
IOP PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 55 (2010) 6279–6297 doi:10.1088/0031-9155/55/20/015

Multifractal analysis of heart rate variability and laser
Doppler flowmetry fluctuations: comparison of results
from different numerical methods

Anne Humeau1, Benjamin Buard1,2, Guillaume Mahé3,
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Abstract
To contribute to the understanding of the complex dynamics in the
cardiovascular system (CVS), the central CVS has previously been analyzed
through multifractal analyses of heart rate variability (HRV) signals that were
shown to bring useful contributions. Similar approaches for the peripheral
CVS through the analysis of laser Doppler flowmetry (LDF) signals are
comparatively very recent. In this direction, we propose here a study of the
peripheral CVS through a multifractal analysis of LDF fluctuations, together
with a comparison of the results with those obtained on HRV fluctuations
simultaneously recorded. To perform these investigations concerning the
biophysics of the CVS, first we have to address the problem of selecting
a suitable methodology for multifractal analysis, allowing us to extract
meaningful interpretations on biophysical signals. For this purpose, we test four
existing methodologies of multifractal analysis. We also present a comparison
of their applicability and interpretability when implemented on both simulated
multifractal signals of reference and on experimental signals from the CVS.
One essential outcome of the study is that the multifractal properties observed
from both the LDF fluctuations (peripheral CVS) and the HRV fluctuations
(central CVS) appear very close and similar over the studied range of scales
relevant to physiology.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

The cardiovascular system (CVS) incorporates complex biophysical processes with multiple
levels of operation and regulation, and its complete understanding is still to be obtained. The
most prominent processes involved in the CVS are heart beat dynamics and respiration. Other
processes have also been identified such as myogenic, neurogenic and endothelial activities.
All these processes together involve several characteristic time scales and their interplay.
Multiscale analyses of biophysical data from the CVS can therefore be helpful in order to
contribute to understanding the complex underlying dynamics.

The CVS can be studied through two viewpoints: a central viewpoint and a peripheral
viewpoint. A central viewpoint is given by HRV signals. The latter are obtained from the
time intervals between consecutive heart beats in the electrocardiogram (ECG). HRV therefore
reveals information related to the heart itself and is thus of great interest for the diagnosis of
cardiac pathologies. For a peripheral viewpoint of the CVS, the laser Doppler flowmetry (LDF)
technique has been proposed in the 1970s. LDF relies on the interaction between the photons
of a laser light—which is incident upon the tissues under study—and the moving blood cells
of the microcirculation. The LDF signal, also called perfusion signal, comes from the first
moment of the photocurrent power spectrum (see for example Rajan et al (2009), Humeau
et al (2007), Shepherd and Öberg (1990) and Stern (1975)). New developments of the
technique are also proposed (see for example Binzoni et al (2009), Wojtkiewicz et al (2009)
and Liebert et al (2006)). This peripheral point of view allows for the diagnosis and follow-
up of pathologies affecting the microvessels, among which we can find diabetes, peripheral
arterial occlusive diseases and Raynaud’s phenomenon (see for example Morales et al (2005),
Humeau et al (2004) and Popivanov et al (1999)).

Through the analysis of HRV data, many multiscale and multifractal works have already
been found useful in studying the central CVS (see for example Alam et al (2009), Baillie et al
(2009), Sassi et al (2009), Ching and Tsang (2007), Guzman-Vargas et al (2005), Amaral et al
(2001), Ivanov et al (2001), Havlin et al (1999), Ivanov et al (1999), Stanley et al (1999)).
However, similar studies for the peripheral CVS are very recent (Humeau et al 2009) and
need to be continued. Nevertheless, analyses from a peripheral viewpoint of the CVS lead
to new requirements compared to analyses performed at the level of the central CVS. Thus,
during the experiments with a laser Doppler flowmeter, the subject should not move at all, to
avoid artifacts. As a result, only short LDF signals (a few minutes of data) can be recorded,
whereas several hours of ECG data can be acquired through Holter systems.

The goal of this paper is to propose a study aimed at better understanding the CVS
through a multiscale analysis of signal fluctuations. For this purpose, two steps are proposed:
(1) a multifractal analysis of LDF fluctuations and (2) a comparison of this LDF analysis
with the results obtained from HRV fluctuations recorded simultaneously with LDF signals.
Comparisons of results obtained through data recorded simultaneously from the peripheral
and central CVSs will therefore be possible. For these two steps, a suitable methodology to
implement a multifractal analysis of LDF and HRV fluctuations needs to be identified.

Several methods have been proposed for the multifractal analysis of signals. Some of
them are based on a box-counting technique which meshes the signal under study with various
boxes of size ε and a normalized measure is computed in each box. The coarse-graining
procedure implemented through such methods entails a natural and intuitive interpretation of
the observations across scales. Two popular methods with the box-counting technique are the
method from Halsey et al (1986), and the method proposed by Chhabra and Jensen (1989).

The multifractal properties of a signal can also be investigated through a structure function
approach by calculating the qth-order structure function (Barabasi and Vicsek 1991). A time
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increment existing in this method, and which is gradually increased for the analysis, also offers
a natural and intuitive vision on the signal across scales.

Finally, other multifractal methods are based on the wavelet transform. The wavelet
transform of a signal is used like an ‘oscillating’ box to represent its components. The
most popular method from these ones is the wavelet-transform modulus-maxima (WTMM)
method (Muzy et al 1993). In the latter, the local maxima of the modulus of the wavelet
coefficients are extracted at each scale, in order to estimate the multifractal properties of the
signal. Special care is sometimes required for its application on experimental signals, to avoid
spurious maxima due to measurement noise.

Each of these methods contains different computation procedures that, even if they possess
the same name, can lead to different quantities. Moreover, each method has its own parameters,
and the values of the latter have to be chosen so that, when the methods are applied on synthetic
signals, the results obtained are in accordance with the ones given by the theory.

In order to perform a targeted multifractal analysis of signals recorded from both the central
and peripheral CVSs, we have to evaluate and compare several available methodologies, and
especially their usefulness, applicability and interpretability for the biophysical problem that
is addressed. The methods from Halsey et al, from Chhabra and Jensen, the method of the
structure function, and the WTMM method are therefore first tested on synthetic signals.

In what follows, we first detail the multifractal methods tested. Afterwards, a comparison
of their applicability and interpretability when implemented on simulated multifractal signals
of reference is proposed. From the results, LDF and HRV fluctuations recorded simultaneously
are processed. The multifractal spectra obtained for the peripheral and central CVSs are then
analyzed, compared, and finally discussed.

2. Multifractal analysis methods

2.1. Method from Halsey et al

In the method from Halsey et al, the signal processed should be a normalized distribution
(measure) (Halsey et al 1986). From this measure, the method allows the computation of
a partition function Z(q, ε) from which the mass exponent function τ(q) and generalized
fractal dimensions D(q) are estimated. In order to apply the method from Halsey et al, first
the signal has to be processed to obtain a non-negative measure {γi}. This can be performed
by (1) pre-processing the signal to obtain non-negative data {si}; (2) dividing each sample of
the resulting data {si} by the sum of the samples for normalization to 1, i.e.

γi = si∑N
i=1 si

, (1)

where N is the number of samples in the non-negative signal {si}. LDF data are characterized
by fluctuations superposed on a mean value. Because LDF signals are recorded in arbitrary
units, and as the LDF signal mean value is probe-position-dependent, we suggest in what
follows to focus on the signal fluctuations. Several studies have shown that these fluctuations
contain physiological information (see for example Bernjak et al (2008), Kvandal et al (2006)
and Stefanovska et al (1999)). The minimum value of each data is first subtracted from the
data itself before computing the measure. Each sample of this positive signal is then divided
by the sum of the signal samples, for normalization to 1 (step 2 mentioned above).

Each measure {γi} is then processed to obtain the partition function Z(q, ε) as (Halsey
et al 1986)
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Z(q, ε) =
Nboxes(ε)∑

i=1

μ
q

i (ε), (2)

where ε is the size (or scale) of the boxes used to cover the measure {γi}, Nboxes(ε) is the
number of boxes of size ε needed to cover the measure {γi}, μi(ε) corresponds to the sum
of the sample values of the measure {γi} on the ith box of size ε and the exponent q is a real
parameter that indicates the order of the moment for μi(ε). High values of the exponent q
enhance boxes with relatively high values for μi(ε), whereas low values of the exponent q
favor boxes with relatively low values of μi(ε).

If a log–log plot of the partition function Z(q, ε) versus ε shows straight lines, the partition
function Z(q, ε) exhibits a power-law behavior. It therefore possesses a uniform and invariant
behavior through the scales where the straight lines are present. On these scales, the mass
exponent function τ(q) is estimated from the slope of the straight lines. The generalized
fractal dimensions D(q) (q �= 1) are then estimated from τ(q) values as (Halsey et al 1986)

D(q) = 1

q − 1
τ(q). (3)

For q = 1, the information dimension D(1) is computed as the slope of

Nboxes(ε)∑
i=1

μi(ε) log(μi(ε)) (4)

versus log(ε) on scales where (4) shows a power-law behavior. Finally, the Legendre transform
of the mass exponent function τ(q) gives the multifractal spectrum f (α) as a function of the
Hölder exponent α: α(q) is the derivative of τ(q) on the scales chosen for the power-law
fitting and f (α) is computed as

f (α(q)) = α(q) × q − τ(q). (5)

The Hölder exponent can be understood as a global indicator of the local differentiability for
the processed measure.

2.2. Chhabra and Jensen method

The purpose of the Chhabra and Jensen methodology is to propose another box-counting
procedure to evaluate the multifractal spectrum f (α), without resorting to the intermediate
Legendre transform. In the Chhabra and Jensen method, a one-parameter normalized measure
β(q) is constructed where the probabilities in the boxes of size ε are (Chhabra and Jensen
1989; the meaning of μi(ε) is the same as in the method from Halsey et al presented above)

βi(q, ε) = (μi(ε))
q∑

j (μj (ε))q
. (6)

To determine the multifractal spectrum f (α), the slope of∑
i βi(q, ε) log(βi(q, ε))

log(ε)
(7)

is first computed on the chosen scales ε. This gives f (α(q)). Then, the slope of∑
i βi(q, ε) log(μi(ε))

log(ε)
(8)

is computed on the same scales ε to give α(q). The multifractal spectrum f (α) is then obtained
as a function of the Hölder exponent α.
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2.3. Structure function method

In the structure function method, the qth-order structure function of the signal {si} under study
is defined as

Cq(l) = 1

N

N∑
i=1

|si − si+l|q, (9)

where N � 1 is the number of samples over which the average is taken, and only terms with
|si − si+l| �= 0 are considered (Barabasi and Vicsek 1991). The mass exponents τ(q) are
computed by linear least-squares fit to the double logarithm plot of log(Cq) versus log(l). By
Legendre transforming the scaling exponents τ(q) of the structure function, one can obtain
the multifractal spectrum f (α).

2.4. Wavelet transform modulus maxima method

In the WTMM method, the wavelet transform T�[s] of the signal s under study is computed,
and the sum of the qth powers of the local maxima of the wavelet transform coefficient modulus
|T�[s]| at scale ε defines the partition function Z(q, ε) (Muzy et al 1993):

Z(ε, q) =
∑

α

|T�[s](xα(ε), ε)|q, (10)

where {xα(ε)}α is the set of coordinates supporting the maxima of the modulus for the wavelet
transform. However, it is possible to get rid of some maxima with very low wavelet transform
values (values which may lead to spurious divergences), by replacing (10) by (Muzyet al 1993)

Z(ε, q) =
∑

α

(supx,ε′�ε |T�[s](xα(ε′), ε′)|)q, (11)

where supx,ε′�ε means that the supremum is taken for (x, ε′) on each line of maxima at scales
ε′ � ε. Biophysical signals such as LDF and HRV data may give, in the wavelet transform,
local maxima that correspond to low wavelet coefficients. The choice to take or not to take
into account these low coefficients in the partition function computation can be a difficult
task. Moreover, due to the not straightforward computation steps of the WTMM, the partition
function Z(q, ε) obtained may be difficult to interpret. However, once the partition function
Z(q, ε) is obtained, the mass exponents τ(q) and the multifractal spectrum f (α) can be
computed as done in the method from Halsey et al.

In the WTMM method, the singularities are shifted by 1 with respect to the other methods,
and thus the multifractal spectrum appears horizontally displaced by this value (Kestener and
Arneodo 2003). In what follows, we have taken this shift into account when representing the
results from the WTMM method, shifting WTMM multifractal spectra to obtain results that
are directly comparable to those of the other methods.

2.5. Interpretation

From the above-mentioned equations, a signal is considered as multifractal if the corresponding
measure has a nonlinear mass exponent function τ(q), or equivalently if it has nonconstant
generalized dimensions D(q) (Feder 1988). Therefore, the more multifractal a signal, the
broader its multifractal spectrum. For a homogeneous fractal (monofractal data), the mass
exponent function τ(q) is linear and the generalized dimensions D(q) do not vary with the
exponent q. The multifractal spectrum is therefore, in this case, a single point.
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3. Application of the four multifractal analyses methods on synthetic signals

3.1. Synthetic signals

Herein the four multifractal methods (method from Halsey et al, method from Chhabra and
Jensen, method of the structure function, and WTMM method) are first tested on binomial
measures which are synthetic signals with known multifractal properties.

A binomial measure is recursively generated with a multiplicative cascade (Mandelbrot
1999). This cascade starts (k = 0) with a uniformly distributed unit of mass on the unit
interval I = I0 = [0, 1]. The next stage (k = 1) fragments this mass by distributing a
fraction m0 uniformly on the left half I0.0 = [

0, 1
2

]
of the unit interval, and the remaining

fraction m1 = 1 − m0 uniformly on the right half I0.1 = [
1
2 , 1

]
. At the next stage (k = 2)

of the cascade, the subintervals I0.0 and I0.1 receive the same treatment as the original unit
interval. At the kth stage of the cascade, the mass is fragmented over the dyadic intervals
[i2−k, (i + 1)2−k] where i = 0, . . . , 2k − 1 (Evertsz and Mandelbrot 1992). For binomial
measures, the Hölder exponents α are defined as (Evertsz and Mandelbrot 1992)

α = n0

k
v0 +

k − n0

k
v1, (12)

where n0 is the number of digits 0 in the interval where the local exponent is computed,
v0 = − log2(m0) and v1 = − log2(m1). Moreover, the multifractal spectrum f (α) is given by
(Evertsz and Mandelbrot 1992)

f (α) = − αmax − α

αmax − αmin
log2

(
αmax − α

αmax − αmin

)
− α − αmin

αmax − αmin
log2

(
α − αmin

αmax − αmin

)
, (13)

where αmin = v0 and αmax = v1.
In what follows, we apply the four multifractal methods on two binomial measures. The

first binomial measure has m0 = 0.55 and m1 = 0.45, and is chosen because it presents a range
of Hölder exponents similar to the range that will be met later on during the investigation of
experimental LDF and HRV signals. The second binomial measure has m0 = 0.9 and
m1 = 0.1 and therefore presents a larger multifractal spectrum. All these signals have 214

samples and are shown in figure 1.

3.2. Choice of the parameters values

3.2.1. Parameter values for the Halsey et al method. In the method from Halsey et al,
the measure is processed through three parameters: the scales or sizes ε of the boxes, the
scales where the power-law fitting is performed (used for the estimation of the mass exponent
function τ(q) and generalized fractal dimensions D(q)) and the values of q (exponent in the
computation of the partition function Z(q, ε)).

As mentioned above, the synthetic signals processed herein possess 214 samples.
Therefore, and in order to cover the whole signals, we choose all the powers of 2 for the
sizes ε of the boxes.

In order to estimate the mass exponent function τ(q) and generalized fractal dimensions
D(q), the logarithm of the partition function Z(q, ε) has to be plotted versus the logarithm of
the scales ε. On the scales where the partition function presents a power-law behavior (straight
lines in the log–log plot), a power-law fitting can be performed. The slope of the latter is then
used to compute the mass exponent function τ(q) and generalized fractal dimensions D(q).
We choose to perform the power-law fitting for the two synthetic signals on the whole range
of scales, corresponding to 1 up to 214 samples.
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Figure 1. Binomial measures computed with (a) k = 14, m0 = 0.55 and m1 = 0.45; (b) k = 14,
m0 = 0.9 and m1 = 0.1.

For the choice of the exponents q values, the lower the minimal negative value of the
exponent q, the longer the right branch of the multifractal spectrum; the larger the maximal
positive value of exponent q, the longer the left branch of the multifractal spectrum. Moreover,
the higher the value of the exponent q, the more important the role played by possible outlier
samples of high amplitudes in the values of the partition function Z(q, ε). As our synthetic
signals do not have outlier samples, we choose to compute the moments on a rather large range
of exponents q chosen so that the multifractal spectra f (α) obtained for the two binomial
measures have branches that reach values near from 0 on their left and right parts. This choice
is adopted in the method from Halsey et al, and from Chhabra and Jensen, in the structure
function method, and in the WTMM method.

3.2.2. Parameters values for the Chhabra and Jensen method. In the Chhabra and Jensen
method, the measure is processed with the same three parameters as for the method of Halsey
et al. Thus, the sizes ε of the boxes, the scales for the power-law fitting (used for the estimation
of the mass exponent function τ(q) and generalized fractal dimensions D(q)), and the values
of q (exponent in the computation of the partition function Z(q, ε)) have to be chosen. In order
to compare the results given by the two box-counting methods for a given set of parameters,
we choose—for the Chhabra and Jensen method—the same values as the ones of the Halsey
et al method (for both the synthetic and physiological data).

3.2.3. Parameters values for the structure function method. With the structure function
method, the signal under study has to be processed through an algorithm where three parameters
have to be set: the values of the time increment l, the scales for the power-law fitting (used
for the estimation of the mass exponent function τ(q)) and the exponent q values. For the
binomial measures, we choose all the possible powers of 2 from 1 for the time increment
l values and choose the whole range of these values for the power-law fitting. Moreover,
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as mentioned above, exponent q values are chosen so that the left and right branches of the
multifractal spectra for the binomial measures reach values near from 0.

3.2.4. Parameters values for the WTMM method. When using the WTMM method, the
following parameters have to be set:

• choice of the wavelet;
• the ‘number’ of local maxima used in the computation of the partition function Z(q, ε);
• the scales for the power-law fitting (used for the estimation of the mass exponent function

τ(q) and generalized fractal dimensions D(q)) and
• the values of the exponent q.

The analyzing wavelet � is generally chosen to be well localized in both space and
frequency. Usually � is only required to be of zero mean but for singularity tracking � also
has to be orthogonal to some low-order polynomials. A class of commonly used real-valued
analyzing wavelets which satisfies these conditions is the successive derivative of the Gaussian
function. In what follows, both � = −θ ′ (where θ is the Gaussian function and ′ means the
derivative) and the Mexican hat wavelets are used.

The choice of the number of local maxima used in the computation of the partition
function Z(q, ε) can be tricky; the applicability and interpretability of the WTMM method
can accordingly become difficult. In what follows, this number is chosen so that the multifractal
spectra obtained for the synthetic signals are the closest to the theoretical ones.

As it was set for the box-counting methods, the sizes ε of the boxes are chosen equal
to all the powers of 2. Moreover, as for the box-counting methods, the power-law fitting
is performed on scales corresponding to 1 up to 214 samples, and the exponent q values are
chosen so that the left and right branches of the multifractal spectra reach values near from 0.

As mentioned above, it is possible to get rid of some maxima with very low wavelet
transform values by replacing the computation of Z(q, ε) mentioned in (10) by the one
presented in (11) (Muzy et al 1993). These two algorithms will be tested thereafter. The
Wavelab software was used for this purpose (http://www-stat.stanford.edu/∼wavelab/).

3.3. Results obtained for binomial measures

We applied the four multifractal methods on the binomial measures presented in figure 1. The
results obtained with the method from Halsey et al are shown in figure 2. We can observe that
the mass exponent functions τ(q), the generalized fractal dimensions D(q) and the multifractal
spectra f (α) are similar to the theoretical ones. This is true for the two binomial measures.
The results obtained with the method from Chhabra and Jensen are also close to the theory, as
shown in figure 3.

The multifractal spectra obtained with the structure function method are close to the
theoretical results, as shown in figure 4. For the WTMM method we note (see figure 5) that
the multifractal spectra obtained do not correspond to the theoretical values. This is true
for the two binomial measures. Moreover, for the binomial measure that possesses a larger
multifractal spectrum, the differences observed between the numerically estimated and the
theoretical multifractal spectra are particularly predominant for the right part of the spectra
(part which corresponds to the negative exponent q values). As noted by Turiel et al on other
synthetic signals, the WTMM method generally provides a good description of the central part
of the singularity spectrum, but in a very limited extent (Turiel et al 2006). Furthermore,
as also found by Turiel et al, the WTMM method linearizes the right tail (Turiel et al
2006).

http://www-stat.stanford.edu/protect $
elax sim $wavelab/
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Figure 2. (a) Mass exponent functions τ(q), (b) generalized fractal dimensions D(q) and (c)
multifractal spectra f (α) obtained with the method from Halsey et al for the two binomial measures
presented in figure 1. Solid line: theoretical values. Circles: numerically estimated values.
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Figure 3. Multifractal spectra f (α) obtained with the method from Chhabra and Jensen for the
two binomial measures presented in figure 1. Solid line: theoretical values. Circles: numerically
estimated values.



6288 A Humeau et al

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Holder exponent α

M
u

lt
if
ra

c
ta

l 
s
p

e
c
tr

u
m

 f
(α

)

Figure 4. Multifractal spectra f (α) obtained with the structure function method for the two
binomial measures presented in figure 1. Solid line: theoretical values. Circles: numerically
estimated values.
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Figure 5. Multifractal spectra f (α) obtained with the WTMM method for the two binomial
measures presented in figure 1. Solid line: theoretical values. ◦ : numerically estimated results
obtained with � = −θ ′, where θ is the Gaussian function and (10) is chosen for the computation of
the partition function Z(q, ε); *: numerically estimated results obtained with � = −θ ′, where θ is
the Gaussian function and (11) is chosen for the computation of the partition function Z(q, ε); �:
numerically estimated results obtained with the Mexican hat for the wavelet and (10) is chosen for
the computation of the partition function Z(q, ε); x: numerically estimated results obtained with
the Mexican hat for the wavelet and (11) is chosen for the computation of the partition function
Z(q, ε).

On the synthetic signals processed, the methods from Halsey et al and from Chhabra and
Jensen give results that correspond to the theory. The principles and coarse-graining procedure
used in these methods are easily interpretable. The structure function method gives results
that are close to the theoretical ones. The method is, here again, quite intuitive. By contrast,
the WTMM method gives results that do not fit the theory, and the choice of its parameters
can be difficult. Its interpretability is also more difficult. Based on these results, we choose
to apply hereafter the methods from Halsey et al, from Chhabra and Jensen, and the structure
function method on LDF and HRV fluctuations.
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Figure 6. LDF signal recorded on the forearm of a healthy subject.

4. Application of three multifractal analyses methods on LDF and HRV fluctuations

4.1. Measurement procedure

For our study, LDF and ECG signals were recorded simultaneously, in 12 subjects (mean age
30.2 ± 11.5 years; 9 men, 3 women) without known disease. Each of them gave their written
informed consent to participate before the beginning of the recordings. For the acquisition,
the subjects were placed supine and left at rest for 15 min before each measurement. The
temperature of the room was set at 23 ± 1 ◦C. For the LDF signal acquisition, a laser Doppler
flowmeter (Periflux PF4001, Perimed, Stockholm, Sweden) and a laser Doppler probe (PF408,
Perimed, Stockholm, Sweden) were used. The LDF probe was positioned on the forearm
ventral face of the subjects. Skin blood flow was assessed in arbitrary units (au) and recorded
on a computer via an analog-to-digital converter (Biopac System) with a sampling frequency
of 250 Hz. A sub-sampling to 25 Hz was then performed. A Lifescope (Nihon Kohden
Corporation) was used for the ECG acquisition for which the sampling frequency was chosen
to be 1000 Hz. A sub-sampling to 250 Hz was then performed. LDF and ECG signals were
recorded simultaneously for at least 20 min.

After acquisition, ECG signals were processed to obtain HRV signals. For this purpose,
we developed a computer program to automatically detect the R peaks of the ECG time series.
The results given by the automatic detection were visually checked and corrected if needed.
The R–R intervals were then computed. Some of our LDF and HRV data are shown in
figures 6 and 7, respectively.

Thereafter, 214 samples of LDF signal fluctuations and 210 samples of HRV data
fluctuations are processed. This corresponds, respectively, to 10.9 min of LDF signals and to
an average of 14.3 min of HRV data for our 12 subjects.

4.2. Choice of the parameters

4.2.1. Parameter values for the Halsey et al method. In what follows, the physiological data
that are processed contain 214 samples (LDF signals) and 210 samples (HRV signals). For
these signals, and as done for the synthetic signals, all the powers of 2 are chosen for the sizes
ε of the boxes. Moreover, each signal is first processed to obtain a measure (see above).
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Figure 7. HRV signal recorded on a healthy subject.

For the estimation of the mass exponent functions τ(q) and generalized fractal dimensions
D(q), a log–log plot of the partition function Z(q, ε) versus ε has to be drawn. If the partition
function Z(q, ε) presents a power-law behavior (straight lines in the log–log plot) a power-law
fitting can be performed on the corresponding scales. We choose to perform the power-law
fitting on scales in which significant physiological activities have been reported to occur.
From the literature, LDF signals contain six physiological activities (see for example Bernjak
et al (2008), Kvandal et al (2006) and Stefanovska et al (1999)): heart beats (time range
[0.50 s, 1.66 s]), respiratory activity (time range [1.66 s, 6.89 s]), intrinsic myogenic activity
(time range [6.89 s, 19.23 s]), neurogenic (sympathetic) activity (time range [19.23 s, 47.61 s]),
nitric-oxide (NO)-dependent endothelial activity (time range [47.61 s, 105.26 s]) and non-NO-
dependent endothelial activity (time range [105.26 s, 200 s]). Moreover, it has been shown that
HRV signals also contain the respiratory, intrinsic myogenic, neurogenic, and NO-dependent
endothelial activities (Bracic Lotric et al 2000). From all this, and in order to perform the linear
fit on close scales for LDF and HRV fluctuations—to compare their mass exponent functions
τ(q), generalized fractal dimensions D(q), and multifractal spectra f (α)—we choose to
estimate the mass exponent functions τ(q) and generalized fractal dimensions D(q) on scales
between 10.24 s and 655.36 s for LDF fluctuations, corresponding to 28–214 samples of LDF
signals, and on scales between 8 s and 512 s for HRV fluctuations, corresponding to 23–
29 samples of HRV data. These scales gather the intrinsic myogenic activity, the neurogenic
activity, the NO-dependent endothelial activity and the non-NO-dependent endothelial activity.

Finally, because LDF and HRV fluctuations can possess outlier samples, the range of
exponents q chosen for the computation of the partition function Z(q, ε) is reduced compared
to the one chosen for the synthetic signals. We thereafter choose q between −3 and 3.

4.2.2. Parameter values for the Chhabra and Jensen method. As mentioned above, the same
parameters as the ones chosen in the method of Halsey et al are taken into account for the
method of Chhabra and Jensen. Moreover, each signal is first processed to obtain a measure
(see above).

4.2.3. Parameter values for the structure function method. For the structure function method,
we choose the time increment l and scale values for the power-law fitting that correspond
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Figure 8. Partition function of (a) LDF and (b) HRV fluctuations recorded in a healthy subject
obtained with the method from Halsey et al. The curves corresponding to q going from −3 to 3 by
step of 1 are shown. The scales where the physiological activities take place are represented: C,
R, M, N, E and NE stand, respectively, for cardiac activity, respiratory activity, myogenic activity,
neurogenic activity, NO-dependent endothelial activity and non-NO-dependent endothelial activity.

(the most) to the values of the boxes and power-law fitting scales chosen in the box-counting
methods. Thus, for LDF signals, the time increment l goes from 1 to 213 (214 cannot be used
as it corresponds to the length of the signals) and the scales chosen for the power-law fitting
are 28–213 samples. In the same way, for HRV signals, we choose the time increment l from 1
to 29 and scales 23–29 for the power-law fitting. Furthermore, the q values are set from −3 to
3. Finally, as for the box-counting methods, each signal is first processed to obtain a measure
(for comparisons).

4.3. Results and discussion

For the Halsey et al method and when exponent q goes from −3 to 3, the partition functions
Z(q, ε) of all our LDF signals show a power-law behavior on scales going from 10.24 s
to 655.36 s (scales corresponding to 28 up to 214 samples of LDF signals; see figure 8(a)).
Moreover, for all our HRV data and for the set of parameters chosen in the method from
Halsey et al, the partition functions Z(q, ε) show a power-law behavior from 8 s to 512 s
(scales corresponding to 23 up to 29 samples of HRV data); see an example in figure 8.
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Figure 9. (a) Average mass exponents τ(q), (b) average generalized fractal dimensions D(q)

and (c) average multifractal spectra f (α) obtained with the method from Halsey et al for 12
LDF signals (curve with triangles) and for 12 HRV signals (dotted curve) recorded in 12 healthy
subjects. The power-law fitting has been performed on scales going from 10.24 s to 655.36 s
(scales corresponding to 28–214 samples) for LDF fluctuations, and from 8 s to 512 s (scales
corresponding to 23–29 samples) for HRV fluctuations.

All our partition functions Z(q, ε) computed with the method from Halsey et al therefore
exhibit a power-law behavior, or a linear behavior in log–log coordinates, on the scales
chosen for the linear fitting. Thus, for both LDF and HRV fluctuations, our results show a
homogeneous power-law behavior over the range of scales where four distinct physiological
activities have been reported by authors (see for example Bernjak et al (2008), Kvandal et al
(2006), Stefanovska et al (1999), Bracic Lotric et al (2000)).

The average estimated mass exponent function τ(q) and generalized fractal dimensions
D(q) computed with the method from Halsey et al for the 12 subjects are shown in figures 9(a)
and (b), respectively, for LDF and HRV fluctuations. From these figures we can note that the
average estimated mass exponent functions τ(q) for both LDF and HRV fluctuations are very
similar. The mass exponent functions τ(q) are close to the straight line τ(q) = q − 1 which
is the mass exponent function for a uniform measure. Moreover, the average generalized
fractal dimensions D(q) are also very close for LDF and HRV fluctuations. Thus, the average
generalized fractal dimensions for LDF fluctuations are observed from 1.03 to 0.97 when
exponent q varies between −3 and 3. For HRV fluctuations, the average generalized fractal
dimensions D are observed from 1.03 to 0.98 when the exponent q goes from −3 to 3.



Multifractal analysis of HRV and LDF fluctuations 6293

0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
0.8

0.85

0.9

0.95

1

Holder exponent α

M
u

lt
if
ra

c
ta

l 
s
p

e
c
tr

u
m

 f
(α

)

Figure 10. Average multifractal spectra f (α) obtained with the method from Chhabra and Jensen
for 12 LDF signals (curve with triangles) and for 12 HRV signals (dotted curve) recorded in 12
healthy subjects. The power-law fitting has been performed on scales going from 10.24 s to
655.36 s (scales corresponding to 28–214 samples) for LDF fluctuations, and from 8 s to 512 s
(scales corresponding to 23–29 samples) for HRV fluctuations.
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Figure 11. Average multifractal spectra f (α) obtained with the structure function method for 12
LDF signals (curve with triangles) and for 12 HRV signals (dotted curve) recorded in 12 healthy
subjects.

The average estimated multifractal spectra obtained for LDF and HRV fluctuations with the
method from Halsey et al are shown in figure 9(c). We can observe that the widths of these
two estimated multifractal spectra are close and rather narrow.

For the Chhabra and Jensen method, the average estimated multifractal spectra obtained
for LDF and HRV fluctuations are shown in figure 10. We can observe that these average
multifractal spectra are very close for LDF and HRV fluctuations and close to the ones
computed with the method from Halsey et al (see figure 9(c)).

The structure function method gives the average multifractal spectra shown in figure 11
for LDF and HRV fluctuations. We can observe that the multifractal spectra obtained for
LDF and HRV fluctuations are nearly the same. Moreover, these multifractal spectra are only
slightly different from the ones estimated with the two box-counting methods (methods from
Halsey et al and from Chhabra and Jensen; see figures 9(c) and 10). Yordanova et al noted



6294 A Humeau et al

that since the fractal functions may have, at any scale, increments close to zero, the structure
function can diverge for q < 0 (Yordanova et al 2004). Furthermore, some authors mentioned
that the structure function method cannot deal with the divergence problems inherent to the
computation of negative-order exponents without losing the natural Legendre transform bridge
with the multifractal spectrum (Muzy et al 1993). This could explain the small differences
between the results of the structure function method and the two box-counting methods.

Some authors have shown that multifractality of HRV data from healthy subjects is
observed at a higher value than the one observed in patients with congestive heart failure
(Havlin et al 1999, Ivanov et al 1999). Moreover, such multifractality reported in HRV
signals of healthy subjects has been found to be related to the intrinsic properties of the
control mechanisms in human heartbeat dynamics and not simply due to changes in external
stimulation and the degree of physical activity (Amaral et al 2001). Some authors hypothesized
that both the monofractality and weaker anticorrelations for heart failure dynamics could be
related, at least in part, to impaired parasympathetic control in congestive heart failure patients
(Amaral et al 2001). Moreover, by computing the fractal dimension of heart rate and blood
pressure in healthy and diabetic subjects, some authors found a lower fractal dimension of
heart rate in diabetic patients than in healthy subjects but a similar fractal dimension of systolic
blood pressure in the two groups (Chau et al 1993).

Compared to the other multifractal studies performed on the signals of the CVS, our work
processes and compares the multifractal spectra of signals recorded simultaneously from the
peripheral and the central CVSs. From our results and through three different multifractal
methods, we show that LDF and HRV fluctuations possess similar narrow multifractal spectra,
on the scales studied. All this could mean that the corresponding fluctuations may have
close weak multifractal properties on the scales studied. Our work focuses on a multifractal
analysis of LDF and HRV signals. Both kinds of signals correspond to different physiological
meanings. HRV data are computed from the time intervals between consecutive heart beats
in the ECG, whereas LDF signals are extracted from the first moment of a photocurrent
power spectrum computed from backscattered photons of a laser light. Therefore, from our
multifractal results, no physiological comparisons can be drawn; only signal multifractal
properties are compared.

Using the method from Chhabra and Jensen for the estimation of the generalized fractal
dimensions D(q) and multifractal spectrum f (α) of HRV signals, other authors have shown
that the variations of D with q and the width of the multifractal spectrum f (α) are low (see
for example Guzman-Vargas et al (2005) and Munoz-Diosdado et al (2005), where around
8 h and 2 h of data are computed).

In the frame of a multifractal analysis with the methods from Halsey et al, from Chhabra
and Jensen, or with the structure function method, some criteria could be suggested regarding
the minimum length of recording and the choice of the sampling frequency for LDF signals:
if one wants to perform the power-law fitting on scales in which significant physiological
activities have been reported to occur, then the minimum length of recording should correspond
to the longest period of the targeted activities. In our work, for LDF signals, we have chosen to
perform the power-law fitting on scales gathering the intrinsic myogenic activity, neurogenic
activity, NO-dependent endothelial activity and non-NO-dependent endothelial activity. The
period of the latter activity is the longest of the four (time range [105.26 s, 200 s]). Therefore,
at least 200 s of LDF signal was necessary. Regarding the sampling frequency of the signal,
the highest its value, the smaller the time increment between two samples, and therefore the
smaller—temporal precision—can be the sizes ε of the boxes (in the methods from Halsey
et al, and Chhabra and Jensen) or of the time increment (in the structure function method).
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The results obtained in the present study complement the previous multifractal analysis
of data recorded simultaneously from the peripheral and central CVSs (Humeau et al 2009).
Our work focuses here on the fluctuations of the LDF and HRV data; the influence of the
mean value of each signal was removed by processing data where the minimum value of each
signal was subtracted. This has not been performed in a previous work (Humeau et al 2009).
As shown in many studies, the fluctuations of LDF and HRV signals contain physiological
information (see for example Bernjak et al (2008), Kvandal et al (2006), Bracic Lotric et al
(2000), Stefanovska et al (1999)). Furthermore, herein several numerical multifractal analysis
methods are tested and compared. Moreover, the power-law fitting is performed on scales
where physiological activities have been reported. The scales chosen for the power-law fitting
in a previous work were different, as well as the choice of the q-values (Humeau et al 2009).
These elements of the present paper constitute additional contributions to the difficult and
challenging task of elucidating the structure across the scales of complex biophysical signals
from the CVS.

5. Conclusion

We studied the peripheral CVS through a multifractal analysis of LDF fluctuations. Our
results were compared to ones obtained by the same analysis on HRV fluctuations (central
CVS) recorded simultaneously. For this purpose, we first tested four methodologies for
the multifractal analysis of our biophysical signals. We compared their applicability and
interpretability on synthetic signals possessing known multifractal properties. For this, we
selected three multifractal methods (methods from Halsey et al, from Chhabra and Jensen, and
the structure function method). For each of them, the applicability has been validated against
a flexible family of synthetic signals with controllable multifractal properties. At the same
time, each of these methods comes with a definition and an implementation which preserve a
natural and intuitive interpretation of the results across scales. From these results, these three
methods were applied on LDF and HRV fluctuations.

At the biophysical level, our results show that LDF and HRV fluctuations, coming from
the peripheral and central CVS, lead to multifractal spectra that are close and rather narrow on
the scales studied. These data could therefore present close and weak multifractal properties
on these scales. The processed signals come from two different levels of the CVS and
are generated by different biophysical mechanisms. It is interesting to note that despite these
differences the three multifractal methods used in our study give similar multifractal properties
for the signal fluctuations. Moreover, our analysis shows that both kinds of signals present a
homogeneous scaling behavior over a range of scales where distinct physiological activities
have been reported by authors.

Acknowledgment

Benjamin BUARD acknowledges support from La Région des Pays de la Loire, France.

References

Alam I, Lewis M J, Morgan J and Baxter J 2009 Linear and nonlinear characteristics of heart rate time series in
obesity and during weight-reduction surgery Physiol. Meas. 30 541–57

Amaral L A N, Ivanov P Ch, Aoyagi N, Hidaka I, Tomono S, Goldberger A L, Stanley H E and Yamamoto Y 2001
Behavioral-independent features of complex heartbeat dynamics Phys. Rev. Lett. 86 6026–9

http://dx.doi.org/10.1088/0967-3334/30/7/002
http://dx.doi.org/10.1103/PhysRevLett.86.6026


6296 A Humeau et al

Baillie R T, Cecen A A and Erkal C 2009 Normal heartbeat series are nonchaotic, nonlinear, and multifractal: new
evidence from semiparametric and parametric tests Chaos 19 028503

Barabasi A L and Vicsek T 1991 Multifractality of self-affine fractals Phys. Rev. A 44 2730–3
Bernjak A, Clarkson P B M, McClintock P V E and Stefanovska A 2008 Low-frequency blood flow oscillations in

congestive heart failure and after β1-blockade treatment Microvasc. Res. 76 224–32
Binzoni T, Leung T S and Van De Ville D 2009 The photo-electric current in laser-Doppler flowmetry by Monte

Carlo simulations Phys. Med. Biol. 54 N303–18
Bracic Lotric M, Stefanovska A, Stajer D and Urbancic-Rovan V 2000 Spectral components of heart rate variability

determined by wavelet analysis Physiol. Meas. 21 441–57
Chau N P, Chanudet X, Bauduceau B, Gautier D and Larroque P 1993 Fractal dimension of heart rate and blood

pressure in healthy subjects and in diabetic subjects Blood Press. 2 101–7
Chhabra A and Jensen R V 1989 Direct determination of the f (α) singularity spectrum Phys. Rev. Lett. 62 1327–30
Ching E S C and Tsang Y K 2007 Multifractality and scale invariance in human heartbeat dynamics Phys. Rev.

E 76 041910
Evertsz C J and Mandelbrot B B 1992 Multifractal measures Chaos and Fractals. New Frantiers of Science ed H O

Peitgen, H Jürgens and D Saupe (New York: Springer) pp 921–54
Feder J 1988 Fractals (New York: Plenum)
Guzman-Vargas L, Munoz-Diosdado A and Angulo-Brown F 2005 Influence of the loss of time-constants repertoire

in pathologic heartbeat dynamics Physica A 348 304–16
Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Shraiman B I 1986 Fractal measures and their singularities

Phys. Rev. A 33 1141–51
Havlin S, Amaral L A N, Ashkenazy Y, Goldberger A L, Ivanov P Ch, Peng C K and Stanley H E 1999 Application

of statistical physics to heartbeat diagnosis Physica A 274 99–110
Humeau A, Buard B, Chapeau-Blondeau F, Rousseau D, Mahe G and Abraham P 2009 Multifractal analysis of central

(electrocardiography) and peripheral (laser Doppler flowmetry) cardiovascular time series from healthy human
subjects Physiol. Meas. 30 617–29

Humeau A, Koitka A, Abraham P, Saumet J L and L’Huillier J P 2004 Spectral components of laser Doppler flowmetry
signals recorded in healthy and type 1 diabetic subjects at rest and during a local and progressive cutaneous
pressure application: scalogram analyses Phys. Med. Biol. 49 3957–70
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