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A coherent imaging system with speckle noise is devised and analyzed. This demonstrates the possibility of
improving the nonlinear transmission of a coherent image by increasing the level of the multiplicative
speckle noise. This noise-assisted image transmission is a novel instance of stochastic resonance phenomena
by which nonlinear signal processing benefits from a constructive action of noise. © 2007 Optical Society of

America
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Coherent imaging is inherently associated with
speckle noise. Speckle noise is a fluctuation of inten-
sity over an image caused by very irregular spatial
interference from the coherent phases. Speckle noise
is often seen as a nuisance for many processing tasks
in coherent imaging. Meanwhile, from other areas of
information processing, it is progressively realized
that noise can sometimes play a constructive role,
such phenomena being known under the denomina-
tion of stochastic resonance [1,2]. A priori paradoxi-
cal in a linear context, stochastic resonance is a gen-
eral nonlinear phenomenon that has been registered
in various nonlinear physical processes, including
electronic circuits, lasers (see for example [3]), mag-
netic superconducting devices, or neuronal systems.
In all these processes, stochastic resonance was ob-
served with a temporal (monodimensional) informa-
tion signal. Up to now, only a few studies have re-
ported  stochastic  resonance  with  spatial
(bidimensional) signals or images. Stochastic reso-
nance with images has been obtained in an optical
Raman scattering experiment [4], in image percep-
tion by the visual system [5], in superresolution tech-
niques for imaging sensors [6], and recently in image
restoration [7]. Here, we demonstrate a new instance
of stochastic resonance applied, to our knowledge for
the first time, to coherent imaging, and taking the
form of a noise-assisted image transmission by a non-
linear sensor in the presence of speckle noise. Also, as
we recall here, speckle noise can be modeled as a
multiplicative noise, and this feature is in itself chal-
lenging because most of the studies on stochastic
resonance considered additive noise. The few that
considered multiplicative noise dealt exclusively with
temporal signals [8]. By contrast, we show a new
form of stochastic resonance, for coherent images,
with multiplicative speckle noise.

A grainylike pattern called speckle is observed
when an object with roughness on a wavelength scale
is illuminated by a coherent wave. On an imaging de-
tector, the transmitted or backscattered wavefront
perturbed by those irregularities produces intensity
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fluctuations superimposed on the macroscopic reflec-
tivity or transparency contrast of the object. The ef-
fect on a coherent imaging system can be modeled [9]
as a multiplicative noise in the following way. Let
S(u,v) be an input information-carrying image to be
acquired, where the pixels are indexed by integer co-
ordinates (z,v) and have intensity S(z,v) €[0,1]. Let
N(u,v) be a multiplicative speckle noise, statistically
independent of S(u,v), which corrupts each pixel of
image S(u,v), to produce a nonlinear multiplicative
mixture

X(u,v)=Su,v) X N(u,v), (1)

where the noise values are independent from pixel to
pixel, and are distributed according to the probability

density py(j) given by

1 J
pN(i)=—eXp(— —), Jj=0, (2)
oN ON

with mean and standard deviation o, and root mean
square (rms) amplitude \@aN. Equations (1) and (2)
constitute a simple model of fully developed speckle
noise that is valid if the detector pixel size is smaller
than the speckle grain size [9]. The information-noise
mixture X(u,v) is then received by an image detector
delivering the output image Y(u,v) according to

Y(u,v) =g[X(u,v)], (3)

the input—output characteristic g(-) of the imaging
system being, at this stage, an arbitrary function.
The coherent imaging system described in Egs.
(1)—(3) has been realized with the experimental setup
of Fig. 1.

In order to assess the quality of the acquisition, we
introduce an input-output measure of similarity be-
tween the information-carrying input image S(u,v)
[the object of the slide in Fig. 1] and output image
Y(u,v) [the image on the CCD matrix in Fig. 1]. We
choose the input—output image rms error Egy, a basic
measure in the domain of image processing:
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Fig. 1. (Color online) Experimental setup producing an op-
tical version of the theoretical coherent imaging process of
Egs. (1)-(3). The \/2 plate in association with the Glan-
Taylor polarizer are used to control the intensity of the in-
cident coherent wave coming from the second harmonic
generation (532nm, 10 mW) of a YAG:Nd compact laser.
The spatial filter is used to obtain a uniform intensity on
the static diffuser taken as a frosted glass. The first lens is
adjusted with a micrometer-scale sensitivity linear stage to
control the size of the speckle grain in the object plane. In
Figs. 2 and 3 the speckle grain size has been adjusted to be
much larger than the pixel size (the domain of validity of
our model) and much smaller than the CCD matrix size (to
diminish fluctuations from one acquisition to another). The
object, a slide with calibrated transparency levels carrying
the contrast of the input image S(u,v), is illuminated by
the speckled wave field. The second lens images the object
plane on the CCD matrix of the camera. Variations of the
speckle noise level in Figs. 2 and 3 are controlled by rota-
tion of the \/2 plate.

Egy=\((S-Y)")= (S -2(SY) +(Y*),  (4)

where (---) denotes an average over the images. We
assume that image S(u,v) and speckle noise N(u,v)
are large enough so that a statistical description of
the distribution of intensities on the image is mean-
ingful: image S(u,v) and speckle noise N(u,v) pos-
sess empirical histograms of intensities, the normal-
ized version of which is defining probability density
ps(j) and py(j) for the intensity of image S(u,v) and
N(u,v). In principle, when pg(j), pn(j), and g(-) are all
given, it is possible to theoretically predict the input—
output image rms error Egy. For instance, for g(-), a
memoryless function on real numbers, one can use

(SY) =f dsspS(S)f d,g(s X n)py(n),  (5)

with similar expressions for (S?) and (Y?), and by
such means one has, in principle, access to Egy. We
are going to show, with a specific memoryless func-
tion g(-), situations where an increase in the level of
the speckle noise N(u,v) can improve the quality of
the output image Y(u,v), measured by a decrease of
the input-output image rms error of Eq. (4). In the
following, we choose to consider, both for the experi-
mental setup of Fig. 1 and for our theoretical coher-
ent imaging model of Eqs. (1)—(3), a binary image,
visible in Fig. 2, presenting gray level S(u,v)
e{Ry,R;} with Ry<R; and 1024 x1024 pixels, for
which the probability of having a pixel with level R,
is Pr{S=R,}=p; and Pr{S=R,}=1-p;. For illustra-
tion, the image detector g(-) is taken as a memoryless
hard limiter with threshold 6, i.e.,

Fig. 2. Output image Y(u,v) of the hard limiter of Eq. (6)
for increasing rms amplitude \EUN of the speckle noise
N(u,v). From left to right \Ea'Nz 0.28, 0.84 (optimal value),
2.81; with threshold 6=0.75, p;=0.27 and {Ry=1/2,R=1}.

0 for X(u,v) =0

1 for X(u,v) > 6. (©)

8lX(u,v)]= {

This hard limiter constitutes a very basic model for
imaging systems when they operate, in the low flux
domain, close to their threshold. Alternatively, the
hard limiter in Eq. (6) also can be viewed as a thresh-
old in a high-level image processing task such as seg-
mentation or detection. In addition, these simple
choices for the input image and the image detector
are going to allow a complete analytical treatment of
our theoretical model.

We are now in a position to study the evolution of
the input—output image rms error Egy of Eq. (4) as a
function of the level of the speckle noise N(u,v). The
input image S(u,v) takes different values over the
background (R;) and over the object (R;). As a conse-
quence, the rms amplitude of the speckle noise takes
different values over these two regions. As a common
reference in the sequel, we define the speckle noise
level as the rms amplitude 20y, corresponding to
the speckle noise rms amplitude before action of the
multiplicative coupling by the object or background
in Eq. (1). The quality of the images transmitted by
the hard limiter of Eq. (6) is assessed here by the rms
error between the output image Y(«,v) and a binary
reference S'(u,v) similar to S(u,v), but with Ry=0
(the background) and R;=1 (the object). In this con-
text, the input—output image rms error of Eq. (4) be-
comes

e
Esy=\p1+91-2p1p11, (7)

with conditional probabilities p,=Pr{Y=1|S=R,}
and g;=Pr{Y=1}=p;p1;+(1-p1) p1o- The possibility
of a useful role of the speckle noise in the image
transmission process of Egs. (1), (2), and (6) is visible
in Fig. 3, where, for sufficiently large object-
background contrast R;/R, in input image S(u,v),
Egy follows a nonmonotonic evolution presenting a
minimum for an optimal nonzero level \EaNopt of the
speckle noise rms amplitude. This is the signature of
a noise-assisted image transmission. Figure 3 also
demonstrates a good agreement between experimen-
tal and theoretical results. In addition, it is possible
to derive the theoretical expression oy, minimizing
the input—output image rms error Egy of Eq. (7) by
solving dE v/ dop=0, which leads to
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Fig. 3. Input—output image rms error Egy of Eq. (7) as a

function of the rms amplitude 20y of the speckle noise
N(u,v) for various values of the input image contrast
Ri/Ry. Solid lines stand for the theoretical expression of
Eq. (7). The table gives the speckle noise optimal rms am-
plitude of Eq. (8). The discrete data sets (circles) are ob-
tained by injecting in Eq. (1) real speckle images collected
from the experimental setup of Fig. 1. The other param-
eters are 6=0.75, p;=0.6, R{=1.
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(8)

ONopt =

As seen in Eq. (8), there exist domains where the op-
timal speckle noise level oy, is nonzero and positive
when 6#0, p;#1, Ry#R; if K,>1. One can check in
Fig. 3 that the positions of the optimal speckle noise
level \s‘EO‘NOPt given by Eq. (8) show an exact agree-
ment with the numerical calculations.

Finally, a visual appreciation of the cooperative ef-
fect of the speckle noise quantitatively illustrated in
Fig. 3 is also presented in Fig. 2, where the multipli-
cative speckle noise injected in Eq. (1) comes from
real speckle images collected from the experimental
setup of Fig. 1.

We have demonstrated, theoretically and experi-
mentally, the possibility of a constructive action of
the multiplicative speckle noise in the transmission
of an image in a coherent imaging system. For what
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we believe is a first report of this effect, the models
for the input image, for the speckle noise, and for the
imaging sensor have been purposely taken in their
most simple forms. As a result, we obtained a theo-
retical prediction of the constructive role of the
speckle noise, through an explicit theoretical analysis
of the behavior of a relevant input—output similarity
measure. The theoretical predictions displayed close
agreement with experiment. A noticeable feature, in
particular, is that our theoretical model authorizes
an explicit derivation, without approximation, of an
analytical expression (an outcome rarely accessible
in studies of stochastic resonance in nonlinear sys-
tems) for the optimal level of the noise maximizing
the performance in given conditions. The present
demonstration of the feasibility of a constructive ac-
tion of speckle noise in coherent imaging can be ex-
tended in various directions. More sophisticated im-
ages (with distributed gray levels, for example) could
be considered, as well as other types of speckle noise,
such as the one appearing in polarimetric imaging
[10]. The simple threshold detector chosen here could
be replaced by a multilevel quantizer or a linear sen-
sor with saturation, closely matching attributes of
digital cameras. It would then be interesting to con-
front, as done here, experiment and theoretical mod-
eling, and examine how the phenomenon of improve-
ment by noise evolves in these other conditions.
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