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Stochastic resonance at phase noise in signal transmission
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Laboratoire d’Inganierie des Systees Automatise(LISA), Universitel’Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France
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A model is developed for a periodic signal corrupted by an arbitrarily distributed phase noise and transmitted
by an arbitrary memoryless system. The model establishes a new form of the phenomenon of stochastic
resonance, whereby signal transmission can be enhanced by addition of noise. This is revealed by the standard
signal-to-noise ratio of stochastic resonance, which here receives an explicit theoretical expression, and which
is shown improvable via noise addition. This model is the first to propose a theory of stochastic resonance with
phase noise. It represents a unique framework for further investigations on stochastic resonance and its
applications.

PACS numbd(s): 05.40.Ca, 02.56:r, 84.40.Ua

Stochastic resonancéSR) is a phenomenon of noise- function f,(u,t)=dF,(u,t)/du which are bothT-periodic
enhanced signal transmission which can occur under varioygnctions oft. The output signaly(t) of Eq. (2) will also
forms in different types of nonlinear systersee Refs[1,2] =~ regylt as a cyclostationary random signal of peffpéh gen-
for recent reviews SR has been observed for instance iNeral, provided the functiog(- - -) is not too peculiar.
electronic circuits[3,4], neurons[5-7], optical devices Information about the coherent sinusoid of peribatan
[8-10], and its appllcablllty is gradua_llly extending to wider o extracted from the random output siggél), in the fre-
classes of nonlinear systems and signals. Thus far, SR h%ﬁaency domain, in the following way, which conforms to the

essentially been reported and analyzed in the response @fangard setting of SRL,2,14. In general, due to the cyclo-
nonlinear systems driven by the additive mixture of a COher'stationarity ofy(t), the power spectral density o{(t) will

ent signal(usually periodi¢ and a noise. Some studies have yisplay a coherent part, constituted by spectral lines at inte-

alsq cpnsidered a muItipI?cative noise, or more precisgly Yer multiples of the coherent frequencyr 1The power con-
periodically modulated noisgl 1] or a state-dependent noise aineq in the coherent spectral line at frequenty is given

[12]. Here, we address a different type of coupling betweert;f“13 by |7n|2, Wherevn is the ordem Fourier coefficient
0

the signal and the noise, i.e., the noise occurs as a rando the T-periodi atl tout tatiBhv(t) -
perturbation in the phase of a periodic signal. Such a situa- e T-periodic nonstationary output expectatiBfy(t)]:

tion arises, for instance, when a periodic wave travels 107
through a fluctuating medium or interface. SR with phase Vnz_f E[y(t)]exp( —in—wt)dt, 3)
noise has been considered only once in the literature, in Ref. Tlo T

[13], where SR is shown by means of a numerical simulation
in a specific nonlinear system. By contrast here, we shalvhere the expectatiof[y(t)] at a fixed time is expressable
develop a complete theoretical analysis for SR at phase noists
in a class of nonlinear systems.
We consider a sinusoidal signal of peridcdcorrupted by

a phase noise(t) according to Ely(D]= fﬁw g(wfy(u,Hydu. @

_ (1) Incoherent noisy fluctuations in the output signydt),
will show up in its power spectral density as a continuous
broad-band noise background whose constant amplitude is

A signal comparable t&(t) of Eq. (1) was used in Ref13],  measured by the stationarized output variafice 15
to drive a level-crossing detector firing output pulses. This

nonlinear transmission system was complicated enough to 1T
hinder an analytical analysis, and SR was shown in R&j. vany)= ?f vary(t)]dt, 5)
through simulation. We consider here another type of trans- 0
mission, described by

2
x(t)=cos{7t+ n(t)

where the nonstationary variance [ygit) ] at a fixed timet

y(t)=g[x(t)], ) is computable as
. . . . + o0
\k/)v:riregt --) is an arbitrary function operating on real num- vafy(t)]= f_ 92w, (u,Hdu—Ey(D)]. (6)
The noisen(t) is a stationary white noise with cumulative
distribution functionF,(u) and probability density function In the output power spectral density, it is possible to

f,(u)=dF,(u)/du. The signalx(t) of Eq. (1) results as a quantify the degree the coherent spectral lines emerge out of
cyclostationary random signal of peridd with its cumula-  the broadband noise background by means of a signal-to-
tive distribution functionF,(u,t) and its probability density noise ratio(SNR) defined as
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n |V 2 of Egs.(3)—(6), provided we can relate the probability den-
R(— = —“, 7 sity f,(u,t) to the known statistical properties of the phase
T/ vary)AtAB noise 7(t).

If we introduce theT-periodic cyclostationary random
which representgas in Ref[14], the expression of the SNR signal
of Eq. (7) is obtained in a discrete-time framework where the
signals are sampled At <T, which provides an easy way to E)=[27t/T+ n(t)] modulo [ —,), (8
circumvent nonphysical pathologies of the continuous-time
white noise such as an infinite variance associated to a zekge have, for the cumulative distribution functidf,(u,t)

correlation durationthe ratio of the powefY,|? contained =PrKx(t)<u}, the relations

in the coherent spectral line at frequentiT, to the power

contained in the continuous noise background in a small frel—F,(u,t)=P{x(t)=cog 27t/T+ n(t)]>u}
quency band\B aroundn/T.

Such a SNR in the frequency domain, is the standard =PH—acogu)<{(t)<acosu)} 9
measure most frequently used to characterize SR with a pe-
riodic signal and additive or multiplicative noi§#,2]. Here, —Facosu),t]—F [ —acogu),t]
. . . g ) § [} ]
we naturally turn to this measure for a characterization of
this new form of SR at phase noise. A specificity here is that for ue[—1,1),

the present model allows an explicit computation of the SNR
of Eq. (7), for any transmission functiog(- - -), by means leading to

0 for u<—-1,
F.(ut)={ 1—FJacogu),t]+F[—acogu),t] for —1lsu<l, (10
1 for u=1,

with the cumulative distribution function af(t),
+ 00
Fe(ut)=Pré(t)<u}= 2 P{n(t)e[—7+2km—27t/T,u+2km—27t/T]} for ue[—m,m), (11
k=—o

k integer. According to Eq(11) we thus have

0 for u<—mr,
+ 00
Fu,t)= k;w[F,7(u+2k7-r—27rt/T)—F,,(—7-r+2k7r—27rt/T)] for —mr<u<m, (12
1 for u=ar.

The probability density ok(t) is f,(u,t)=dF,(u,t)/du; i.e., acording to Eq(10):

0 for u<—1,

f(u,t)=1 (ffacogu),t]+f,[—acogu),t]) for —1=su<1, (13

1
V1—u?

0 for u=1,

wheref (u,t)=dF(u,t)/du is the probability density func- Collecting the above equations allows one to explicitly com-

tion of £(t), given through Eq(12) by pute the SNR of Eq(7), for any transmission function
g(---), as a function of the properties of the phase noise
n(t) conveyed for instance bf/,(u), and then to check the

0 for u<-—, possibility of a nonmonotonic resonant evolution of the SNR
+oo when the noise level is raised, which represents the signature
fu)={ > f,(u+2ka—2xt/T) for —m<u<m,  of SR.
k==e For a simple illustration, we consider the ca&sten
0 for u=. tested for SR with additive nois@f a hard thresholdj(u)

(14 =1 whenu> 6 andg(u) =0 otherwise. In this case, Eq¥)
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time /T FIG. 2. Signal-to-noise rati®(1/T) as a function of the ampli-

tude A of the phase noisep(t) uniform over[—A,A], when
FIG. 1. (& Input signalx(t) of Eq. (1) when the phase noise g(---) of Eq. (2) is a hard threshold=0.5. The solid line is the
7(t) is uniform over[ —A,A] with A=1 rad, the step of the time theoretical evaluation from Eq7), and the open circles result from

discretization isAt=T/100. (b) Ouput signaly(t)=g[x(t)] of EQ. ~ a numerical simulationwe arbitrarily chose throughout BAt
(2) wheng(- - -) is a hard threshold=0.5. =10"3).

and(6) lead, respectively, to addition to overcome the threshold; thus no transmission

E[y(t)]=1—F(6,1) (15)  takes place in the absence of noise whence a vanishing out-

put SNR at zero noise. Then in Fig. 2, when the noise is
and gradually raised above zero, the output SNR first rapidly
drops to very low values, and next, larger noise levels can in

varly(t)]=F,(6,t)[1-F,(6,1)]. (16)  turn increase the SNR. The multipeaked structure of the SNR

as revealed by the model, has its origin in the specific action
of the noise on the phase of a periodic signal as in(Ey.

The nonmonotonic evolution of the SNR in Fig. 2 character-
izes a form of SR, with ranges where the SNR gets improved
when the noise level is raised. This is the common feature in
SR: an increase of the noise can be beneficial to the trans-
mission of a coherent signal, yet with specificities here con-

A simple choice for the noise isy(t) uniform over
[—A,A], giving f,(u)=1/(2A) for ue[—A,A] andf,(u)
=0 elsewhere. Since this density(u) of 5(t) is an even
function of u, the densityf,(u,t) of x(t) =cog2at/T+ 5(1)],
and alsoF,(u,t), are both even functions ¢f thanks to the
symmetry of the cosine. It is thus enough in E¢E3) or
(10), to evaluatef,(u,t) or F,(u,t), two T-periodic functions  tained in the present theory for a phase noise.
of t, over te[0,T/2]; and thus enough also to evaluate Figure 3 shows that the SR effect is preserved for any
f¢(u,t) of Eq.(14), or F,(u,t) of Eq.(12), overte[0,T/2].  value of the threshold over the interesting rand®,1). The
For this purpose, in Eqg14) and (12), the nonvanishing exploitation of the model shows that many other conditions
contributions to the sum are restrictedkta [Knyin Kmaxl, With  also lead to SR at phase noise. Figure 4 compares SR with a

Kmin=—1=int[ 0.5+ A/(27)] and Kmna=2+Int{A/(27)],  uniform and a dichotomous distribution for the phase noise
where int( - -) returns the closest integer towards zero.

In these conditions, Fig. 1 represents typical time evolu-
tions of the noisy inpui(t) and outputy(t). The spectral
analysis is then performed on the output sigy@l). For the
SNR in the frequency domain of E¢7), Fig. 2 shows the
SNR theoretically computed with the present model, com-
pared to the SNR numerically estimated on a simulation of %
y(t) as in Fig. 1b). The agreement is very good within the
accuracy of the numerical estimation, since the present the's
oretical derivation of the SNR is exact, in contrast to many i
models for SR with additive or multiplicative noise which
often have to resort to approximations.

The interesting point, revealed in Fig. 2, is that the SNR
undergoes a nonmonotonic evolution when the noise level is
raised. At zero noise, the SNR of Fig. 2 goes to infinity. This
is because with this type of threshold detector and phas¢
noise, the input signat(t) of Eq. (1) has a maximum am-
plitude always above threshold and unaffected by the noise,
and thus in the absence of noisgt) is perfectly recovered FIG. 3. Signal-to-noise rati®(1/T) from Eq.(7) as a function
by the spectral analysis at the output whence the infinitef the thresholdd and of the amplitudé of the phase noisey(t)
SNR. By contrast, for SR with additive noise, the coherentuniform over[ —A,A], wheng(- - -) of Eq. (2) is a hard threshold
input is usually subthreshold at zero noise and requires noisg
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3000 input SNR, resulting from direct observation xft) of Eq.

(1), and prior to transmission by a nonlinear detector output-
ting y(t)#x(t). Then, as illustrated in Fig. 4, we were not
able to find a simple nonlinear detector capable of delivering
an output SNR larger than this input SNR for SR at phase
noise. This was so, even with a dichotomous noise which
was shown the most favorable noise to obtain an output SNR
larger than the input SNR in SR with additive noise in static
detectorg15]. This again contrasts SR with phase or with
additive noise: possibility of SR with a linear detector but no
input-output SNR gain with the former, the opposite with the
latter.
) The present theory provides a characterization of an alter-
23 45678910 012345673891 native form of SR, at phase noise. The model can handle an
noise amplitude A (rad) noise amplitude A (rad) arbitrary distribution for the noise associated to an arbitrary
memoryless detectog(---). lllustrations were provided
FIG. 4. Signal-to-noise rati®(1/T) from Eq.(7) as a function  with a uniform noise(this type of noise was used in the
of the amplitudeA of the phase noisg(t), wheng(---) of Eq.(2)  numerical simulation of Ref.13] reporting the first observa-
is a hard threshold=0 (solid line) or a linear detectog(u)=u tion of SR at phase noise, though in a different systand
(dashed ling with 7(t) uniform over[—A,A] (left) and 7(t)=  with a dichotomous noise, associated with a treshold detector
+A dichotomoug(right). (the simplest detector most often used to obtain SR with
additive nois¢ and with a linear detector which was shown
7(t). The multipeaked structure of the SNR is still observedhere capable of a form of SR. Additionally, the expression of
in Fig. 4, and with the dichotomous noise the periodic alterthe SNR of Eq(7) allows the examination of SR at higher-
nation of zero and infinite values of the SNR can be underorder harmonics. The model can also be used to characterize
stood directly from the behavior of(t) of Eq. (1) when the SR when the static detectgy- - -) is followed by any dy-
noise n==*=A assumes values at integer multiples@®2.  namic linear system. In this case the SR property measured
Our model shows that SR at phase noise can be obtaindsy the SNR of Eq.(7) will not be affected, since both the
with a diodelike nonlinearitg(- - -), as the one used in Ref. numerator and the denominator of E@) will be multiplied
[4] for SR with additive noise. Figure 4 also shows that SR aby the same factor given by the squared modulus of the
phase noise can even be obtained with the purely linear deransfer function of the linear system. We also note that the
tector g(u)=u. This is a property usually not present in present treatment can easily be transposed to a coherent sig-
conventional periodic SR with additive noise and measurechal which is not a sinusoid, for instance to a periodic train of
by the standard SNR, which requires transmission by a norpulses(neural action potentials, solitonthat would be cor-
linear system in order to induce a coupling between signatupted by phase noise, and could possibly lead to SR. The
and noise capable of SR. Here, the noise coupled to the sigpresent model is the first of its kind to propose a theory of
nal through its phase constitutes a sufficient nonlinear couSR at phase noise, in a broad class of conditions or systems.
pling, that in itself can generate SR. The SNR delivered byAs such it constitutes a unique framework for further inves-
the linear detectog(u)=u can also be interpreted as the tigations on SR and its applications.
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