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a b s t r a c t

We explore the collective response of an uncoupled parallel array of saturating dynamical
subsystems to a noisy periodic or random signal. Numerical simulation results show that
a parallel array of nonlinear saturating subsystems can enhance the signal transmission
via tuning the internal noise intensity and increasing the array size. The input–output
gain larger than unity, described by the signal-to-noise ratio for a periodic signal or
the correlation coefficient for a random signal, is observed in a form of array stochastic
resonance. This stochastic resonance phenomenon can be useful for practical information-
processing systems.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

After the tide of observing stochastic resonance (SR) phenomena in various systemswith different forms [1–4], an ensuing
issue regarding the SR phenomenon is how to use the positive role of noise to improve the performance of nonlinear systems
[5–9]. Motivated by this notion, many researchers devoted their studies to finding whether the output signal-to-noise ratio
(SNR) can be larger than the input SNR or not, especially for the condition of themixture of a sinusoidal signal plus Gaussian
white noise processed by a nonlinear system [5–9].
By looking outside the conditions of the proof that SNR gains cannot occur in the linear response limit [4–9], the fact

of the SNR gain exceeding unity was successively confirmed in a bistable system driven by suprathreshold signals [9], a
power-law sensor [10] and a static [11,12] or dynamical [13] threshold-free nonlinearity with saturation. More recently,
the interesting property of SNR gain larger than unity, is reliably observed in parallel arrays of nondynamical [10–12] or
dynamical [14,15] nonlinear subsystems assisted by the independent internal noise. This regularmodel of uncoupled parallel
arrays of nonlinear subsystems elicits many important mechanisms of non-conventional SR effects, e.g. SR without tuning
[16], suprathreshold SR [17] and array SR [10]. In such an ensemble, all subsystems have a common input, and their outputs
are summed as the array response [10–12,15–17]. When the input is a given noisy sinusoidal signal, a form of SR in arrays,
named array SR here, first demonstrates SNR gains above unity through the action of the independent internal noise injected
into arrays [10]. This form of SR is also reported for uncoupled parallel arrays of sensors with saturation [12] and bistable
dynamical subsystems [15], and achieves a SNR gain larger than unity by exploiting the constructive role of array noise.
As the notion of SNR gain exceeding unity is gradually acknowledged, another debate iswhether SNR gains in a SR context

are particularly meaningful or not [4,18]. Some heuristic discussions are given in Ref. [4], and may inspire the development
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of related topics in SR. This paper, outside of the debate against SNR gain, will demonstrate the possibility of SNR gains in a
parallel array of dynamical saturating subsystems.
Meanwhile, in practical information-processing systems, a summing network can be driven by an aperiodic (or a random)

signal in the context of aperiodic SR [16,17,19–25]. Naturally, the information-theoretic measure is employed for evaluating
the collective dynamics of arrays, such as the average mutual information [17,19,20] and the correlation coefficient [16,
21–25]. In parallel arrays of nondynamical threshold elements or two-state ion channels, the internal noise results in the
appearance of SR-type behavior in the plot of the correlation coefficient versus the external noise level [23]. Both roles of
external noise and internal noise are recognized in improving information transfer [23]. For a net periodic signal applied
to a parallel array of autoregressive models, the correlation coefficient of the input signal and the summed output is larger
than that of the input net signal and the input plus Gaussian white noise [24]. Similarly, the ratio of the time-averaged
cross covariance (i.e. the correlation coefficient) is used to quantify the benefit of the addition of noise in a saturating sensor
device [25].
A dynamical saturating systemwas proposed and evaluated in detail in Ref. [13] in the context of SR and signal processing,

which is an important dynamic analog of the static saturating nonlinearity [10–12]. Assembling the dynamical saturating
subsystem into arrays, we will show, in the present paper, that the collective response of a parallel array to a given noisy
signal can be enhanced by the internal array noise. For a noisy sinusoidal signal, the SNR gain is employed and numerically
analyzed. The correlation coefficient gain is introduced for describing a random signal transmission. The regions of the SNR
gain and the correlation coefficient gain exceeding unity, testify the efficiency of the parallel array assembled by this kind of
dynamical saturating subsystem. This also extends the array SR phenomenon to the dynamical system with saturation for
both periodic or aperiodic signals. The paper is organized as follows: Section 2 introduces the model array and in Section 3
the calculation of the transmitted information of the array SR effect is presented. Finally, conclusions are drawn in Section 4.

2. Model

A parallel array of N dynamical saturating subsystems is considered. Each subsystem is given by

τa
dxi(t)
dt
= −xi(t)+

[
1−

x2i (t)
X2b

]
[I(t)+ ηi(t)], (1)

with real system parameters τa and Xb having units of time and amplitude, respectively [13]. The common noisy input
I(t) = s(t) + ξ(t) is the mixture of signal s(t) and zero-mean Gaussian noise ξ(t) with 〈ξ(t)ξ(0)〉 = 2Dξ δ(t). We
shall consider an information-carrying signal s(t) with periodic and aperiodic types. The internal noise ηi(t) is zero-mean
Gaussian white noise, independent of I(t), with autocorrelation 〈ηi(t)ηi(0)〉 = 2Dηδ(t) and noise intensity Dη . The array
response y(t) is the average of outputs xi(t) as

y(t) =
1
N

N∑
i=1

xi(t). (2)

Each subsystem of Eq. (1) is a saturating dynamics: When |x(t)| � Xb, then Eq. (1) reduces to the linear dynamics
τadx(t)/dt ≈ −x(t) + I(t) + ηi(t), by which x(t) tends to follow the noisy input within the lag imposed by the time
constant τa; When x(t) approaches±Xb, then the term x(t)2/X2b is close to one, the factor [1− x(t)

2/X2b ] is close to zero and
tends to reduce and turn off the action of the noisy input. Strictly, when x(t) reaches ±Xb, the action of the noisy input is
turned off, and x(t) starts to relax to zero. By this mechanism, the dynamics of each subsystem in Eq. (1), when initialized at
x(0) in the open interval ]−Xb, Xb[, can never exceed±Xb and the time evolution of x(t) remains confined to [−Xb, Xb]. The
notation ] · · · [ is defined as an open interval [26]. The dynamics of Eq. (1) then is linear at small x(t) and saturates when
x(t) approaches±Xb.
The performance of an isolated dynamical saturating system was analyzed in detail in Ref. [13]. Here, we mainly focus

on the collective dynamics of a parallel array of nonlinear saturating subsystems. In this realization of Gaussian white noise
ξ(t) or ηi(t), we have 2D = σ 2∆t . Here, we represent σξ as the RMS amplitude of input noise ξ(t), and ση as the RMS
amplitude of array noise ηi(t) [13]. In this letter, we numerically integrate Eq. (1) using Euler-Maruyama discretization with
a sampling time step∆t � τa [15].

3. Measures and numerical results

3.1. Periodic signal and SNR gain

When s(t) = A0+A sin(2π t/Ts) is a deterministic sinusoidwith period Ts, biasA0 and amplitudeA, the array response y(t)
of Eq. (2) generally is a cyclostationary random signal. Thus, we evaluate the performance of the system by the output SNR,
defined as the power contained in the output spectral line at fundamental frequency 1/Ts divided by the power contained
in the noise background in a frequency bin∆B around 1/Ts, i.e.

Rout =
|〈E[y(t)] exp(−ı2π t/Ts)〉|2

〈var[y(t)]〉H(1/Ts)∆B
. (3)
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Fig. 1. Plots of SNR gain Rout/Rin as a function of the RMS amplitudeση/Xb of internal noiseηi(t) for a given noisy sinusoidal signal s(t) = A0+A sin(2π t/Ts)
plus external noise ξ(t). The SNR gain curves, from the bottom up, correspond to N = 1, 3, 5, 10, 30, 120. The input SNR Rin = 250, with keeping A = σξ
and Ts = 100τa . (a) A0 = 0, A = Xb; (b) A0 = A = Xb; (c) A0 = 0, A = 10Xb; (d) A0 = A = 10Xb .

Here, E[y(t)] is the expectation of y(t) and 〈· · ·〉 = 1
Ts

∫ Ts
0 · · · dt [7]. At fixed times t and τ , the nonstationary variance of

y(t) is var[y(t)] = E[y2(t)] − E2[y(t)], the stationary autocovariance function of y(t) is Cyy(τ ) = 〈var[y(t)]〉 h(τ ), and the
correlation function h(τ ) has a Fourier transform F [h(τ )] = H(ν) [7,13]. In the same way, the mixture of s(t) + ξ(t) has
an input SNR as

Rin =
A2/4
2Dξ∆B

=
A2/4

σ 2ξ ∆t∆B
, (4)

and the SNR gain is Rout/Rin. The numericalmethod for calculating SNRwas introduced in Ref. [13], in detail. In the numerical
simulations, we keep the frequency bin∆B = 1/Ts, the sampling time∆t = 10−3Ts and∆t∆B = 10−3.
Figs. 1 and 2 show the SNR gain as a function of the RMS amplitude of internal noise ηi(t) for a fixed noisy sinusoidal

signal s(t) + ξ(t). We choose the signal amplitude A which equals the RMS amplitude σξ of external noise ξ(t), and the
input SNR of Eq. (4) is then 250 (about 24 dB). Upon increasing the array size N , we see that:
(i) The internal noise assists the signal transmission, and its positive role is much more manifest at a large array size of

N;
(ii) A moderate saturating nonlinearity of A = Xb, as shown in Fig. 1(a), is superior to a strong nonlinear parameter of

A = 10Xb, as plotted in Fig. 1(c), in the context of the SNR gain;
(iii) The array response is more efficient for the input signal without bias A0 = 0, as illustrated in Fig. 1(a) and (c), than

the input signal with bias A0 = A (see Fig. 1(b) and (d)). It is also noted that an isolated saturating dynamical system (N = 1),
as shown in Fig. 1(d), can produce the conventional SR effect, even slightly [13];
(iv) The regions of the SNR gain larger than unity are obvious for the input sinusoidal plus Gaussian white noise, as

indicated in Fig. 1(a) and (c). As the RMS amplitude ση/Xb increases, the constructive role of internal noise in arrays (N > 1)
presents a resonance-type curve in SNR gain, as seen in Fig. 1. Moreover, for a fixed value of ση/Xb, the SNR gain increases
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Fig. 2. Plots of SNR gain Rout/Rin as a function of the RMS amplitudeση/Xb of internal noiseηi(t) for a given noisy sinusoidal signal s(t) = A0+A sin(2π t/Ts)
plus external noise ξ(t). The SNR gain curves, from the bottom up, correspond to N = 1, 2, 3, 5, 10, 60. The input SNR is Rin = 250, with A = σξ and
Ts = τa . (a) A0 = 0, A = Xb; (b) A0 = A = Xb; (c) A0 = 0, A = 10Xb; (d) A0 = A = 10Xb .

upon the increase of the array size N . Additionally, at the zero value of ση/Xb, the SNR gain yielded by an isolated saturating
dynamical system (N = 1) is larger than unity, and remains larger than unity even as ση/Xb increases to certain limits. This
limit is the corresponding value of ση/Xb at which a parallel line of Rout/Rin ≡ 1 intersects the SNR gain curve. Thus, the
powerful signal processing ability of an isolated saturating dynamical system (N = 1) is inferred [13];
(v) The same results are validated for the signal frequency at Ts = 100τa (as shown in Fig. 1) and Ts = τa (see Fig. 2). For

the input unbiased sinusoidal signal, the SNR gain obtained from an array with a rather dynamical characteristic (Ts = τa),
as indicated in Fig. 2(a), is better than that given by an array with relative static saturating elements (Ts = 100τa), as shown
in Fig. 1(a). Amuch higher SNR gain of 1.6, at certain non-zero regions of the array noise ηi(t), is observed in the condition of
a sinusoidal signal plus Gaussian white noise, as shown in Fig. 2(a) and (c). This observation is not reported in the literature
in the context of SR effects.

3.2. Random signal and correlation coefficient gain

When the input signal s(t) in Eq. (1) is no longer periodic, then the SNR gain is not an appropriate meaningful
input–output measure of similarity. We now consider s(t) is a random information-carrying signal taken as Gaussian, zero-
mean valued, and exponentially time correlated, i.e., 〈s(t)s(0)〉 = (Ds/τs) exp(−|t|/τs). This is equivalent to the Langevin
equation that s(t) obeys

ds(t)
dt
= −

s(t)
τs
+
ε(t)
τs
, (5)

where ε(t) denotes a zero-mean Gaussian random noise with 〈ε(t)ε(0)〉 = 2Dsδ(t). The average signal variance of s(t) is
σ 2s = Ds/τs.
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Fig. 3. Plots of correlation coefficient gain ρs,y/ρs,s+ξ as a function of the RMS amplitude ση/Xb of internal noise for a random signal s(t) with
exponentially time correlated function 〈s(t)s(0)〉 = (Ds/τs) exp(−|t|/τs). The correlation coefficient gain curves, from the bottom up, correspond to
N = 1, 5, 10, 30, 120. The correlation coefficient ρs,s+ξ = 1/

√
2 with σs = σξ . The total transmission time length is 200τa , and the numerical results are

averaged by 100 times of simulations of Eq. (1). (a) σs = Xb , τs = 10τa; (b) σs = 10Xb , τs = 10τa; (c) σs = Xb , τs = τa; (d) σs = 10Xb , τs = τa .

We characterize the global information transmission through the array by the correlation coefficient of the input s(t)
and the array response y(t) of Eq. (2), viz.

ρs,y =
E[s(t)y(t)]

σs ·
√
E[(y(t)− E[y(t)])2]

, (6)

where E[·] indicates the expected value of a random variable. We also consider the correlation coefficient of the net input
signal s(t) and the initial given noisy input s(t)+ ξ(t) as

ρs,s+ξ =
σs√

σ 2s + σ
2
ξ

. (7)

Thus, we define the correlation coefficient gain as

ρs,y

ρs,s+ξ
=
E[s(t)y(t)]

σ 2s
·

√
σ 2s + σ

2
ξ√

E[(y(t)− E[y(t)])2]
, (8)

for evaluating the positive role of internal noise in the parallel array of saturating dynamical subsystems of Eq. (1).
Fig. 3 showsnumerical results of the correlation coefficient gainρs,y/ρs,s+ξ versus the internal noise RMS amplitudeση for

the transmission of a given random signal s(t) plus Gaussian noise ξ(t). In numerical experiments, the total transmission
time length of s(t) is 200τa, and the numerical results of Fig. 3 are averaged by 100 times of simulations of Eq. (1). We
find that:
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Fig. 4. Plots of correlation coefficient ρs,y as a function of the RMS amplitude σξ /Xb of external noise for a random signal s(t) in the absence of internal
noise (ση = 0). Here, s(t) is with σs = 10Xb , and the mean value of s(t) is zero (square) or 10Xb (triangle), as indicated in the legends. The correlation
time of s(t) is (a) τs = 10τa and (b) τs = τa . For better visualization of the maximum, part of the resonance-type curve of the weak SR effect (triangle), as
illustrated in Fig. 4(b), is rescaled in Fig. 4(c). Other parameters are the same as in Fig. 3.

(i) For an isolated dynamical saturating system (N = 1) with zero level of internal noise (ση = 0), the correlation
coefficient gain of ρs,y/ρs,s+ξ larger than unity is observed. Therefore, the powerful information processing ability of the
dynamical saturating system is also evident for transmitting a noisy random signal, as shown in Fig. 3;
(ii) For an isolated dynamical saturating system (N = 1), some numerical simulations are also performed for transmitting

a random signal with nonzero mean values and different correlation times, as displayed in Fig. 4. In the absence of internal
noise η(t), the conventional aperiodic SR effect is observed in an appropriate condition of Fig. 4(b). We find that ρs,y behaves
with a slight resonance-type curve for s(t)with amean value of 10Xb and a correlation time τs = τa, and the resonance region
of σξ/Xb is close to 0.8, as shown in Fig. 4(c). Just like the conventional SR occurring in an isolated dynamical saturating
system [13], the nonzero mean value (or the biased value) of s(t) is a key factor, and the dynamical saturating system is
mainly operated in the nonlinear range with saturation. We also note that a static nonlinear saturating system can present
the resonance-type effect for an informative signal with nonzero mean and uniform distributions [25];
(iii) Upon increasing the array size N > 1, the positive role of the internal noise ηi(t) emerges gradually. The correlation

coefficient gain ρs,y/ρs,s+ξ is larger than unity in certain regimes of internal noise density, as indicated in Fig. 3. This
demonstrates that the array does maximize the global information transmission via array SR for transmitting a random
signal through arrays of dynamical saturating subsystems;
(iv) The information efficiency has a slight contrast between the strong saturating nonlinearity of σs = 10Xb, as shown

in Fig. 3(b) and (d), and the moderate saturating nonlinearity of σs = Xb (see Fig. 3(a) and (c));
(v) The random signal with large correlation time τs = 10τa, as shown in Fig. 3(a) and (b), yields an efficient transmission,

as well as the random signal with correlation time τs = τa (see Fig. 3(c) and (d)). The decrease in the correlation time τs
seems to have some suppressive effects on the correlation coefficient gain of ρs,y/ρs,s+ξ .
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4. Conclusions

In this paper, we studied the collective dynamics of a parallel array of saturating dynamical systems in the context of
array SR. The internal array noise of a certain range plays a beneficial role in transmitting a periodic signal or a random signal
buried in fixed Gaussian white noise. We numerically characterize arrays of saturating dynamical subsystems by different
measures of the SNR gain and the correlation coefficient gain for different signal types in some considered situations. The
numerical results demonstrate where the role of the internal noise in arrays is beneficial to the signal transmission, and
the more efficient regions, where the gain of SNR or correlation coefficient exceeds unity, exist at certain nonzero levels of
internal array noise. The physical mechanism behind array SR can be viewed in terms of increased diversity induced by the
independent noise in nonlinear arrays: when an uncoupled array of identical nonlinear systems is subjected to a common
input signal-noise mixture, each nonlinear system produces a distinct output due to its independent internal noise. When
all these distinct outputs are collected over the array to produce a global array response, it turns out that an improved
performance can be obtained with the array of nonlinearities compared to the situation of a single nonlinearity.
The present results extend the array SR to the parallel array of dynamical systems with saturation, and are important

for the practical applications of SR, since the dynamical system with saturation might be a potential useful information-
processing system, and the mechanism of array SR can be a problem-solving technique of arrays operated for nonlinear
signal processing tasks.

Acknowledgments

This work is sponsored by NSFC (No. 60602040) and Taishan Scholar CPSP of China. Funding from the Australian Research
Council (ARC) is gratefully acknowledged.

References

[1] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance, Rev. Modern Phys. 70 (1998) 233–287.
[2] B. Lindner, J. García-Ojalvo, A. Neiman, L. Schimansky-Geier, Effects of noise in excitable systems, Phys. Rep. 392 (2004) 321–424.
[3] F. Sagués, J.M. Sancho, J. García-Ojalvo, Spatiotemporal order out of noise, Rev. Modern Phys. 79 (2007) 829–882.
[4] M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal
Quantization, Cambridge University Press, 2008.

[5] M.I. Dykman, P.V.E. McClintock, What stochastic resonance can do? Nature 391 (1998) 344.
[6] K. Loerincz, Z. Gingl, L.B. Kiss, A stochastic resonator is able to greatly improve signal-to-noise ratio, Phys. Lett. A 224 (1996) 63–67.
[7] F. Chapeau-Blondeau, Input–output gains for signal in noise in stochastic resonance, Phys. Lett. A 232 (1997) 41–48.
[8] J. Casado-Pascual, J. Gómez-Ordóñez, M. Morillo, Two-state theory of nonlinear stochastic resonance, Phys. Rev. Lett. 91 (2003) 210601.
[9] P. Hänggi, M.E. Inchiosa, D. Fogliatti, A.R. Bulsara, Nonlinear stochastic resonance: The saga of anomalous output–input gain, Phys. Rev. E 62 (2000)
6155–6163.

[10] F. Chapeau-Blondeau, D. Rousseau, Enhancement by noise in parallel arrays of sensors with power-law characteristics, Phys. Rev. E 70 (2004)
060101(R).

[11] F. Chapeau-Blondeau, D. Rousseau, Nonlinear SNR amplification of harmonic signal in noise, Electron. Lett. 41 (2005) 618–619.
[12] F. Chapeau-Blondeau, D. Rousseau, Noise-aided SNR amplification by parallel arrays of sensors with saturation, Phys. Lett. A 351 (2006) 231–237.
[13] F. Chapeau-Blondeau, F. Duan, D. Abbott, Signal-to-noise ratio of a dynamical saturating system: Switching from stochastic resonator to signal

processor, Physica A 387 (2008) 2394–2402.
[14] J.M. Casado, J. Gómez-Ordóñez, M. Morillo, Stochastic resonance of collective variables in finite sets of interacting identical subsystems, Phys. Rev. E

73 (2006) 011109.
[15] F. Duan, F. Chapeau-Blondeau, D. Abbott, Noise-enhanced SNR gain in parallel array of bistable oscillators, Electron. Lett. 42 (2006) 1008–1009.
[16] J.J. Collins, C.C. Chow, T.T. Imhoff, Stochastic resonance without tuning, Nature 376 (1995) 236–238.
[17] N.G. Stocks, Suprathreshold stochastic resonance in multilevel threshold systems, Phys. Rev. Lett. 84 (2000) 2310–2313.
[18] M. DeWeese, W. Bialek, Information flow in sensory neurons, Nuovo Cimento D 17 (1995) 1826–9893.
[19] N.G. Stocks, Information transmission in parallel threshold arrays: Suprathreshold stochastic resonance, Phys. Rev. E 63 (2001) 041114.
[20] N.G. Stocks, R. Mannella, Generic noise-enhanced coding in neuronal arrays, Phys. Rev. E 64 (2001) 030902(R).
[21] D.R. Chialvo, A. Longtin, J. Müller-Gerking, Stochastic resonance in models of neuronal ensembles, Phys. Rev. E 55 (1997) 1798–1808.
[22] A. Neiman, L. Schimansky-Geier, F. Moss, Linear response theory applied to stochastic resonance in models of ensembles of oscillators, Phys. Rev. E

56 (1997) R9–R12.
[23] P.C. Gailey, A. Neiman, J.J. Collins, F. Moss, Stochastic resonance in ensembles of nondynamical elements: The role of internal noise, Phys. Rev. Lett. 79

(1997) 4701–4704.
[24] Y. Wang, L. Wu, Noise-improved signal correlation in an array of autoregressive models of order one, Fluct. Noise Lett. 7 (2007) L449–L459.
[25] D. Rousseau, J. Rojas Varela, F. Chapeau-Blondeau, Stochastic resonance for nonlinear sensors with saturation, Phys. Rev. E 67 (2003) 021102.
[26] L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis, Springer, 2001.


