23,24], the randomprojections are realized
by copper plates irregularly pierced by holes and mechanically
translated to intercept a terahertz beam also traversing a planar mask
(the imaged object) between two antennas. As an alternative here, we
have shown that a coherent light could naturally offer a simple way to
perform such amultiplicationwith a random pattern, under the form of
a speckle image. The ability of this mode of operation to realize the
random projections of compressive sensing is validated here by the
possibility of perfect reconstruction that was obtained. This proof of
feasibility concerning anall-optical implementation of the essential step
of the random projections was obtained here in a simple configuration
of the optical setup of Fig. 1. The aimwas to concentrate on proving the
feasibility of the principle, by means of a setup configuration with low
complexity. In particular, the small 8×8 size of the image brought the
facility of a small number of diffuser positions to manage, resulting in a
small number of random references. However, the scheme in principle
can be extended to larger images, with a larger number of random
references to handle. In such conditions of operation, the random
speckle patterns of reference produced by the diffuser at different
and the reconstructed image x̂ Fig. 6(C) and fraction of well-classified pixels (×) on the
ed numberM=53 of scalar measurement ym. The level of noise B2(u, v) is zero. Panel (B)
raised. In (A) and (B) the solid vertical lines stand for the levels of noise present in our
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Fig. 9. (A) Optical version of the input image to be compressed with N=8×8 pixels and intensity levels I0=1 and I1=0.1. (B) One experimental realization of a speckle pattern with
N=8×8 pixels. (C) Multiplication of this speckle pattern by the input image X(u, v) optically realized with the setup of Fig. 1.

A B

Fig. 10. (A) Normalized cross-correlation of Eq. (6) between the reference image Fig. 9(A) and the reconstructed image x̂ as a function of the number M of scalar measurements
ym: (o) averaging over 10 realizations for the simulated reference situation with no noise, (△) averaging over 10 realizations for simulated reconstruction of Fig. 9(A) in our
experimental conditions of noise with σ1=0.0026 and σ2=0.065, (×) averaging over 10 realizations for the reconstruction of Fig. 9(A) for images acquired via the experimental
setup of Fig. 1. (B) same as (A) but with fraction of well-classified pixels between the reference binary image Fig. 9(A) and the thresholded image of x̂.
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spatial positions, could be measured once and for all and attached to a
given optical compressive-sensing setup, by assuring reproducible
spatial positioning of the diffuser at sufficient precision. Alternative
ways could be examined to control the realization of reproducible
random-like speckle patterns, for instance with electro-optical devices
(spatial light modulators, digital micro-mirror devices). The typical size
of the pixels of such devices is much larger than the wavelength. In
such condition, it has recently been shown [25] theoretically and
experimentally that a quasi optical geometric regime is accessible
that allows to use an optical summationwith a lens and a single-pixel
detector like in coherent compressive imaging. In our case, a simple
frosted glass was used instead. The perturbation of the wavefield by
the diffuser is made at the wavelength scale. The intensities of the
resulting speckled images cannot be summed optically as explained
in Section 3. Electro-optical devices could also be used to generate the
image to be compressed with more sophisticated structured images
with higher resolution and also with multiple gray levels instead of
binary images. Another useful evolutionwould be to test the imaging
process on an arbitrary three-dimensional scene. In its present form,
the optical setup of Fig. 1 obtained compressive acquisition of an
imagematerialized by a slide with spatially distributed transparency.
It was also the same type of slide object that was used in previously
proposed experimental setups for compressive imaging [4,5,23,24],
as convenient laboratory condition for the test of an innovative
implementation principle. A further step with our setup would be
to test its principle with a three-dimensional scene illuminated by
the speckled coherent beam. It should then be verified that the result
can still be analyzed as an image of the underlying scene multiplied
by a known random speckle pattern. If the three-dimensional scene
displays significant microscale irregularities, it can even generate
its own speckle pattern that would also act multiplicatively in the
measured image. In this case, the compressive-sensing scheme, if it
still operates, would reconstruct an image of the scene carrying its
ownspeckle. The reconstructed imagewould in facthave theappearance
of a coherent image as measured with common coherent imaging
devices, however acquired via compressive sensing. Such evolutions
represent further steps to investigate, beyond the demonstration given
here of the potential of multiplicative speckle patterns for compressive
sensing, and in order to progress toward more practical and flexible
compressive-imaging devices. Since coherent imaging exists outside
optics, for instance with acoustic sonar or radiowave SAR imagings, the
present results could also hold potentialities for compressive sensing in
these areas.
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