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Stochastic resonance at phase noise in signal transmission

François Chapeau-Blondeau
Laboratoire d’Ingénierie des Syste`mes Automatise´s (LISA), Universite´ d’Angers, 62 avenue Notre Dame du Lac, 49000 Angers, Fran

~Received 10 September 1999!

A model is developed for a periodic signal corrupted by an arbitrarily distributed phase noise and transmitted
by an arbitrary memoryless system. The model establishes a new form of the phenomenon of stochastic
resonance, whereby signal transmission can be enhanced by addition of noise. This is revealed by the standard
signal-to-noise ratio of stochastic resonance, which here receives an explicit theoretical expression, and which
is shown improvable via noise addition. This model is the first to propose a theory of stochastic resonance with
phase noise. It represents a unique framework for further investigations on stochastic resonance and its
applications.

PACS number~s!: 05.40.Ca, 02.50.2r, 84.40.Ua
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Stochastic resonance~SR! is a phenomenon of noise
enhanced signal transmission which can occur under var
forms in different types of nonlinear systems~see Refs.@1,2#
for recent reviews!. SR has been observed for instance
electronic circuits @3,4#, neurons @5–7#, optical devices
@8–10#, and its applicability is gradually extending to wide
classes of nonlinear systems and signals. Thus far, SR
essentially been reported and analyzed in the respons
nonlinear systems driven by the additive mixture of a coh
ent signal~usually periodic! and a noise. Some studies ha
also considered a multiplicative noise, or more precisel
periodically modulated noise@11# or a state-dependent nois
@12#. Here, we address a different type of coupling betwe
the signal and the noise, i.e., the noise occurs as a ran
perturbation in the phase of a periodic signal. Such a si
tion arises, for instance, when a periodic wave trav
through a fluctuating medium or interface. SR with pha
noise has been considered only once in the literature, in
@13#, where SR is shown by means of a numerical simulat
in a specific nonlinear system. By contrast here, we s
develop a complete theoretical analysis for SR at phase n
in a class of nonlinear systems.

We consider a sinusoidal signal of periodT corrupted by
a phase noiseh(t) according to

x~ t !5cosF2p

T
t1h~ t !G . ~1!

A signal comparable tox(t) of Eq. ~1! was used in Ref.@13#,
to drive a level-crossing detector firing output pulses. T
nonlinear transmission system was complicated enoug
hinder an analytical analysis, and SR was shown in Ref.@13#
through simulation. We consider here another type of tra
mission, described by

y~ t !5g@x~ t !#, ~2!

whereg(•••) is an arbitrary function operating on real num
bers.

The noiseh(t) is a stationary white noise with cumulativ
distribution functionFh(u) and probability density function
f h(u)5dFh(u)/du. The signalx(t) of Eq. ~1! results as a
cyclostationary random signal of periodT, with its cumula-
tive distribution functionFx(u,t) and its probability density
PRE 611063-651X/2000/61~1!/940~4!/$15.00
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function f x(u,t)5dFx(u,t)/du which are bothT-periodic
functions of t. The output signaly(t) of Eq. ~2! will also
result as a cyclostationary random signal of periodT, in gen-
eral, provided the functiong(•••) is not too peculiar.

Information about the coherent sinusoid of periodT can
be extracted from the random output signaly(t), in the fre-
quency domain, in the following way, which conforms to th
standard setting of SR@1,2,14#. In general, due to the cyclo
stationarity ofy(t), the power spectral density ofy(t) will
display a coherent part, constituted by spectral lines at in
ger multiples of the coherent frequency 1/T. The power con-
tained in the coherent spectral line at frequencyn/T is given
@14,15# by uȲnu2, whereȲn is the ordern Fourier coefficient
of the T-periodic nonstationary output expectationE@y(t)#:

Ȳn5
1

TE0

T

E@y~ t !#expS 2 in
2p

T
t Ddt, ~3!

where the expectationE@y(t)# at a fixed timet is expressable
as

E@y~ t !#5E
2`

1`

g~u! f x~u,t !du. ~4!

Incoherent noisy fluctuations in the output signaly(t),
will show up in its power spectral density as a continuo
broad-band noise background whose constant amplitud
measured by the stationarized output variance@14,15#

var~y!5
1

TE0

T

var@y~ t !#dt, ~5!

where the nonstationary variance var@y(t)# at a fixed timet
is computable as

var@y~ t !#5E
2`

1`

g2~u! f x~u,t !du2E2@y~ t !#. ~6!

In the output power spectral density, it is possible
quantify the degree the coherent spectral lines emerge o
the broadband noise background by means of a signa
noise ratio~SNR! defined as
940 ©2000 The American Physical Society
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RS n

T
D 5

uȲnu2

var~y!DtDB
, ~7!

which represents~as in Ref.@14#, the expression of the SNR
of Eq. ~7! is obtained in a discrete-time framework where t
signals are sampled atDt!T, which provides an easy way t
circumvent nonphysical pathologies of the continuous-ti
white noise such as an infinite variance associated to a
correlation duration! the ratio of the poweruȲnu2 contained
in the coherent spectral line at frequencyn/T, to the power
contained in the continuous noise background in a small
quency bandDB aroundn/T.

Such a SNR in the frequency domain, is the stand
measure most frequently used to characterize SR with a
riodic signal and additive or multiplicative noise@1,2#. Here,
we naturally turn to this measure for a characterization
this new form of SR at phase noise. A specificity here is t
the present model allows an explicit computation of the S
of Eq. ~7!, for any transmission functiong(•••), by means
e
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of Eqs.~3!–~6!, provided we can relate the probability de
sity f x(u,t) to the known statistical properties of the pha
noiseh(t).

If we introduce theT-periodic cyclostationary random
signal

j~ t !5@2pt/T1h~ t !# modulo @2p,p!, ~8!

we have, for the cumulative distribution functionFx(u,t)
5Pr$x(t)<u%, the relations

12Fx~u,t !5Pr$x~ t !5cos@2pt/T1h~ t !#.u%

5Pr$2acos~u!,j~ t !,acos~u!% ~9!

5Fj@acos~u!,t#2Fj@2acos~u!,t#,

for uP@21,1!,

leading to
Fx~u,t !5H 0 for u,21,

12Fj@acos~u!,t#1Fj@2acos~u!,t# for 21<u,1,

1 for u>1,

~10!

with the cumulative distribution function ofj(t),

Fj~u,t !5Pr$j~ t !<u%5 (
k52`

1`

Pr$h~ t !P@2p12kp22pt/T,u12kp22pt/T#% for uP@2p,p!, ~11!

k integer. According to Eq.~11! we thus have

Fj~u,t !55
0 for u,2p,

(
k52`

1`

@Fh~u12kp22pt/T!2Fh~2p12kp22pt/T!# for 2p<u,p,

1 for u>p.

~12!

The probability density ofx(t) is f x(u,t)5dFx(u,t)/du; i.e., acording to Eq.~10!:

f x~u,t !55
0 for u,21,

„f j@acos~u!,t#1 f j@2acos~u!,t#…
1

A12u2
for 21<u,1,

0 for u>1,

~13!
m-

ise
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wheref j(u,t)5dFj(u,t)/du is the probability density func-
tion of j(t), given through Eq.~12! by

f j~u,t !55
0 for u,2p,

(
k52`

1`

f h~u12kp22pt/T! for 2p<u,p,

0 for u>p.
~14!
Collecting the above equations allows one to explicitly co
pute the SNR of Eq.~7!, for any transmission function
g(•••), as a function of the properties of the phase no
h(t) conveyed for instance byf h(u), and then to check the
possibility of a nonmonotonic resonant evolution of the SN
when the noise level is raised, which represents the signa
of SR.

For a simple illustration, we consider the case~often
tested for SR with additive noise! of a hard thresholdg(u)
51 whenu.u andg(u)50 otherwise. In this case, Eqs.~4!
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and ~6! lead, respectively, to

E@y~ t !#512Fx~u,t ! ~15!

and

var@y~ t !#5Fx~u,t !@12Fx~u,t !#. ~16!

A simple choice for the noise ish(t) uniform over
@2A,A#, giving f h(u)51/(2A) for uP@2A,A# and f h(u)
50 elsewhere. Since this densityf h(u) of h(t) is an even
function of u, the densityf x(u,t) of x(t)5cos@2pt/T1h(t)#,
and alsoFx(u,t), are both even functions oft, thanks to the
symmetry of the cosine. It is thus enough in Eqs.~13! or
~10!, to evaluatef x(u,t) or Fx(u,t), two T-periodic functions
of t, over tP@0,T/2#; and thus enough also to evalua
f j(u,t) of Eq. ~14!, or Fj(u,t) of Eq. ~12!, over tP@0,T/2#.
For this purpose, in Eqs.~14! and ~12!, the nonvanishing
contributions to the sum are restricted tokP@kmin ,kmax#, with
kmin5212int@0.51A/(2p)# and kmax521int@A/(2p)#,
where int(•••) returns the closest integer towards zero.

In these conditions, Fig. 1 represents typical time evo
tions of the noisy inputx(t) and outputy(t). The spectral
analysis is then performed on the output signaly(t). For the
SNR in the frequency domain of Eq.~7!, Fig. 2 shows the
SNR theoretically computed with the present model, co
pared to the SNR numerically estimated on a simulation
y(t) as in Fig. 1~b!. The agreement is very good within th
accuracy of the numerical estimation, since the present
oretical derivation of the SNR is exact, in contrast to ma
models for SR with additive or multiplicative noise whic
often have to resort to approximations.

The interesting point, revealed in Fig. 2, is that the SN
undergoes a nonmonotonic evolution when the noise lev
raised. At zero noise, the SNR of Fig. 2 goes to infinity. T
is because with this type of threshold detector and ph
noise, the input signalx(t) of Eq. ~1! has a maximum am
plitude always above threshold and unaffected by the no
and thus in the absence of noisex(t) is perfectly recovered
by the spectral analysis at the output whence the infi
SNR. By contrast, for SR with additive noise, the coher
input is usually subthreshold at zero noise and requires n

FIG. 1. ~a! Input signalx(t) of Eq. ~1! when the phase nois
h(t) is uniform over@2A,A# with A51 rad, the step of the time
discretization isDt5T/100. ~b! Ouput signaly(t)5g@x(t)# of Eq.
~2! wheng(•••) is a hard thresholdu50.5.
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addition to overcome the threshold; thus no transmiss
takes place in the absence of noise whence a vanishing
put SNR at zero noise. Then in Fig. 2, when the noise
gradually raised above zero, the output SNR first rapi
drops to very low values, and next, larger noise levels ca
turn increase the SNR. The multipeaked structure of the S
as revealed by the model, has its origin in the specific ac
of the noise on the phase of a periodic signal as in Eq.~1!.
The nonmonotonic evolution of the SNR in Fig. 2 charact
izes a form of SR, with ranges where the SNR gets impro
when the noise level is raised. This is the common featur
SR: an increase of the noise can be beneficial to the tr
mission of a coherent signal, yet with specificities here c
tained in the present theory for a phase noise.

Figure 3 shows that the SR effect is preserved for a
value of the thresholdu over the interesting range@0,1). The
exploitation of the model shows that many other conditio
also lead to SR at phase noise. Figure 4 compares SR w
uniform and a dichotomous distribution for the phase no

FIG. 2. Signal-to-noise ratioR(1/T) as a function of the ampli-
tude A of the phase noiseh(t) uniform over @2A,A#, when
g(•••) of Eq. ~2! is a hard thresholdu50.5. The solid line is the
theoretical evaluation from Eq.~7!, and the open circles result from
a numerical simulation~we arbitrarily chose throughoutDBDt
51023).

FIG. 3. Signal-to-noise ratioR(1/T) from Eq. ~7! as a function
of the thresholdu and of the amplitudeA of the phase noiseh(t)
uniform over@2A,A#, wheng(•••) of Eq. ~2! is a hard threshold
u.
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h(t). The multipeaked structure of the SNR is still observ
in Fig. 4, and with the dichotomous noise the periodic alt
nation of zero and infinite values of the SNR can be und
stood directly from the behavior ofx(t) of Eq. ~1! when the
noise h56A assumes values at integer multiples ofp/2.
Our model shows that SR at phase noise can be obta
with a diodelike nonlinearityg(•••), as the one used in Re
@4# for SR with additive noise. Figure 4 also shows that SR
phase noise can even be obtained with the purely linear
tector g(u)5u. This is a property usually not present
conventional periodic SR with additive noise and measu
by the standard SNR, which requires transmission by a n
linear system in order to induce a coupling between sig
and noise capable of SR. Here, the noise coupled to the
nal through its phase constitutes a sufficient nonlinear c
pling, that in itself can generate SR. The SNR delivered
the linear detectorg(u)5u can also be interpreted as th

FIG. 4. Signal-to-noise ratioR(1/T) from Eq. ~7! as a function
of the amplitudeA of the phase noiseh(t), wheng(•••) of Eq. ~2!
is a hard thresholdu50 ~solid line! or a linear detectorg(u)5u
~dashed line!, with h(t) uniform over @2A,A# ~left! and h(t)5
6A dichotomous~right!.
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input SNR, resulting from direct observation ofx(t) of Eq.
~1!, and prior to transmission by a nonlinear detector outp
ting y(t)[” x(t). Then, as illustrated in Fig. 4, we were n
able to find a simple nonlinear detector capable of deliver
an output SNR larger than this input SNR for SR at pha
noise. This was so, even with a dichotomous noise wh
was shown the most favorable noise to obtain an output S
larger than the input SNR in SR with additive noise in sta
detectors@15#. This again contrasts SR with phase or wi
additive noise: possibility of SR with a linear detector but
input-output SNR gain with the former, the opposite with t
latter.

The present theory provides a characterization of an a
native form of SR, at phase noise. The model can handle
arbitrary distribution for the noise associated to an arbitr
memoryless detectorg(•••). Illustrations were provided
with a uniform noise~this type of noise was used in th
numerical simulation of Ref.@13# reporting the first observa
tion of SR at phase noise, though in a different system! and
with a dichotomous noise, associated with a treshold dete
~the simplest detector most often used to obtain SR w
additive noise! and with a linear detector which was show
here capable of a form of SR. Additionally, the expression
the SNR of Eq.~7! allows the examination of SR at highe
order harmonics. The model can also be used to characte
SR when the static detectorg(•••) is followed by any dy-
namic linear system. In this case the SR property measu
by the SNR of Eq.~7! will not be affected, since both the
numerator and the denominator of Eq.~7! will be multiplied
by the same factor given by the squared modulus of
transfer function of the linear system. We also note that
present treatment can easily be transposed to a coheren
nal which is not a sinusoid, for instance to a periodic train
pulses~neural action potentials, solitons! that would be cor-
rupted by phase noise, and could possibly lead to SR.
present model is the first of its kind to propose a theory
SR at phase noise, in a broad class of conditions or syste
As such it constitutes a unique framework for further inve
tigations on SR and its applications.
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