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Abstract

Stochastic resonance is a phenomenon whereby the trans-
mission of a signal by certain nonlinear systems can be im-
proved by addition of noise. We propose a brief overview of
this effect, together with an extension based on information-
theoretic concepts. We analyze various conditions of non-
linear transmission where the input–output Shannon mutual
information, the input–output Kullback divergence, or the
input–output Fisher information can receive improvement
from noise addition, demonstrating different forms of noise-
enhanced transmission.
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1 Stochastic resonance phenomenon

When a linear system couples linearly a signal and a noise,
generally the noise acts as a nuisance spoiling the signal.
By contrast, when certain types of nonlinear systems couple
nonlinearly a signal and a noise, there may exist coopera-
tive conditions where the noise benefits to the signal, up to
a point where adding noise may improve the transmission of
the signal by the nonlinear system. This (counterintuitive)
phenomenon, where the efficacy of a nonlinear system in
transmitting a signal may be improved by noise, is known
under the name of stochastic resonance [1, 2]. Since its in-
troduction some twenty years ago [3], stochastic resonance
has been reported in nonlinear systems pertaining to a broad
variety of domains, including electronics [4, 5, 6], mechanics
[7], optics [8, 9], neurobiology [10, 11, 12].

Very often, stochastic resonance can be cast under the
general scheme that follows. A “coherent” or information-
carrying signal �����	� added to a noise 
����	� are input onto a
nonlinear transmission system which, in response, produces
the output signal �����	� . In general, because of the influence
of the random input 
����	� , the output �����	� is a random sig-
nal, but which also bears some dependence on the coherent
input �����	� . A measure to quantify this dependence is then
specified, according to the nature of the signals and of the
transmission system. Stochastic resonance then consists in

the possibility of improving this measure of dependence of
�����	� on �����	� by means of an increase in the level of the noise

����	� .

Most of the time, stochastic resonance has been exhibited
for a deterministic signal of known form �����	� , essentially a
periodic signal, whose transmission by various nonlinear sys-
tems was shown improvable via noise addition [13, 1]. In the
case of a periodic signal, the measure of the transmission ef-
ficacy receiving improvement from the noise, is a signal-to-
noise ratio evaluated in the frequency domain at the output of
the transmission system, as the ratio of the power contained
at the frequency of the periodic signal divided by the power
contributed by the noise. Certain nonlinear systems can then
take incoherent energy from the noise and feed it into coher-
ent energy at the frequency of the periodic signal, leading to
a possibility of increasing the signal-to-noise ratio at the out-
put by inputting noise via 
����	� into the system [14, 13]. This
way of measuring a noise-improved transmission is possible
because the energy of the periodic signal has a well defined
frequency localization.

Stochastic resonance though, has recently been extended
to the transmission of aperiodic signals �����	� [15]. In this
case, correlation measures between the output �����	� and the
aperiodic coherent input �����	� have been proposed to quantify
the efficacy of the nonlinear transmission. Nonlinear systems
have then been exhibited where this input–output correlation
can be enhanced by increasing the noise 
����	� . This charac-
terization of stochastic resonance has been especially applied
with aperiodic deterministic signals �����	� of known form, to
establish a noise-enhanced transmission by certain nonlinear
systems (for instance, neuronal systems) [15].

Even more recently, stochastic resonance has been ex-
tended for the noise-improved transmission of random
information-carrying signals �����	� . In this case, correla-
tion measures can also be used for the transmission effi-
cacy, yet particularly appropriate measures are provided by
information-theoretic quantities [16, 17, 18]. Nonlinear sys-
tems have been exhibited where the mutual information be-
tween the output �����	� and the information-carrying input �����	�
can be increased via injection of noise into the system. Here
we shall add other types of information-theoretic measures
for the characterization of stochastic resonance in nonlin-
ear transmission. In addition to the mutual information, we



shall show that the Kullback divergence and the Fisher infor-
mation can provide meaningful measures for characterizing
forms of stochastic resonance. The application of the Kull-
back divergence is new to stochastic resonance. The first ap-
plications of the Fisher information to stochastic resonance
have appeared in [19] for signal transmission by neurons,
then in [20] via the related Cramér-Rao bound. Here, it will
be applied to a different nonlinear system, in some sense
conceptually simpler, and within the unified view of sev-
eral information-theoretic characterizations explicitly evalu-
ated for the same nonlinearity.

In the nonlinear context of stochastic resonance, it is not
always the case that a theoretical (analytical) demonstration
of the effect can be obtained, and many studies on stochas-
tic resonance have relied on numerical simulation or experi-
ment to establish the effect. By contrast here, we shall report
stochastic resonance with a nonlinear system simple enough
to lend itself to an exact theoretical treatment. In various
conditions of nonlinear signal transmission in the presence
of noise, we shall explicitly compute a Shannon mutual in-
formation � � ���	� � between �����	� and �����	� , a Kullback diver-
gence � � ���	� � between the probability laws of �����	� and �����	� ,
and a Fisher information � � ���	� � between �����	� and �����	� . We
shall exhibit conditions where all three information-theoretic
quantities can be improved via noise addition, revealing dif-
ferent forms of noise-enhanced signal transmission.

2 A nonlinear transmission system and its
information-theoretic characterization

In order to have demonstrations of the effect analytically
tractable with these information-theoretic measures, we con-
sider the simple situation that follows. The transmission is
described as �����	�����
	 �����	�
� 
����	������ with the step non-
linearity � ��������� if ����� and � ��������� otherwise, and
a threshold � . The signals �����	� , 
����	� and �����	� are observed
or sampled at discrete times ��� . We suppose that the signal �
at the sampling times ��� assumes, just as � , values restricted
to � or � , respectively with probabilities � �"! �#�$�&%'�)(+*
and � �"! �,�-�.%/�0��1(2* . The transmission system can then
be interpreted as a binary information channel. The input–
output Kullback divergence � � ���	� � [21] between the proba-
bility distributions of � and � is defined as

� � ���	� � �4357628:9 * � �"! �,��;+%=< >�?A@CB � �"! �D�E;+%� �"! �F��;+%HGJI (1)

It can be explicitly expressed as

� � ���	� � �K(2*H< >�?L@CB (2*M *NG � �O��1(2* �A< >�?A@CB �P�Q(2*�� M *RGJS (2)

with M *T�E� �"! �F�U�&%,�K(2*V(2*�* � �O��1(2* �W(2* 8 and(2*�*X�Y� �"! �F�U�[Z	�,�U�&%,�0��]\_^ ���`�a� � S (3)(2* 8 �Y� �"! �F�U�[Z	�,�E�.%,�0��]\_^ ����� S (4)

\_^ being the cumulative distribution function of the noise

����	� .

For illustration, Fig. 1 represents an evolution of � � ���	� �
from Eq. (2), as a function of the rms amplitude bc^ of the
noise 
 . Figure 1 shows a region where � � ���	� � decreases
as bN^ increases, meaning that adding noise may make the
random signals �����	� and �����	� more similar, up to an optimal
nonzero noise level where the input–output similarity is max-
imized.
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Figure 1: Input–output Kullback divergence � � ���	� � from
Eq. (2), as a function of the rms amplitude bc^ of the noise

 chosen zero-mean Gaussian, when (=*��d� I e and �f�g� I �(a), �h�0� I e (b), �h�0� I i (c).

If we further assume that both �����	� and 
����	� are white ran-
dom signals, the transmission system can then be interpreted
as a memoryless binary information channel. Its input–output
Shannon mutual information � � ���	� � [21] can be defined as� � ���	� � �Ej ��� �C�]j ���+Z � � S (5)

with the output entropyj ��� � �4357628:9 *Rk �l� �"! �m�E;+% � (6)

and the input–output conditional entropyj ���+Z � �n�o(2*p357628:9 *.k �l� �"! �F��;�Z	�,�0�&% �+�
�O��1(2* �f357628:9 *Rk �l� �"! �m�E;�Z	�,�-�.% � S (7)

where k ����� �U��D< >�? @ ����� . These entropies can be explicitly
evaluated asj ��� �n� k 	 (2*V(2*�* � �O��1(2* �W(2* 8 �.�k 	 (2* �O��Q(2*�* �+� �O�T�1(2* � �O��1(2* 8 �V� (8)

and j ���+Z � �n�q(2*�	 k � (2*�* �+� k �O��Q(2*�* �V�.��O�T�1(2* �"	 k � (2* 8 �=� k �O��1(2* 8 �V� S (9)



whence an explicit expression for the input–output mutual
information � � ���	� � of Eq. (5).

Again for illustration, Fig. 2 represents an evolution of� � ���	� � from Eq. (5), as a function of the rms amplitude bc^ of
the noise 
 . Figure 2 shows a region where � � ���	� � increases
as bN^ is raised, characterizing an effect of noise-assisted in-
formation transmission. The effect takes place when the sig-
nal �����	� by itself is too small to overcome the threshold; in
the absence of noise no information is transmitted, as ex-
pressed by a vanishing � � ���	� � at zero noise in Fig. 2. Ad-
dition of noise then brings assistance to the signal in over-
coming the threshold; input–output transmission of informa-
tion can thus occur, as expressed by the rise of � � ���	� � which
culminates at a maximum input–output transmission for an
optimal nonzero noise level.
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Figure 2: Input–output Shannon mutual information � � ���	� �
from Eq. (5), as a function of the rms amplitude bc^ of the
noise 
 chosen zero-mean Gaussian, when (=*�-� I � and �h�� I � (a), �h�0� I e (b), �h�0� I i (c).

We now move to a different hypothesis concerning the
information-carrying signal �����	� . We assume that the infor-
mation to be recovered from the observed output signal �����	� ,
is the value of some parameter characterizing the signal �����	�
buried in the noise 
����	� . For a simple illustration we assume
that �����	� reduces to a constant value � , and we seek to esti-
mate � from observations of the signal �����	�
�E�
	 �R� 
����	�&� ��� .
The Fisher information � � ���	� � [21] contained in �����	� about
� , which limits the performance of all unbiased estimators of
� from � , can be defined as� � ���	� �
� 357628:9 * �� �:! �m��;+% B �� � � �"! �F��;+% G @ I (10)

It can be explicitly evaluated under the form� � ���	� � ��B �M * � ��� M *AG B � M *� �/G @ (11)

where again M *�-� �"! �m�0�&% . We also have M *�-� �"! �&� 
F��.% , which here with � fixed gives M *K� � �"! 
 � �1� �&% ,

amouting to M *D� ��K\_^ ��� � � � . For the derivative we thus
have

� M *�� � �#����^ ����� � � , with ��^ the probability density
function of the noise 
����	� .

Fisher information � � ���	� � of Eq. (11) then results as

� � ���	� � � � @^ ���`� � �\_^ ���`� � �"	 ��]\_^ ���`� � �V� I (12)

Figure 3 represents an illustrative evolution of � � ���	� �
from Eq. (12), as a function of the rms amplitude bc^ of the
noise 
 . Figure 3 shows a region where � � ���	� � increases asbN^ is raised, characterizing a larger possible efficacy in the
estimation when noise is added, up to an optimal nonzero
noise level where the estimation efficacy is maximized.
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Figure 3: Input–output Fisher information � � ���	� � from
Eq. (12), as a function of the rms amplitude bc^ of the noise 

chosen zero-mean Gaussian, when �m� � and �`��� I � or � I �(a), �,�-� I � or � I e (b), �,�-� I � or � I i (c).

3 Conclusion

The conditions we have presented, of various forms of noise-
enhanced transmission with information-theoretic character-
izations, are merely illustrative. The effect is preserved over
a broad range of signals and nonlinear systems, as it was ver-
ified to be the case in studies on other forms of stochastic
resonance. Also different measures can be used to quantify
a stochastic resonance effect, especially measures from in-
formation theory as we showed here, all depending on the
purpose and prospect involved.

More generally, stochastic resonance, of relatively recent
introduction, remains an emerging effect. From a conceptual
standpoint, stochastic resonance is an important phenomenon
as it modifies the status of the noise by establishing that in
nonlinear systems noise is not necessarily a nuisance but may
sometimes be turned into a benefit. From a practical stand-
point, stochastic resonance may have useful applications for
signal processing by nonlinear systems, especially when no



full control is available over the nonlinearities. Both aspects
of stochastic resonance call for further exploration.
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