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Noise-Enhanced Performance for an Optimal
Bayesian Estimator

François Chapeau-Blondeau, Member, IEEE, and David Rousseau

Abstract—A novel instance of a stochastic resonance effect,
under the form of a noise-improved performance, is shown to
be possible for an optimal Bayesian estimator. Estimation of the
frequency of a periodic signal corrupted by a phase noise is consid-
ered. The optimal Bayesian estimator, achieving the minimum of
the mean square estimation error, is explicitly derived. Conditions
are exhibited where this minimal error is reduced when the noise
level is raised, over some ranges, where this occurs essentially with
non-Gaussian noise, in the tested configurations. These results
contribute a new step in the exploration of stochastic resonance
and its potentialities for signal processing.

Index Terms—Bayesian estimation, optimal estimator, sto-
chastic resonance.

I. INTRODUCTION

STOCHASTIC resonance, in a general sense, can be de-
scribed as a phenomenon by which some processing done

on a signal can benefit from the presence of noise [1], [2]. This
counterintuitive phenomenon has essentially been reported in
nonlinear settings and with various types of signals and noises
[3]–[5]. Instances have been observed in electronic circuits [6],
[7], optical devices [8], [9], magnetic systems [10], [11], and
neural processes [12], [13]. In each case, a measure of perfor-
mance is considered that quantifies the efficacy of some pro-
cessing on the signal in the presence of noise. Stochastic res-
onance is then characterized by the possibility of conditions
where an increase in the level of the noise results in an im-
proved performance. Examples have been studied of nonlinear
transmission systems with an output signal-to-noise ratio (SNR)
that is improvable by means of an increase in the input noise
[3], [14], information channels with a transinformation or a ca-
pacity that can be increased when the noise over the channel is
enhanced [15], [16], or nonlinear lines where propagation con-
ditions improve when the noise is raised [17], [18]. In addition,
detection or estimation problems have been studied on nonlinear
signal-noise mixtures, where the efficacy improves when the
noise increases [19]–[23].

Investigations on stochastic resonance have often been
conducted with Gaussian noise [3], [7], [14], [21]; beyond
its practical importance, Gaussian noise is a case that very
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often can be worked out, especially analytically, in the most
extended way. However, non-Gaussian noise is also frequently
met in pratice, especially in nonlinear environments, and
stochastic resonance has also been obtained with non-Gaussian
noise [3], [16], [24]–[26]. Thus far, instances of stochastic
resonance have been observed with Gaussian noise and others
with non-Gaussian noise. This largely depends on the specific
setting, and especially on the type of the nonlinear signal-noise
coupling, on the nature of the information signal, and on the
measure of performance receiving improvement from the noise.
As we will see, the novel instance of stochastic resonance we
will present here essentially takes place with non-Gaussian
noise in the explored configurations.

The progressive development of all these studies on stochastic
resonance has disclosed many configurations and forms under
which it can occur. Yet, so far, stochastic resonance has essen-
tially been reported for suboptimal devices or processors [27],
[28], [23]. In each case where stochastic resonance was demon-
strated, for a given measure of performance, noise improvement
was possible only for the performance of suboptimal proces-
sors, and if the optimal processor was calculated, then its per-
formance would undergo a monotonic degradation when raising
the level of noise.

The present study enlarges the conditions of applicability
of stochastic resonance. It investigates conditions of optimal
processing in a Bayesian estimation problem and demonstrates
the possibility of improving the performance of an optimal
estimator by operating at higher noise levels. The addressed
problem is the estimation of the frequency of a periodic signal
in the presence of a nonlinear signal-noise mixture where the
noise acts on the phase of the signal.

II. OPTIMAL BAYESIAN ESTIMATION

We briefly review the essential elements of optimal Bayesian
estimation, to make it clear, in a self-contained way, that they
are valid in generality and especially for the estimation problem
with the nonlinear signal-noise mixture that we will address.
Detailed expositions and applications can be found in [29] and
[30].

Observation of a random signal at different times
for to provides data points . This signal

is dependent on a parameter , whose possible values are
distributed according to the prior probability density function
(pdf) . In order to estimate the value of that produced
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the observed data , an estimator is con-
structed. Once is observed, a posterior pdf for the pa-
rameter can be defined. A mean square error in the estimation
follows as the expectation (conditioned by observation )

(1)

It is easy to show that of (1) can equivalently be expressed
as

var (2)

with , and var
.

Since var in (2) is non-negative and independent of ,
the optimal Bayesian estimator that minimizes error , for
any given observation , comes out as

(3)

and its performance is measured by the minimal error

var (4)

A model of how the observation is produced in relation to
the parameter (and also to the noise spoiling the observation)
allows one to define the pdf of observing given . With
the prior information summarized by , the Bayes rule then
provides access to the posterior pdf under the form

(5)

with the pdf .
For any given observation , the optimal Bayesian estimator

from (3) achieves the minimum from (4) of the
error from (1). Consequently, also achieves the min-
imum of error averaged over every possible observation

, i.e., minimizes , and the minimum that
is reached is

var (6)

where stands for the -dimensional integral
.

We now address a specific estimation problem, in which
the observation incorporates the influence of a corrupting
noise. In standard situations, i.e., additive signal-noise mixture
or Gaussian noise, the optimal estimator of (3) essentially has
a performance that is measured by (4) or (6), which degrades
monotonically when the noise level is raised. Here, we will
show, with a nonlinear signal-noise mixture and essentially
non-Gaussian noise, that it is possible to have an optimal
Bayesian estimator whose performance can be improved by
raising the level of the noise.

III. ESTIMATION WITH PHASE NOISE

We consider a periodic wave of (unknown) frequency
, where is a periodic waveform of period unity. A possi-

bility could be , but will be further speci-
fied later. A noise acts on the phase of the wave to form the
observable signal

(7)

Such a periodic signal corrupted by a phase noise arises,
for instance, when a periodic wave propagates in a fluctuating
medium or through a fluctuating interface. Phase noise is nat-
urally present in oscillators, phase-locked loops, and coherent
imaging [31]–[34]. A simple concretization of the present
setting is provided by a plane wave radiated or received by a
transducer subjected to a random motion producing the phase
noise.

Based on the data observed on the noisy
signal , the frequency is to be estimated.

We consider the noise samples statistically independent
for distinct ’s so that the conditional pdf introduced
in Section II factorizes as . In addi-
tion, the samples are identically distributed, with cumula-
tive distribution function and probability density function

.
In order to allow a complete analytical treatment of the op-

timal Bayesian estimator, we consider the simple case where
is a square wave of period 1 with when

and when . With as the
Dirac delta function, we have the pdf

(8)

with the probability

(9)

(10)

(11)

(12)

(13)

where is an integer, and the probability

(14)

The pdf , according to (8), will in-
volve products of quantities of the form

. The posterior pdf of (5) is then expressable as

(15)



CHAPEAU-BLONDEAU AND ROUSSEAU: NOISE-ENHANCED PERFORMANCE FOR OPTIMAL BAYESIAN ESTIMATOR 1329

in which expression the data vector
is now limited to the possible states of the form

. Equation (15) is obtained as
the Dirac delta functions introduced by (8) disappear by
simplification between the numerator and denominator of (5).
This simplification applies since the Dirac pulses are located at
the same values in the numerator and denominator.1

Equations (13) and (14) allow an explicit evaluation of the
probabilities for , as a function of the prop-
erties of the noise conveyed by . These probabilities

are all that is needed to provide access to the con-
ditional pdf of (15), which opens the way to an explicit calcu-
lation (possibly through numerical integration) of the optimal
Bayesian estimate from (3) and to the performance of this esti-
mation measured by (4) or (6).

Explicitly, of (4), which is a function of the observation
, is computable as

(16)

and its average over of (6) comes out [the Dirac delta
functions introduced by (8) disappear by integration] as

(17)

where the multiple sum runs over the possible states for the
data .

IV. NOISE-ENHANCED OPTIMAL ESTIMATION

We now exhibit conditions where the performance of the op-
timal estimator measured by of (17) can be improved when
the noise rms amplitude grows.

For illustration, we consider the case where the frequency
to be estimated is distributed according to a Gaussian prior pdf

with mean and standard deviation . In addition,
is chosen in the class of generalized Gaussian noises de-

fined by the standardized pdf

(18)

with , and
parameterized by the positive expo-

nent . For , one recovers the Gaussian density; for
, one obtains leptokurtic densities with tails thicker

than the Gaussian; for , one gets platikurtic
densities with tails thinner than the Gaussian, up to ,
yielding the uniform density.

1This mode of operation, relying on Dirac delta functions, allows a uniform
treatment that is equally applicable for both continuous and discrete data. Al-
ternatively, the whole Bayesian estimation framework of Section II could be
rewritten separately, from the beginning, with discrete probabilities Prfx j �g
instead of continuous densities p(x j �) and no Dirac delta functions and would
ultimately lead to the same (15) for discrete data.

Fig. 1. Rms error �E from (17) of the optimal estimator as a function of the
rms amplitude � of the zero-mean noise �(t) chosen Gaussian (dotted line),
generalized Gaussian with � = 4 (dashed), uniform (solid). Prior pdf p (u) is
Gaussian with m = 1 and � = 0:25 and N = 14 data samples equispaced
with time step 0.075 from t = 0 to t = 1.

The pdf of is then taken as .
Fig. 1 represents the rms error from (17) of the optimal
estimator, as a function of the noise rms amplitude , for dif-
ferent . The standard expectation with a Bayesian estimator of

is that error goes to as , and starts
below when . Our point will be that such an evo-
lution of , as grows, is not necessarily monotonically
increasing, but can be nonmonotonic. In Fig. 1, we observe that
with Gaussian noise , the estimation error mono-
tonically increases as grows. However, as one departs from
Gaussian noise with , error comes to experience
a nonmonotonic evolution, with ranges of , where de-
creases as grows. This possibility of lowering by in-
creasing gets more pronounced as increases toward .
Although the effect remains modest in Fig. 1, this is an effective
demonstration2 of the feasibility of improving the performance
of the optimal estimator by raising the level of a generalized
Gaussian noise with , which is a novel form of stochastic
resonance.

In Fig. 1, we observe that first starts to rise as in-
creases above zero. A similar behavior of around the origin
will also be observed later in the stochastic resonance of Figs. 3
and 4. Such a behavior means that in the signal-noise mixture,
a nonzero minimal amount of noise has to pre-exist in order to
have access to a range of , where starts to diminish. The
primary important finding we want to emphasize here is the ex-
istence of some ranges of the noise level where decreases
as grows, which is an a priori unexpected benefit brought in
by the noise. Later on, however, in the stochastic resonance of
Figs. 5–7, we will additionally show the possibility of an error

2In Fig. 1, for � = 4, to have access to the cumulative distribution F (u) =
(1=2)+ f (v) dv, we used the Maple mathematical software for high-ac-
curacy numerical evaluation of this definite integral to construct an analytical
approximation of F (u) with a relative accuracy better than 10 and based
on a rational function approximation for small juj’s, and on an asymptotic ex-
pansion for large juj’s, following an approach much similar to that used in [35].
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(a) (b)

Fig. 2. Standardized pdf. (a) f (u) of (19) with m = 0:9 (solid line), m =
0:95 (dashed line), andm = 0:99 (dotted line). (b) f (u) of (22) with � = 0:1
(solid line), � = 1 (dashed line), and � = 5 (dotted line).

that starts to decrease at the origin, as soon as grows
above zero, which is another aspect of the benefit brought in by
the noise.

The improvement visible in Fig. 1 as a reduction of can
be found larger if one moves to other classes of pdf for the noise

. Consider the class of Gaussian mixture with standardized
pdf

(19)

and cumulative distribution function

(20)

Some examples of the pdf of (19), for different , are
plotted in Fig. 2(a).

With and ,
Fig. 3 again shows conditions of nonmonotonic evolutions of

as grows, with possibilities of decreasing by in-
creasing over some ranges. In addition, Fig. 3, compared to
Fig. 1, uses another set of sampling times , which essen-
tially illustrates that the sampling conditions are not in them-
selves critical for the existence of the stochastic resonance ef-
fect. Usually, only the quantitative details of the effect are influ-
enced by the sampling conditions, but the qualitative feasibility
of a nonmonotonic is robustly preserved. Fig. 3 also offers
numerical validations of the theoretical performance through a
Monte Carlo test of the optimal estimator of (3).

For the theoretical evaluations of in Figs. 1 and 3, the
infinite sums of (12) or (13) have been truncated by considering
the zero-mean densities to be negligible outside the in-
terval , which provides a very good approximation.
It is possible to have exact evaluations of these sums when
is defined to be zero outside a bounded support.

We consider passing a noise uniform over through the
nonlinearity

(21)

Fig. 3. Rms error �E of the optimal estimator as a function of the rms
amplitude � of the Gaussian-mixture noise �(t) with density f (u=� )=�
from (19). The solid lines are �E from the theory of (17); the discrete points
are �E numerically evaluated from 5� 10 Monte Carlo trials of the optimal
estimator of (3) for each � with m = 0:9(�);m = 0:95(�);m = 0:99(4).
Prior pdf p (u) is Gaussian with m = 1 and � = 0:25 and N = 6 data
samples equispaced with time step 0.2 from t = 0 to t = 1.

parameterized by , with . This
produces a standardized noise whose pdf is zero for
outside , and otherwise

(22)

and its cumulative distribution function is

(23)

over the support , and for
and for . As , one recovers

the uniform noise over . For increasing , the pdf
develops “shoulders” about its two modes in and

, up to , which yields a binary noise at . Some
examples of the pdf of (22), for different , are plotted
in Fig. 2(b).

With and , we
have observed that any can yield nonmonotonic evo-
lutions of the rms error of the optimal estimator as is
raised. This is illustrated in Fig. 4 for a Gaussian prior and
in Fig. 5 for a uniform prior . The noise reduction of ,
as visible in Figs. 4 and 5, gets more pronouced as grows. At
the limit of binary noise , Figs. 4 and 5 show that
appropriate levels of noise can even reduce to its value in
the absence of noise.

The conditions of Fig. 5 also reveal a property that is minute
in appearance but conceptually significant: Starting from

, the rms error first experiences a decaying evolution as
is raised up to , where starts to rise. This brief

decaying excursion altogether represents a relative variation of
around 2% in . The results of Fig. 5 have been obtained
through numerical evaluation of the integrals in defining
via (16) and (17). For the integration, the uniform pdf over
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Fig. 4. Rms error �E from (17) of the optimal estimator, as a function of the
rms amplitude � of the noise �(t) distributed according to (23) with � = 5
(dotted line), � = 10 (dashed line), and � = +1 (solid line). Prior pdf p (u)
is Gaussian with m = 1 and � = 0:25, and N = 6 data samples equispaced
with time step 0.2 from t = 0 to t = 1.

Fig. 5. Same as in Fig. 4, except that p (u) is uniform over [m �p
3� ;m +

p
3� ], with m = 1 and � = 0:25.

its bounded support has been sampled with step .
For a noise with bounded support and an analytic cumula-
tive distribution of (23), the infinite sum of (13) reduces
to a finite sum, and the probabilities are exactly com-
putable. The sampling step for in Fig. 5 is .
These conditions of the numerical computation in Fig. 5 are just
at the limit for discerning the small decaying excursion of
about the origin , yet we were able to check this be-
havior with an exact analytical computation. For uniform
and with bounded support, and for small, we developed
up to completion an exact analytical computation of . In the
time-sampling conditions of Fig. 5 with data samples, a
number of expressions of the form of (16) have been
analytically evaluated and summed up to yield from (17).
The outcome of this exact analytical computation confirms the
decaying excursion about the origin , as revealed
by the numerical computation shown in Fig. 5. This signifies

that conditions exist for the optimal estimator where a nonzero
optimal level of noise can improve upon the performance in the
absence of noise. Such a behavior was known for stochastic res-
onance in suboptimal devices, where the performance at zero
noise is worst and starts to improve as the noise grows, but it is
shown for the first time here for an optimal device.

For a prior with an unbounded support, i.e., the
Gaussian case of Figs. 1–4, we were not able to complete a
similar exact analytical computation for the behavior of
about the origin , and the finite-precision numerical
computation of these figures shows a (more common) in-
creasing evolution of as starts to grow above zero.

V. ESTIMATION ON A SINE WAVE

The case of a square wave with phase noise that we have
considered so far allowed us to implement both a theoretical
and a numerical analysis of the optimal Bayesian estimator.
This double approach in conjunction was important here for
a cross-validation in the demonstration of the feasibility of a
noise-enhanced performance of the optimal estimator.

An important case in practice is estimation on a sine wave.
The general Bayesian framework of Section II applies equally
in this case, but the theoretical analysis cannot be easily worked
out in a similar complete fashion. When the observable signal

of (7) is realized with the sine wave , the
key element that opens the way to the optimal Bayesian esti-
mator is, as before, the pdf , with its appropriate ex-
pression replacing (8). In the case of the sine wave, we have

(24)
Keeping track of all the possibilites under which the event on
the right-hand side of (24) can take place, in a similar way as in
(10)–(13), according to the realizations of the noise , we
finally get

(25)

As before, through the Bayes rule (5), (25) provides access
to the optimal Bayesian estimate of (3), and to its performance
measured by of (6), which now comes under the form

(26)

In the previous case of the square wave, the theoretical perfor-
mance of (17) is expressed by a discrete sum over the
states possible for the discrete data . By contrast, in the case
of the sine wave, of (26) is expressed by an -dimensional
integral over the continuous data varying in ; in practice,
this makes the numerical evaluation of a much heavier task.
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Fig. 6. Rms error �E of the optimal estimator as a function of the rms
amplitude � of the noise �(t). Error �E is numerically evaluated from
10 Monte Carlo trials of the optimal estimator from (3) and (25) for each
� with �(t) Gaussian (�); �(t) Gaussian mixture with m = 0:95(�), and
m = 0:99(4). Prior pdf p (u) is Gaussian with m = 1 and � = 0:25,
and N = 6 data samples equispaced with time step 0.2 from t = 0 to t = 1.
The solid lines here are merely a guide for the eye and not the result of a
computation, as opposed to Fig. 3.

Fig. 7. Same as in Fig. 6 but with a finer resolution over the region around the
origin � = 0.

Alternatively, instead of a numerical evaluation of the multiple
integral of (26), a Monte Carlo evaluation of can be envis-
aged, as was previously done in Fig. 3.

Fig. 6 shows results of this Monte Carlo evaluation of the per-
formance of the optimal Bayesian estimator with a sine wave for
different types of noise . As visible in Fig. 6, the stochastic
resonance effect as a nonmonotonic error is still feasible
in this case, in similar conditions as with the square wave, es-
sentially with non-Gaussian noise.

Moreover, the evolutions of Fig. 6 display again the inter-
esting behavior already present in Fig. 5 of a decreasing error

around the origin . For a better appreciation, Fig. 7
presents other evolutions of around at a finer res-
olution. In spite of the fluctuations attached to the Monte Carlo
evaluations of , clear decreasing trends are visible in Fig. 7
for around the origin. This again points to the possibility,
in principle, of a performance for the optimal estimator, which

will be better in the presence of a (small) nonzero amount of
noise, rather than in the absence of noise. This even becomes
possible with Gaussian noise, in the conditions of Fig. 7, ex-
tending the possibility of a stochastic resonance (although small
here) to Gaussian noise. Further studies will be useful to extend
this special aspect of stochastic resonance.

VI. DISCUSSION

Stochastic resonance teaches us that in “nonstandard” con-
ditions of signal-noise coupling, i.e., nonlinear coupling, non-
Gaussian noise, the noise is not necessarily a nuisance but may
sometimes reveal beneficial through some cooperative interac-
tion with the signal. It has appeared, since its introduction, that
such an effect of improvement by noise can occur under many
different modalities. These modalities are still largely under in-
ventory and investigation: a necessary stage before discerning
whether or how stochastic resonance can be involved in prac-
tical techniques for signal processing. Here, we propose a new
step in the inventory and exploration of the potentialities of sto-
chastic resonance through the formulation and demonstration of
a novel form in optimal estimation.

Standard forms of stochastic resonance usually consider a
fixed system, in charge of the processing of a signal, and reveal
how noise enhancement can improve the performance of such
a fixed system. These fixed systems are usually considered for
their own sake, without explicit consideration of their situation
relative to the optimal system for the intended processing. Here,
we chose to analyze the performance of the optimal system (the
optimal Bayesian estimator). It can be pointed out that this op-
timal system is noise dependent, and in this respect, it differs
from the fixed systems usually analyzed in standard stochastic
resonance. In this respect, our presentation can be seen as an
extension to the standard concept of stochastic resonance. On
another level, the interpretation can be that we are considering
the same system, the optimal Bayesian estimator. The central
consideration for us here is that all of these processes represent
situations where an increase in the noise level can produce an
improvement of the processing. This is the common unifying
feature that we see at the root of the concept of stochastic reso-
nance, and that, for us, motivates a uniform treatment.

In the novel form of stochastic resonance we investigate here,
several important elements play a part in the effect: the prior dis-
tribution of the parameter, the type of the noise, the type
of the periodic waveform, and the sampling conditions. We have
shown, with various illustrative sets of configurations, that the
feasibility of the effect does not critically depend on very spe-
cific choices for these elements but that it can be robustly pre-
served over reasonably broad conditions. Beyond this, detailed
analyses of the influence of each element, in conjunction with
the others, remain open for future work. Such analyses are di-
rectly possible, in principle, within the framework we developed
here.

Based on the tested configurations, it seems that the effect
of improvement by noise gets more pronounced as one departs
more and more from Gaussian noise to approach binary noise.
This is true at least for our observations with a square wave, and
in addition, based on Figs. 6 and 7, the effect is still possible for



CHAPEAU-BLONDEAU AND ROUSSEAU: NOISE-ENHANCED PERFORMANCE FOR OPTIMAL BAYESIAN ESTIMATOR 1333

Gaussian noise. Further studies will be useful to better appre-
ciate the importance of the non-Gaussian or Gaussian character
of the noise for the present form of the effect as well as for sto-
chastic resonance possibly in other optimal processes.

If the purpose is to extract benefit of the reported effect
through purposeful addition of noise [for instance, via an
additional random motion exerted on the transducer mentioned
in the paragraph after (7)], then one needs to be able to increase
the level of noise while controlling its nature and especially
its pdf. This will be directly feasible with the Gaussian pdf of
Figs. 6 and 7, whose form remains unchanged if more Gaussian
noise is added. In other non-Gaussian cases, the control of the
pdf while more noise is added is a more complex issue that is
not explicitly addressed here. If the pdf of the noise changes
as its rms amplitude increases, the analysis we worked out
is not sufficient and has to be complemented by an explicit
description of the way the pdf changes as more noise is added.
Yet, since our results show that a stochastic resonance effect
can be preserved over broad classes of different noise pdf, an
improvement may still be possible when the noise pdf changes
while its rms value increases. In addition, a more internal
adjustable parameter, playing a role similar to a physical
temperature, may be available, depending on the context, to
increase the level of noise while maintaining its pdf. The
elucidation of such issues will require further studies and,
maybe, evolutions in the setting and conditions considered here
that will complement our knowledge of stochastic resonance.
Particularly, beyond the randomly moving transducer example
evoked above, the exploration of other settings where it is
possible and useful to control and add phase noise to a signal
constitutes a perspective for future study.

The main focus of the present work is to demonstrate that
in principle, some form of improvement by noise, which
characterizes stochastic resonance, is not restricted to subop-
timal processing but may also apply to optimal processing.
Similar noise enhancement may also exist in other types of
operations. The demonstration of stochastic resonance in
optimal processing is obtained here for estimation of a random
parameter in a Bayesian framework. Distinct approaches to
estimation, for instance estimation of a nonrandom parameter
in a maximum likelihood framework, could also be considered
in the same perspective. Such approaches are based on a
different problem formulation, and they seek to optimize a
different measure of performance. In essence, therefore, they
are not directly comparable to the present Bayesian approach.
Yet, a meaningful question is whether a maximum likelihood
estimation of a nonrandom parameter could also lend itself to a
stochastic resonance effect under the form of a noise-improved
performance. This issue remains open for investigation. In the
same perspective, studies are currently under way to investigate
the possibility of extending stochastic resonance to optimal
detection [36].

The possibility of noise-improved processing may find
applicability in complex environments with nonlinear or
non-Gaussian conditions, for instance, in multisensor intelli-
gent systems involved in real-time processing. Neural systems
are natural systems of this kind. They strongly rely on nonlinear
processing in noisy environments of signals made of pulses

that are invariant in shape coding information through their
phase or timing, and stochastic resonance is an available
property shown in these systems. In such complex nonlinear
situations, stochastic resonance may play a part in maintaining
high performance for signal processing. The novel form of
stochastic resonance we have demonstrated here, together with
further developments, will contribute to this perspective, which
aims to improve nonlinear processing.
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