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In imaging, the choice of an observation scale is conventionally settled by the operator in charge of the image ac-
quisition, who is left alone with tuning the framing and zooming parameters of the imaging system. In a somewhat
decoupledmanner, the operator in charge of processing the data has access to the images after their acquisition, and
seeks to extract information from the observed scene. This Letter proposes a manifestation of the interest of an
alternative joint acquisition-processing approach. We demonstrate with quantitative informational measures
how the choice of an observation scale can be directly related to the performance of the final information processing
task. Illustrations are given with various tools from statistical information theory with possible applications of
practical interest to any noisy imaging domains. © 2011 Optical Society of America
OCIS codes: 100.2000, 110.4280, 100.4995.

Extraction of an object over a background is a common
task in imaging. In the absence of noise, the object is per-
fectly contrasted from the background and the optimal
observation scale, the one that allows the most accurate
estimate of the surface of the object, for instance, is the
observation scale that shows the entire object at the lar-
gest magnitude. In the presence of noise, the frontier be-
tween object and background is perturbated. Common
sense foresees that there exists an optimal intermediate
observation scale that should be neither too large nor too
small, so that both regions (background and object) are
defined with sufficient resolution. In this work, we pro-
pose another interesting point of view where the spatial
details or shape of the object do not have to be specified.
We demonstrate that it is possible to calculate an optimal
observation scale when the final information task moti-
vating the image acquisition is used as prior knowledge at
the early acquisition stage. We quantitatively address this
novel and practical problem of the optimal observation
scale in noisy imaging conditions [1] successively with
the Shannon information [2] for an information transmis-
sion task, and with the Fisher information [2] and the
Rissanen stochastic complexity [3,4] for estimation tasks.
Shannon information is a statistical measure useful for

image processing tasks such as image quality assessment
[5], segmentation [6], or detection [7] in noisy images. We
propose to describe the transmission of Shannon infor-
mation through an imaging system with the statistical
information theory where a communication channel con-
sists of a source (the observed scene here) delivering a
message (an image here) to a receiver via a channel cor-
rupted with noise (the noisy imaging system here). The
informational capacity of a communication channel [2] is
defined as C ¼ maxPrfSgIðS;Y Þ, where S is the input of
the channel and Y is the output. IðS;YÞ is the input–
output mutual information IðS;YÞ ¼ HðY Þ −HðY jSÞwith
Hð·Þ the Shannon entropy [2]. The informational capacity
C is the upper bound on the amount of Shannon informa-
tion that can be transmitted through the channel. The
noise being imposed, the capacity is obtained by adjust-

ing the only free parameter, the coding of input, S, via its
probability distribution, PrfSg. Modeling communication
channels and calculating their informational capacity is
rather classically useful in telecommunication contexts
where unidimensional signals are to be transmitted.
Here, Sðu; vÞ and Y ðu; vÞ are images, with ðu; vÞ spatial
coordinates where all the physics of a noisy imaging sys-
tem is incorporated up to any level of required modeling
realism in the relation between Y ðu; vÞ and Sðu; vÞ defin-
ing the channel. We model the simple situation of a uni-
form object alone on a uniform background with Sðu; vÞ,
a binary image. Our scene therefore consists of an object
defined with a uniform gray level, I1, and a background
also uniform, I0. The probability density associated with
Sðu; vÞ is PrfSgðsÞ ¼ p1δðs − I1Þ þ p0δðs − I0Þ, where
p1 ¼ 1 − p0 is the fraction of pixels at I1; that is to say,
the relative surface of the object in image Sðu; vÞ. Thus,
adjusting parameter p1 is equivalent to modifying the
scale at which the object is observed in the image. As a
result, the value of p1 that reaches the capacity of a chan-
nel modeling an imaging system defines the optimal ob-
servation scale for which the object is, from a Shannon
point of view, best observed out of the background.
For illustration, we choose, for methodological reasons
but with no restriction on the physical noise coupling,
to model a simple imaging system where the output
images Y ðu; vÞ, at the sensor level or after image
processing, are binary: Y ðu; vÞ ∈ f0; 1g. The mutual
information IðS;Y Þ can be calculated from entro-
pies HðYÞ ¼ h½p11p1 þ ð1 − p00Þð1 − p1Þ� þ h½ð1 − p11Þp1þ
p00ð1 − p1Þ� with function hðuÞ ¼ −u log2ðuÞ, and
HðY jSÞ ¼ ð1 − p1Þ½hðp00Þ þ hð1 − p00Þ� þ p1½hðp11Þ þ hð1−
p11Þ�, where pij ¼ PrfY ¼ ijS ¼ Ijg. The derivative of
IðS;Y Þ with the observation scale p1 can then be calcu-
lated and it leads to the optimal observation scale p�1,
which maximizes IðS;YÞ and reaches the informational
capacity C of the binary channel modeling the imaging
system. From this, the question of the optimal observa-
tion scale of an object over a background finds a closed-
form analytical solution,
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p�1 ¼
ap00 − 1

aðp00 þ p11 − 1Þ ; ð1Þ

with

a ¼ 1þ exp

�
lnð2Þ

P
i¼1
i¼0ð−1ÞiðhðpiiÞ þ hð1 − piiÞÞ

p00 þ p11 − 1

�
: ð2Þ

When the object and the background of the imaged
scene present the same noise, i.e., when p00 ¼ p11, one
has p�1 ¼ 1=2, according to Eq. (1). The optimal observa-
tion scale is obtained when the background and the ob-
ject are occupying the same surface. In this situation, the
common sense mentioned at the beginning of this Letter
operates. Such a situation occurs in practice when the
signal–noise coupling is additive, for instance, with ther-
mal noise in sensors. Common sense is failing at p�1 ≠ 1=2,
when p00 ≠ p11. In such cases, the optimal observation
scale quantified by Eq. (1) indicates that the less noisy
region (object or background) is to be observed so as
to occupy a larger relative surface. Such cases are en-
countered with nonadditive noises such as speckle noise
in coherent imaging, which is commonly [1] modeled as a
multiplicative noise. Calculation of the optimal observa-
tion scale in such practical contexts is directly available
from the framework presented here by specifying the
physical signal–noise coupling. The result can also easily
be extended to multiple gray-level images or to multiple
objects, following the same methodology [2].
Information extraction often starts with the estimation

of various parameters. With noisy imaging systems, infor-
mation lies in the statistical properties of the images [1],
with parameters of interest that are typically the average
flux of photons or the standard deviation of this flux. In
such an estimation context, an index to quantify the in-
formation contained in a noisy measurement about the
value of a parameter attached to a given signal is the
Fisher information. Via the Cramér–Rao inequality, the
Fisher information fixes the efficiency of any unbiased
estimator: the lower bound of the variance of such esti-
mators is the reciprocal of the Fisher information. We
consider an imaging system model similar to the one in
the discussion of Shannon information, above, with a
physical “binary” scene, Sðu; vÞ, consisting of a homoge-
neous object occupying N1 pixels in Sðu; vÞ placed on a
homogeneous background occupying N0 pixels in
Sðu; vÞ. The sensor of the imaging system has N ¼ N1 þ
N0 pixels and it acquires image Y ðu; vÞ, a noisy version of
the observed scene Sðu; vÞ. With this fixed resolution N
of the imaging sensor, an observation scale thus appears
for the object that can be defined as p1 ¼ N1

N . Measure-
ments are then performed on the acquired image Yðu; vÞ
in order to estimate a parameter. With no loss of general-
ity, let us assume we are interested in estimating from a
single image, Y ðu; vÞ, the average flux of photon Ii with
i ∈ f0; 1g in each of the two regions (background and
object respectively stand for indices 0 and 1), constitut-
ing Sðu; vÞ. The minimum variance of any unbiased esti-
mator of Ii is 1

NiJY ðIiÞ with the Fisher information JY ðIiÞ
contained in Yðu; vÞ about Ii expressible as [2]

JY ðIiÞ ¼
Z þ∞

−∞

1
pðyjs ¼ IiÞ

�
∂

∂Ii
pðyjs ¼ IiÞ

�
2
dy; ð3Þ

where pðyjs ¼ IiÞ is the probability density function of
Y ðu; vÞ in the area corresponding to region i in the ob-
served scene. The minimum of the sum of the variances
of estimations of I1 and I0 is therefore given by

varmin ¼ argmin
fN1g

1
N1JY ðI1Þ

þ 1
ðN − N1ÞJY ðI0Þ

; ð4Þ

where we clearly see that the tradeoff on N1 is defining

an optimal observation scale p�1 ¼ N�
1

N . The derivative of
varmin with N1 can be calculated, and the question of
the optimal observation scale of an object over a back-
ground in a general measurement context finds a closed-
form analytical solution with

p�1 ¼
1

1þ
ffiffiffiffiffiffiffiffiffiffi
JY ðI1Þ
JY ðI0Þ

q : ð5Þ

According to Eq. (5) and similarly to what was found with
the Shannon information, one departs from the trivial
commonsense optimal scale p�1 ≠ 1=2 when the object
and the background of the imaged scene do not present
the same noise, i.e., here, when Fisher informations
JY ðI1Þ ≠ JY ðI0Þ.

When first-order statistical properties of noisy images
are not fully determined by their first moments, it is
sometimes useful to make an estimate of the whole prob-
ability density. For probability density estimation from
observed data, a very common approach proceeds
through the construction of an empirical histogram with
equal-width bins. The number of bins chosen for the his-
togram is very important to the quality of the estimation:
for a given number of data points, too few bins lead to an
estimated histogram with poor resolution, while too
many bins lead to a very irregular estimate with strong
fluctuations in the counts. An effective method for deter-
mining an optimal number of bins based on general infor-
mation theoretic notions is the principle of Rissanen
minimum stochastic complexity. This principle has
recently been applied to images in [4], and, as a rule,
it amounts to choosing for the data, among a class of pos-
sible models, the model allowing the shortest description
or coding of these data. We again consider the same ima-
ging system as in the discussions of Shannon and Fisher
information, above, where we now want to optimally es-
timate, in the sense of Rissanen stochastic complexity,
the empirical histogram of each of the two regions (ob-
ject and background) respectively observed with N1 and
N0 ¼ N − N1 pixels in the acquired image Yðu; vÞ with N
pixels. The description length associated with the empiri-
cal histograms of each region i ¼ 0 or 1 expresses [4]

LðYiÞ ¼ log½ANi;Ki
� þ Ni½Hðf̂ kiÞ − logðKiÞ�; ð6Þ

where ANi;Ki
¼ ðNiþKi−1Þ!

Ni!ðKi−1Þ! and Ki is the number of bins in
the histogram. The standard Shannon entropy function
Hð·Þ in Eq. (6) is applied to the empirical probabilities
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f̂ ki ¼ Nki=Ni, with Nki the number of pixels in bin ki.
For a given acquired image Y ðu; vÞ (see Fig. 1 for illus-
tration), the Rissanen complexity principle applied to
each region separately selects ff̂ �ki ; ki ¼ 1;…K�

i jNig ¼
minfKigfLðYiÞjNig, with a criterion for the observation

scale that can be taken at p�1 ¼ N�
1

N when the two regions,
i.e., the whole image, can be quantized with the same al-
gorithmic complexity, i.e., the same number of bins
K�

1 ¼ K�
0. Other optimization criteria based on the Rissa-

nen stochastic complexity could be proposed. One could
for instance think of a multivariate optimization on
fK1; K0; N1g with the constraint of fixed N . As visible
in Fig. 1, from our criterion proposal K�

1 ¼ K�
0, the obser-

vation scale obtained allocates a larger area to the region
corrupted with the noise with the heavier distribution.
In this work, we have demonstrated how informational

measures could be used to optimize the experimental

choice of the observation scale in noisy imaging systems.
For a first occurrence of this approach, examples were
limited to the determination of optimal observation
scales based on informational measures adapted to gen-
eral information transmission or statistical estimation in
a simple scene composed of an object and a background.
In this “binary” context, we have established the exis-
tence of analytical expressions for the optimal observa-
tion scale distinct for each informational criterion. This
shows the interest of informational criterion adapted to
specific image processing tasks. Other informational
contexts, including detection, segmentation, or pattern
recognition as in [6] could be analyzed in relation to
the experimental determination of an optimal observa-
tion scale following our approach. More sophisticated
scenes including multiple objects could also receive
the same treatment (it just requires increasing the num-
ber of classes to be detected or estimated). With such
images, it is likely that optimal observation scales would
not be accessible under a closed-form analytical expres-
sion. It could nevertheless be calculated numerically. The
present results are therefore applicable with no restric-
tion to all imaging contexts where physical modeling of
the image–noise coupling is accessible [1], and they ex-
tend the scope of joint informational strategies (including
for instance compressive sensing [8] and source–channel
coding [2]) where two stages of the informational chain
are jointly performed.
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Fig. 1. Optimal number of binsK�
0 andK�

1, giving the minimum
description length associated with the empirical histograms of
background LðY 0Þ and object LðY 1Þ of Eq. (6) as a function of
the observation scale p1 ¼ N1=N of the object. An optimal scale
p�1 is at K�

1 ¼ K�
0. Object is distributed following a centered

Gaussian probability density with standard deviation σ1 ¼ 1
andN ¼ 1024. Various backgrounds, identical to the object (cir-
cles), distributed following a centered Laplacian (stars), or ex-
ponential (diamonds) probability densities [1], with σ0 ¼ 1 in all
cases. Corresponding optimal observation scales are located
around p�1 ¼ 0:5 (circles), p�1 ¼ 0:7 (stars), p�1 ¼ 0:6 (diamonds).
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