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Abstract
Time irreversibility can be qualitatively defined as the degree of a signal for
temporal asymmetry. Recently, a time irreversibility characterization method
based on entropies of positive and negative increments has been proposed for
experimental signals and applied to heart rate variability (HRV) data (central
cardiovascular system (CVS)). The results led to interesting information as
a time asymmetry index was found different for young subjects and elderly
people or heart disease patients. Nevertheless, similar analyses have not yet
been conducted on laser Doppler flowmetry (LDF) signals (peripheral CVS).
We first propose to further investigate the above-mentioned characterization
method. Then, LDF signals, LDF signals reduced to samples acquired during
ECG R peaks (LDF_RECG signals) and HRV recorded simultaneously in healthy
subjects are processed. Entropies of positive and negative increments for LDF
signals show a nonmonotonic pattern: oscillations—more or less pronounced,
depending on subjects—are found with a period matching the one of cardiac
activity. However, such oscillations are not found with LDF_RECG nor with
HRV. Moreover, the asymmetry index for LDF is markedly different from
the ones of LDF_RECG and HRV. The cardiac activity may therefore play a
dominant role in the time irreversibility properties of LDF signals.

(Some figures may appear in colour only in the online journal)
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1. Introduction

When studying the cardiovascular system (CVS), two viewpoints can be adopted: a central
viewpoint and a peripheral viewpoint. A central viewpoint is given by the analysis of
data reflecting the activities at the heart itself. Electrocardiogram (ECG) and heart rate
variability (HRV) are such kinds of data. A peripheral viewpoint of the CVS can be given
by laser Doppler flowmetry (LDF) signals. The LDF technique relies on the interaction of
laser photons and moving blood cells (see for example Humeau et al 2007b). When laser
photons encounter moving blood particles, their wavelength is changed according to the
Doppler effect. The backscattered photons are collected (very often by an optical fiber)
and led to a signal processing unit. The first moment of the photocurrent power
spectrum gives the LDF signal that reflects the microvascular perfusion. LDF
data are now commonly used in clinical research to monitor microvascular blood
flow and are the subject of many papers (see for example Bernjak et al 2011, Tew et al
2011, Wojtkiewicz et al 2011, Binzoni et al 2010, 2009, Okano et al 2010, Al-Tahami et al
2010).

Numerous biophysical processes play a role in the CVS. Each of them has its own
characteristic time scales and all of them interplay together. The CVS therefore presents
complex behaviors. Many analyses have been performed on time series from the CVS
(see for example Signorini et al 2011, Costa et al 2008, 2005, Ivanov et al 1999). Their
goal was to better understand the CVS or the data themselves, or for diagnosis purposes.
Thus, the study of the time reversibility/irreversibility properties has been applied to
HRV data (Costa et al 2008, 2005) and also very recently to fetal magnetocardiographic
recordings (Hoyer et al 2012). A signal can be qualitatively considered as time reversible
if its statistical properties are invariant with respect to time reversal. The practical
approach to irreversibility proposed by Costa et al can be based on a notion of entropy
for the fluctuation. This method of Costa et al for a characterization of time irreversibility
led to interesting applications with a time asymmetry index which was found to be higher
in HRV from young subjects and to decrease with aging or heart disease (Costa et al
2005). These results can be of importance for the development and tests of physiological
models. Nevertheless, from the best of our knowledge, time irreversibility/reversibility
has not yet been studied for data from the peripheral CVS such as LDF
signals.

In Costa et al (2005), the method for a characterization of time irreversibility was
defined, and then it was directly applied to the analysis of HRV. As a complement, we
first propose herein a theoretical analysis of the properties of this approach in order to
better appreciate its capabilities, expected behaviors and limitations. To this purpose, the
characterization method is applied to several kinds of random signal models of known temporal
constitution. In each case, the theoretical behavior of the method is derived and studied
analytically. Then, the characterization method is applied to LDF signals, to LDF signals
reduced to samples acquired during ECG R peaks (LDF_RECG signals) and to HRV recorded
simultaneously.

The purpose of our work is therefore threefold: (i) to propose additional theoretical
insight into the time irreversibility characterization method of Costa et al (2005), in order to
better appreciate its capabilities, expected behaviors and limitations; (ii) to undertake the first
application to study the time reversibility/irreversibility properties of LDF and LDF_RECG

data; (iii) to analyze the results obtained with LDF and LDF_RECG signals and confront them
with those found from signals reflecting the central CVS (HRV data) recorded simultaneously
to LDF signals.
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2. Theoretical analysis of a time irreversibility characterization method

2.1. Characterization of time irreversibility

The method proposed by Costa et al (2005) for the characterization of time irreversibility is
presented is this section. Costa et al used a discrete approach with a time series X = {xi},
1 � i � N, where N is the number of samples in the data. We will herein extend to the
continuous case and, to this purpose, our random signal will be denoted as X (t).

Costa et al (2005) first proposed the computation of a time series of the one-step difference
Y = {yi} as yi = xi+1 − xi, 1 � i � N − 1. Then, this time series {yi} of the one-step difference
is aggregated to yield the coarse-grained time series {yτ (i)} defined as (Costa et al 2005)

yτ (i) = 1

τ

τ−1∑
j=0

yi+ j. (1)

These two steps can be directly gathered by determining the time series Yτ (t) of the increments
as (in the continuous domain)

Yτ (t) = X (t + τ ) − X (t)

τ
. (2)

Costa et al (2005) then introduced a probability density function ρ(yτ ) for the increment
Yτ , and they defined a measure of temporal irreversibility, based on a separate treatment of the
positive and negative increments, through

a(τ ) =
∫ ∞

0 [ρ(yτ ) ln(ρ(yτ )) − ρ(−yτ ) ln(ρ(−yτ ))]2 dyτ∫ ∞
−∞ ρ(yτ ) ln(ρ(yτ )) dyτ

. (3)

According to Costa et al, a time series is reversible if and only if a(τ ) = 0, as deduced from
a symmetry in the positive and negative increments.

In order to distinguish the forward and backward directions in time, Costa et al (2005)
further considered

A(τ ) =
∫ ∞

0 [ρ(yτ ) ln(ρ(yτ )) − ρ(−yτ ) ln(ρ(−yτ ))] dyτ∫ ∞
−∞ ρ(yτ ) ln(ρ(yτ )) dyτ

(4)

instead of (3), and they mentioned that if A(τ ) > 0, then for this τ the time series is irreversible,
as revealed by a lack of a symmetry in the positive and negative increments.

For application of their irreversibility indices to empirically observed signals, Costa et al
(2005) then turned to discrete-valued variables and an estimator of A(τ ) as

Â(τ ) =
∑

yτ >0 Pr(yτ ) ln[Pr(yτ )]∑
yτ

Pr(yτ ) ln[Pr(yτ )]
−

∑
yτ <0 Pr(yτ ) ln[Pr(yτ )]∑

yτ
Pr(yτ ) ln[Pr(yτ )]

, (5)

where Pr(yτ ) is the probability of the value yτ .
Costa et al (2005) then defined an asymmetry index AI as the sum

AI =
L∑

τ=1

Â(τ ). (6)

This AI index is convenient since it offers a single scalar value to summarize the irreversibility
properties. It may however bear some dependence with the time horizon L considered for
the analysis. This feature also interacts with the form of (2) containing a division by τ of
the increments, which tends to wipe out long-term increments associated with large τ , and
could thus mitigate the dependence with L of (6). However, equation (4) or (5) through their
denominator induces some sort of normalization by the range of the increments, which would
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tend to restore a dependence with L of (6). We will therefore concentrate our forthcoming
analysis on the index Â(τ ) as a function of τ and prior to its aggregation according to (6).

In Costa et al (2005), the indices Â(τ ) and AI , after their definition as above, were directly
applied to the analysis of measured physiologic time series, to draw conclusion on their
irreversibility properties. As a complement, we propose herein an analysis of the properties
of this approach based on different models of reference for random signals, for which we
analytically investigate the theoretical behavior and capabilities.

2.2. Characterization method on signal models

Let X (t) be a random signal and pX (x, t) its probability density function. We consider the
increment signal Yτ (t) = X (t + τ ) − X (t), where, compared to (2), we omit the division by τ

which does not interact with the time irreversibility of X (t). The probability density function
of the increment Yτ (t) is denoted as pYτ

(y, t).
It is interesting to relate and express the irreversibility characterization of Costa et al

(2005) based on (4) or (5), in terms of the standard notion of differential entropy of a random
variable (Cover and Thomas 1991). In this way, we introduce for the increment Yτ (t) the
entropy

H[Yτ (t)] = −
∫ +∞

−∞
pYτ

(y, t) ln(pYτ
(y, t))dy. (7)

For the positive increments Y +
τ (t), we have a probability density function p+

Yτ
(y, t) equal to

p+
Yτ

(y, t) = 1

P+(t)
pYτ

(y, t), for y � 0 only, (8)

while p+
Yτ

(y, t) = 0 for y < 0. In (8), we have the probability P+(t) = ∫ +∞
0 pYτ

(y, t) dy which
is necessary for a proper normalization of the density p+

Yτ
(y, t). The corresponding entropy

H[Y +
τ (t)] for the positive increments Y +

τ (t) follows as

H[Y +
τ (t)] = −

∫ +∞

0
p+

Yτ
(y, t) ln

(
p+

Yτ
(y, t)

)
dy. (9)

For the negative increments Y −
τ (t), we have in a similar way the probability density

p−
Yτ

(y, t) = 1

P−(t)
pYτ

(y, t), for y � 0 only, (10)

with P−(t) = ∫ 0
−∞ pYτ

(y, t) dy, and the entropy

H[Y −
τ (t)] = −

∫ 0

−∞
p−

Yτ
(y, t) ln

(
p−

Yτ
(y, t)

)
dy. (11)

A composition relation exists between the three above entropies, which reads

H[Yτ (t)] = P−(t)H[Y −
τ (t)] + P+(t)H[Y +

τ (t)] + Hbin[P−(t), P+(t)], (12)

where Hbin[P−(t), P+(t)] = −P−(t) ln[P−(t)] − P+(t) ln[P+(t)].
By comparison, equation (4) or (5) for the positive and negative increments rather uses

partial entropies which are expressed with non-normalized probability densities. In this respect,
equation (4) is

A(τ ) = Hpar[Y −
τ (t)] − Hpar[Y +

τ (t)])

H[Yτ (t)]
, (13)

with the partial entropies

Hpar[Y
+
τ (t)] = −

∫ +∞

0
pYτ

(y, t) ln(pYτ
(y, t))dy, (14)
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and

Hpar[Y
−
τ (t)] = −

∫ 0

−∞
pYτ

(y, t) ln(pYτ
(y, t)) dy, (15)

and Hpar[Y −
τ (t)] + Hpar[Y +

τ (t)] = H[Yτ (t)]. Yet these partial entropies of (14) and (15) relate
to the regular entropies of (9) and (11) through

Hpar[Y
+
τ (t)] = P+(t)H[Y +

τ (t)] − P+(t) ln[P+(t)], (16)

and

Hpar[Y
−
τ (t)] = P−(t)H[Y −

τ (t)] − P−(t) ln[P−(t)]. (17)

Alternatively, equation (4) suggests another symmetry index for irreversibility, but based
on regular entropies, as

A′(τ ) = H[Y −
τ (t)] − H[Y +

τ (t)]

H[Yτ (t)]
. (18)

This index A′(τ ) has the benefit of a point of view on irreversibility based on a standard notion
of entropy with known properties and an informational interpretation.

In the following, we use the common and standard notion of entropy, so as to express the
index A(τ ) or A′(τ ) for different signal models, and through their analytical expressions test
their properties for the characterization of time irreversibility.

2.2.1. Case of white fluctuations. We consider X (t) a white fluctuation with probability
density pX (x, t). Then the increment Yτ (t) = X (t + τ ) − X (t) has a probability density
pYτ

(y, t) given by the convolution pYτ
(y, t) = pX (x, t + τ ) ∗ pX (−x, t), or

pYτ
(y, t) =

∫ +∞

−∞
pX (x, t + τ )pX (x − y, t) dx. (19)

As a result, for the argument −y and through a change of variable in (19), one has

pYτ
(−y, t) =

∫ +∞

−∞
pX (x′ − y, t + τ )pX (x′, t) dx′. (20)

We conclude that when X (t) is a stationary white fluctuation, then pX (x, t + τ ) =
pX (x, t) = pX (x), and therefore pYτ

(y, t) = pYτ
(−y, t) follows as an even probability density

independent of t and τ . It then follows that P+ = P− = 1/2 and H[Y +
τ ] = H[Y −

τ ] =
H[Yτ ]−1 bit. In this case, from (13) and (18), we have the indices A(τ ) = 0 and A′(τ ) = 0, at
any scale τ . Therefore, a stationary white fluctuation is always characterized as time reversible
by the indices A(τ ) and A′(τ ), at any scale τ . Possible asymmetry in the positive or negative
excursions of the fluctuation X (t), associated with an asymmetric probability density pX (x),
will be wiped out in the time series of the increments Yτ and has no influence in the entropy
measures of (13) and (18). This is a desirable behavior of the irreversibility indices A(τ ) and
A′(τ ) to vanish in this case, because a stationary white fluctuation conforms indeed to the
notion of a time reversible signal.

As in Costa et al (2005), a non-zero value for the index A(τ ) or A′(τ ) here identifies
an irreversible fluctuation. Also, as in Costa et al (2005), when the index A(τ ) = 0 or
A′(τ ) = 0, then in general the fluctuation may or may not be reversible. However, an
irreversible fluctuation with zero indices could be expected to have a specifically sophisticated
constitution. Zero indices for such an irreversible fluctuation would express that there is no
asymmetry in the positive and negative increments. Any time irreversibility should therefore
come from higher order statistical properties not visible from the probability distributions
of the increments. For the model signal formed by the stationary white fluctuation here,
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A(τ ) = 0 and A′(τ ) = 0 that we found are taken as a mark of reversibility of this
signal. This is because the stationary white fluctuation has no correlation, no higher order
statistical structure and therefore the zero value of the indices is sufficient to establish
reversibility.

Next, it is useful to explore the expected behavior of the irreversibility indices when we
move to other, more structured, signal models. We shall first examine the impact of correlation
on the temporal fluctuation X (t), and for the sake of an analytically tractable situation, we
examine the behavior of the irreversibility indices on a Gaussian stationary colored fluctuation.

2.2.2. Case of Gaussian stationary colored fluctuations. We consider X (t) a stationary
Gaussian fluctuation with mean mX , standard deviation σX and a correlation structure specified
by the normalized cross-covariance ρ(τ ). In such a case, the incrementYτ (t) = X (t+τ )−X (t)
is zero-mean Gaussian with standard deviation σYτ

= √
2σX

√
1 − ρ(τ ) (Papoulis 1991). It

then follows that P+ = P− = 1/2 and H[Y +
τ ] = H[Y −

τ ] = H[Yτ ] − 1 bit, with the entropy of
the Gaussian increment

H[Yτ ] = ln(
√

2πe σYτ
) = H[X (t)] + 1

2 ln[1 − ρ(τ )] + 1
2 ln(2). (21)

In this case, from (13) and (18), we have the indices A(τ ) = 0 and A′(τ ) = 0, for
any correlation structure ρ(τ ). Therefore, a Gaussian stationary colored fluctuation is always
characterized as time reversible by the indices A(τ ) and A′(τ ). This is again a desirable
behavior of the irreversibility indices A(τ ) and A′(τ ) to vanish in this case, because a Gaussian
stationary colored fluctuation conforms indeed to the notion of a time reversible signal.

To investigate further generic conditions where some irreversibility would be present in
a reference signal model and captured by the index A(τ ) or A′(τ ), we now turn to the case of
nonstationary fluctuations.

2.2.3. Case of stationary white fluctuation deterministically modulated. As a generic and
tractable model for a nonstationary random signal X (t), we will consider a stationary white
fluctuation modulated in time by a deterministic signal s(t).

Let s(t) be a deterministic signal and B(t) a stationary white noise with probability density
function fB(u).

• Case of stationary white fluctuation with multiplicative modulation. We consider X (t) =
s(t)B(t) coming with the nonstationary probability density pX (x, t) = fB[x/s(t)]/s(t).
The increment Yτ (t) = X (t + τ ) − X (t) follows with a probability density pYτ

(y, t) given
by the convolution (Papoulis 1991) pYτ

(y, t) = fB[x/s(t +τ )]/s(t +τ )∗ fB[−x/s(t)]/s(t),
or

pYτ
(y, t) = 1

s(t)s(t + τ )

∫ +∞

−∞
fB

( −x

s(t)

)
fB

(
y − x

s(t + τ )

)
dx. (22)

From (22) and a change of variable, we also have

pYτ
(−y, t) = 1

s(t)s(t + τ )

∫ +∞

−∞
fB

(
x′

s(t)

)
fB

(
x′ − y

s(t + τ )

)
dx′, (23)

showing that in general pYτ
(−y, t) �= pYτ

(y, t) and thus the probability density pYτ
(y, t)

is not an even function. This general case when pYτ
(y, t) is not an even density will

usually entail (except for some very specific densities) P+(t) �= P−(t), also Hpar[Y +
τ (t)] �=

Hpar[Y −
τ (t)], and H[Y +

τ (t)] �= H[Y −
τ (t)]. As a result, the irreversibility indices A(τ ) and

A′(τ ) from (13) and (18) will generally be non-zero, although their specific values will
depend on the time t at which they are evaluated. In this way, the nonstationary signal
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X (t) realized by a white fluctuation B(t) multiplicatively modulated by a deterministic
signal s(t) will generally be characterized as an irreversible signal by the index A(τ )

or A′(τ ).
One can also think of some stationarization process that could result from an empirical

evaluation of the index A(τ ) or A′(τ ) from the increments Yτ (t) observed on a single
temporal realization of X (t). This would in general induce some stationarization process
on the underlying nonstationary density pYτ

(y, t), which would be empirically evaluated as
a stationary density pYτ

(y) = 〈pYτ
(y, t)〉. For instance, if the deterministic modulation s(t)

has a period T, then the stationarization of the density will occur through a time average
〈·〉 = T −1

∫ T
0 · dt. Since each nonstationary density pYτ

(y, t) is in general a non-even
function for any t, stationarization or time averaging over t of such non-even densities
will still result in a non-even stationary density pYτ

(y) (except maybe for some very
specific modulation s(t)). And from a non-even stationary density pYτ

(y), the resulting
irreversibility index A(τ ) or A′(τ ) will generally be non-zero, still characterizing the signal
X (t) as irreversible.

These non-vanishing behaviors of the irreversibility index A(τ ) or A′(τ ) however
break down in the special case where the white noise B(t) has a symmetric even probability
density fB(u). In this case, from (23) it results that pYτ

(−y, t) = pYτ
(y, t) and thus the

probability density pYτ
(y, t) also is an even function. This entails P+(t) = P−(t) = 1/2,

also Hpar[Y +
τ (t)] = Hpar[Y −

τ (t)], and H[Y +
τ (t)] = H[Y −

τ (t)]. As a result, the irreversibility
indices A(τ ) and A′(τ ) from (13) and (18) vanish at any time t and increment τ . In this way,
the nonstationary signal X (t) realized by a symmetric white fluctuation multiplicatively
modulated by a deterministic signal s(t) will generally be characterized as a reversible
signal by the index A(τ ) or A′(τ ).

• Case of stationary white fluctuation with additive modulation. We consider X (t) =
s(t)+B(t) coming with the nonstationary probability density pX (x, t) = fB[x− s(t)]. The
increment Yτ (t) = X (t + τ ) − X (t) follows with a probability density pYτ

(y, t) given by
the convolution (Papoulis 1991) pYτ

(y, t) = fB[x − s(t + τ )] ∗ fB[s(t) − x]. Alternatively,
since Yτ (t) = B(t + τ ) − B(t) + s(t + τ ) − s(t), the density pYτ

(y, t) of the increment
Yτ (t) will be given by the density of B(t + τ ) − B(t); let us call it fB−B(u), affected by
a shift of s(t + τ ) − s(t) in the mean, i.e. pYτ

(y, t) = fB−B[y − s(t + τ ) + s(t)]. Since
B(t) is a stationary white noise, by the same reasons expressed by (19) and (20), the
density fB−B(u) is always an even function. However, due to the shift in the mean, the
density pYτ

(y, t) = fB−B[y − s(t + τ ) + s(t)] of the increment will not generally be an
even function. This will usually entail the same consequences as for the multiplicative
modulation (except for some very specific densities): P+(t) �= P−(t), also Hpar[Y +

τ (t)] �=
Hpar[Y −

τ (t)], and H[Y +
τ (t)] �= H[Y −

τ (t)]. As a result, the irreversibility indices A(τ )

and A′(τ ) from (13) and (18) will generally be non-zero, although their specific values
will depend on the time t at which they are evaluated. In this way, the nonstationary
signal X (t) realized by a white fluctuation B(t) additively modulated by a deterministic
signal s(t) will generally be characterized as an irreversible signal by the index A(τ )

or A′(τ ).
For confrontation with an empirical evaluation from a single temporal realization of X (t),
stationarization of the non-even time-dependent density pYτ

(y, t) will usually produce a
non-even stationary density pYτ

(y) and ultimately, non-zero irreversibility index A(τ ) or
A′(τ ), still characterizing the signal X (t) as irreversible.

From these theoretical elements, we now process LDF, LDF_RECG and HRV data with
the time irreversibility characterization method.
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Figure 1. (a) LDF signal recorded on the forearm of a healthy subject. The sampling period is
40 ms. (b) LDF signal reduced to samples acquired during the R peaks of the ECG (LDF_RECG
signal) on a healthy subject. (c) HRV signal of a healthy subject.

3. Materials and methods

3.1. Measurement procedure

Thirteen subjects (mean age 29.2 ± 11.5 years; four women) without known disease
participated in the study. All volunteers provided written, informed consent prior to
participation and the study was carried out in accordance with the Declaration of Helsinki.
Subjects were placed supine in a quiet room with the ambient temperature set at 23 ± 1 ◦C.
For temperature and cardiovascular adaptations, the subjects were left at rest for 15 min before
each measurement. A laser Doppler probe (PF408, Perimed; fiber separation equal to 0.25 mm)
connected to a laser Doppler flowmeter (Periflux PF4001, Perimed) was used to record LDF
signals. The LDF probe was positioned on the forearm ventral face of the subjects. The
measurement depth was therefore around 1 mm (O’Doherty et al 2009). Skin blood flow was
assessed in arbitrary units (au) and recorded on a computer via an analog-to-digital converter
(Biopac System) with a sampling frequency of 250 Hz. A sub-sampling to 25 Hz was then
performed. For the ECG acquisition, a Lifescope (Nihon Kohden Corporation) was used, and
the signals were recorded with a sampling frequency of 1000 Hz and then sub-sampled to
250 Hz. In our work, LDF and ECG signals were recorded simultaneously for 20 min.

After acquisition, ECG signals were processed to obtain the HRV data: a computer
program was developed by our group (written in Matlab, The MathWorks, Inc) to automatically
detect the R peaks of the ECG time series; the results given by the automatic detection were then
visually checked and corrected if needed, and the R–R intervals were computed. Moreover,
LDF signals reduced to samples acquired during the R peaks of the ECG (LDF_RECG signals)
were also generated. Examples of LDF, LDF_RECG and HRV data are shown in figure 1.
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Figure 2. (a) Gaussian white noise with mean 0 and standard deviation equal to 1. Only 200 samples
over 60 000 are shown. The sampling period is chosen equal to 1 sample. The corresponding time
series can be considered as time reversible. (b) Entropies for the positive (∗) and negative (◦)
increments (H[Y +

τ ] and H[Y −
τ ], respectively) computed from the signal in (a), for each scale

factor τ . The solid line corresponds to the theoretical value for entropies. The bin size is 0.05. (c)
Evolution of asymmetry index Â(τ ) with scale factor τ for the signal presented in (a). (b), (c) The
sampling period of the signal being 1 sample, for scale factors τ going from 1 to 100 we have time
scales ranging from 1 to 100 samples.

3.2. Signal processing method

In what follows, our physiological signals are denoted as X = {x(i)}, 1 � i � N, where N
is the number of samples in the data. Based on theoretical backgrounds mentioned above, we
first determine the increments Yτ = {yτ (i)}, 1 � i � N − 1, of the signal X by computing
yτ (i) = x(i + τ ) − x(i). Then, the entropy H[Yτ ] for the increments Yτ , the entropy H[Y +

τ ]
for the positive increments Y +

τ and the entropy H[Y −
τ ] for the negative increments Y −

τ are
computed. Entropies are computed as

H[Yτ ] = −
∑

yτ

Pr(yτ ) ln[Pr(yτ )], (24)

where Pr(yτ ) corresponds to the probability of yτ (i). To determine the latter probability, the
histogram of each time series Yτ was computed with a bin size denoted as bin. The discrete
version of the entropy H[Yτ ] = Hdis[Yτ ] of (24) based on the discrete probabilities Pr(yτ ) and
used for experimental evaluation is related to the continuous entropy H[Yτ (t)] = Hcont[Yτ (t)]
of (7) through the relation Hcont[Yτ (t)] ≈ Hdis[Yτ ] + ln(bin) (Cover and Thomas 1991).
The continuous entropy H[Yτ (t)] = Hcont[Yτ (t)] of (7) is intrinsic to the fluctuation Yτ (t) and
determined by its probability density pY (y). By contrast, the discrete entropy H[Yτ ] = Hdis[Yτ ]
of (24) is dependent on the precision bin = �y used to quantize the fluctuation Yτ (t) and
measure probabilities Pr(yτ ) ≈ pY (yτ )�y. Accordingly, when using the discrete entropy
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Figure 3. (a) Evolution of the standard deviation for the white noise processed. The triangle pattern
has 15 samples and is periodically repeated all along the signal. (b) Gaussian white noise with
mean 0 and standard deviation presented in (a). Only 200 samples over 60 000 are shown. The
sampling period is chosen equal to 1 sample. The corresponding time series can be considered as
time irreversible.

H[Yτ ] of (24), we have the possibility of an irreversibility index independent of the (small)
experimental precision bin = �y as

Â(τ ) = H[Y +
τ ] − H[Y −

τ ]

H[Yτ ] + ln(bin)
. (25)

The precision bin = �y is the same for the experimental evaluation of H[Y +
τ ] and H[Y −

τ ],
and thus the common factor ln(bin) = ln(�y) disappears at the numerator of (25) in the
difference of two entropies, while it remains in the entropy of the denominator. In this way,
we have with (25) an irreversibility index independent of the (small) experimental precision
bin = �y, while the original form of the index introduced in Costa et al (2005) with no factor
ln(bin) at the denominator will depend on the experimental precision bin = �y with which
the fluctuation is quantized. Now, in the present framework of interpretation, for a given scale
factor τ , the closer Â(τ ) is to zero, the more reversible is the original time series at this scale
factor τ .

In what follows, to validate our processing approach, we first apply it to two kinds
of numerically generated synthetic signals—having known statistical properties—before
application to physiological signals. The first synthetic signal is a Gaussian white noise with
mean 0 and standard deviation 1 (see figure 2(a)). Qualitatively, this signal can be considered
as a reversible time series. The second synthetic signal is a Gaussian white noise with mean
0 and a standard deviation following a periodic triangle law (see figure 3). Qualitatively, this
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Figure 4. (a) ◦ and ∗: numerically estimated (from histograms) entropies H[Y +
τ ] of positive

increments and H[Y −
τ ] of negative increments for the Gaussian white noise presented in figure 3(b).

�and �: theoretical values for H[Y +
τ ] and H[Y −

τ ]. The bin size is 0.05. (b) Evolution of asymmetry
index Â(τ ) with scale factor τ for the signal presented in figure 3(b). (a), (b) The sampling period
of the signal being 1 sample, for scale factors τ going from 1 to 100 we have time scales ranging
from 1 to 100 samples.

second synthetic signal can be seen as an irreversible time series. These two synthetic time
series possess 60 000 samples.

4. Results and discussion

In what follows, the bin value used in the histogram for the entropy computation has been
chosen to be higher than the lowest value between two samples but low enough to obtain
histograms with smooth edges. This led to a bin value of 0.05 for both the synthetic signals and
the experimental LDF, LDF_RECG and HRV data. The results obtained for the two numerically
generated synthetic signals are presented in figures 2 and 4, respectively. For the Gaussian
white noise with mean 0 and standard deviation equal to 1, we note that entropies for positive
and negative increments, H[Y +

τ ] and H[Y −
τ ], respectively, are close to each other for a given

scale factor τ (see figure 2). Their value is close to 4.070. These results are the expected
ones as for a white noise with mean 0 and standard deviation 1 having a Gaussian probability
density function, the entropies for positive and negative increments are

H[Y +
τ ] = H[Y −

τ ] = ln

(
σyτ

√
eπ

2

)
− ln(bin) = 4.068 (in nats), (26)
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Figure 5. (a) Entropy for the positive (∗) and negative (◦) increments (H[Y+
τ ] and H[Y −

τ ],
respectively) computed from the LDF signal of figure 1(a), for each scale factor τ . The bin
size is 0.05. (b) Evolution of asymmetry index Â(τ ) with scale factor τ for the signal presented in
figure 1(a). (a), (b) The sampling period of the LDF signal being 40 ms, for scale factors τ going
from 1 to 100 we have time scales ranging from 0.04 to 4 s.

where σyτ
is the standard deviation of the increment time series Yτ . We also note that the

asymmetry index Â(τ ) wanders around 0; Â(τ ) values go between −0.012 and 0.008 when
scale factors τ go from 1 to 100.

For the Gaussian white noise with mean 0 and standard deviation following a triangle law
(see figure 3), we observe that positive and negative increments, Y +

τ and Y −
τ , respectively, have

entropies that are close to each other for a given scale factor τ (see figure 4). These entropies,
H[Y +

τ ] and H[Y −
τ ], have the same pattern which presents a periodic behavior. The period

for these entropies is equal to the one of the signal standard deviations (triangle length; see
figure 3(a)). These results are also the ones expected as for this second synthetic signal being
Gaussian and having a standard deviation following a periodic law, the probability density
functions for the increment time series Yτ are

pdf(u, τ ) = 1

T

∫ T

0

1

σyτ
(t, τ ) × √

2 × π
× exp

(
−(u − m)2

2 × σ 2
yτ

(t, τ )

)
dt, (27)

where σyτ
is the standard deviation of the increment time series Yτ and m is the mean value

of the increment signal. From these probability density functions, the theoretical entropies for
positive and negative increments, H[Y +

τ ] and H[Y −
τ ], respectively, are shown in figure 4(a).

They correspond to the ones computed through histograms. Moreover, the asymmetry index
Â(τ ) wanders around 0; Â(τ ) values go between −0.003 and 0.004 when scale factors τ

go from 1 to 100 (see figure 4(b)). For the first and second synthetic signals, respectively
reversible and irreversible signal, the computed entropies H[Y +

τ ] and H[Y −
τ ] for positive and
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Figure 6. (a) Entropy for the positive (∗) and negative (◦) increments (H[Y +
τ ] and H[Y −

τ ],
respectively) computed from the LDF_RECG signal of figure 1(b), for each scale factor τ . (b)
Evolution of asymmetry index Â(τ ) with scale factor τ for the signal presented in figure 1(b).

negative increments correspond to the ones found theoretically. Our approach is thus thereafter
applied to LDF, LDF_RECG and HRV experimental data.

Due to the high sensitivity of the LDF technique to movements (movements of the
subjects, optical fiber movements, movements of the probe head relative to the tissue, etc),
the subject has to be completely still during the acquisition. Therefore, the process of long
LDF recordings is not possible if we want data that do not contain any movement artifact.
For each LDF signal, 16 384 samples are herein processed (∼11 min of data). For LDF_RECG

and HRV data, 1024 samples are taken into account (this corresponds to a mean of 14.5 min
for our 13 subjects). Results obtained with LDF and LDF_RECG signals are presented in
figures 5 and 6, respectively. We observe that the entropy H[Y +

τ ] for the positive increments
Y +

τ and the entropy H[Y −
τ ] for the negative increments Y −

τ of LDF signals present oscillations.
By computing the period of these oscillations and comparing the results with the period of
the cardiac activity (mean of HRV data), for each subject, we note that they are equal. The
amplitude of these oscillations varies from one subject to another and decreases when the scale
factor τ increases. Moreover, we observe that, for some of our subjects, oscillations are also
visible on the asymmetry index Â(τ ) curve (see examples in figure 5(b)). The amplitude of
these oscillations also differs between subjects. Furthermore, when LDF signals are reduced
to samples acquired during the R peaks of the ECG data (LDF_RECG signals), the oscillations
with period of the cardiac activity are not present any more on the entropy H[Y +

τ ] of the positive
increments Y +

τ nor on the entropy H[Y −
τ ] of the negative increments Y −

τ (see an example in
figure 6(a)). This is true for all our subjects. By definition, LDF_RECG signals do not contain
the dominant frequency of the heart beat (see for example Lotric et al 2000). That is why the
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Figure 7. (a) Entropy for the positive (∗) and negative (◦) increments (H[Y+
τ ] and H[Y −

τ ],
respectively) computed from the HRV signal of figure 1(c), for each scale factor τ . The bin
size is 0.05. (b) Evolution of asymmetry index Â(τ ) with scale factor τ for the signal presented in
figure 1(c).

oscillations with period of the cardiac activity are not present any more on the entropy H[Y +
τ ]

nor on the entropy H[Y −
τ ] of these data. The entropy H[Y +

τ ] and the entropy H[Y −
τ ] present an

increasing trend and then they tend to decrease (see an example in figure 6(a)). Moreover, for
LDF_RECG signals, the asymmetry index Â(τ ) wanders around 0, in a way similar to the one
observed for the Gaussian white noises (see figure 6(b)).

For HRV data, the entropy H[Y +
τ ] for the positive increments Y +

τ and the entropy H[Y −
τ ]

for the negative increments Y −
τ are almost constant for scale factors τ lower than 15, but seem

to present an increasing trend due to the low values of the entropies H[Y +
τ ] and H[Y −

τ ] for
τ = 1; for higher scale factors τ (around 15 to 100), the entropies H[Y +

τ ] and H[Y −
τ ] are

almost constant (see examples in figure 7(a)). Moreover, we note that the asymmetry index
Â(τ ) wanders around 0, in a way similar to the one observed for the Gaussian white noises
(see figure 7(b)).

The behaviors for the entropies H[Y +
τ ] and H[Y −

τ ] of positive and negative increments
and for the asymmetry index Â(τ ) of LDF signals (peripheral CVS) are different from the
ones observed for HRV data (central CVS). By studying the time reversibility/irreversibility
of central cardiovascular data (HRV signals) from healthy subjects, other authors have shown
that entropies for positive and negative increments have a monotonic behavior for scale factors
τ lower than 20 (in Costa et al (2005), τ varied from 1 to 20). From a qualitative point of
view, the evolution of entropies H[Y +

τ ] and H[Y −
τ ] for positive and negative increments for

LDF signals (peripheral CVS) presents a marked contrast pattern compared to the one of HRV
data (central CVS). We find a nonmonotonic evolution of the entropies H[Y +

τ ] and H[Y −
τ ]
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with scale factor τ for the LDF signals. For HRV signals from healthy subjects, the evolution
observed for the entropies H[Y +

τ ] and H[Y −
τ ] is monotonic with two trends: a light increasing

trend for scale factors τ going from 1 to around 15 and a nearly constant value for scale factors
τ going from around 15 to 100. Furthermore, the entropies H[Y +

τ ] and H[Y −
τ ] of LDF_RECG

signals present patterns that are different from the one of LDF signals; two trends are noted
for LDF_RECG signals: an increasing trend and then a decreasing one.

From a quantitative point of view, we note that the oscillations visible on the entropy
H[Y +

τ ] for the positive increments Y +
τ and on the entropy H[Y −

τ ] for the negative increments
Y −

τ for LDF signals have a period equal to the one of the cardiac activity for each subject.
These first results on the analysis of time reversibility/irreversibility for LDF data lead to
new information on the properties of the microvascular perfusion time series. Moreover, these
oscillations with a period of the cardiac activity are not visible on the entropy H[Y +

τ ] nor on
the entropy H[Y −

τ ] of LDF_RECG signals. The cardiac activity may therefore play a role in the
time irreversibility properties of LDF signals. This complements the results found previously
(see for example Buard et al 2010, Humeau et al 2010a, 2010b, 2009, 2007a).

5. Conclusion

We herein focused on the time irreversibility characterization method proposed by Costa
et al (2005) to analyze LDF, LDF_RECG and HRV signals. A theoretical analysis of the
characterization method has been proposed to better appreciate its capabilities, behaviors
and limitations. We thus studied analytically the behavior of the approach on several kinds
of random signal models of known temporal constitution, so as to serve as references.
Our results show that white fluctuations are always characterized as time reversible by
the irreversibility indices A(τ ) and A′(τ ), as expected. Moreover, for Gaussian stationary
colored fluctuations, we show that A(τ ) and A′(τ ) vanish for any correlation structure ρ(τ ),
thus characterizing Gaussian stationary colored fluctuations as reversible, as expected again.
Moreover, we have shown that stationary white fluctuations with a multiplicative modulation
are generally characterized as irreversible signals by the irreversibility indices A(τ ) and A′(τ )

(that are generally non-zero). However, when the white noise has a symmetric even probability
density, the stationary white fluctuations with multiplicative modulation are characterized as
reversible signals by the indices A(τ ) and A′(τ ). For stationary white fluctuations with additive
modulation, the two indices A(τ ) and A′(τ ) will generally be non-zero thus leading to a
characterization of the signals as irreversible signals. Other quantitative indices of multiscale
irreversibility have been proposed (Hou et al 2010, Alvarez-Ramirez et al 2009, Casali et al
2008, Porporato et al 2007) and could be analyzed too.

The irreversibility index introduced in Costa et al (2005) is related to the assumption
that ‘each transition (increase or decrease in heart rate) is independent and requires a specific
amount of energy’. This way of approach provides a connection to motivate or interpret the
irreversibility index in a thermodynamic or statistical physics framework. However, at the
level of an observed signal, the index keeps an intrinsic significance as a measure of time
asymmetry, even if the assumption of underlying independent energetic transitions is not
validated. By constitution, the irreversibility indices in Costa et al (2005) and those tested
here, based on the probability distributions for the positive and for the negative increments,
have the ability to detect any asymmetry that could exist, statistically, between the increasing
and decreasing temporal transitions in an observed signal. And this ability, conditioned by
asymmetries in the probability densities, is preserved whether or not successive increments
are statistically independent. Accordingly, the irreversibility indices can be usefully applied to
observed signals, as we performed here, without necessary reference to underlying independent
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energetic transitions, which may indeed be difficult to validate for complex signals from
cardiovascular dynamics.

We have undertaken the first application to study the time reversibility/irreversibility
properties of LDF and LDF_RECG data. We also have confronted the results with those found
from HRV data (central CVS) recorded simultaneously to LDF signals. Our work reveals
that LDF signals present entropies of positive and negative increments (H[Y +

τ ] and H[Y −
τ ],

respectively) that have oscillations with a period matching the one of the cardiac activity.
Moreover, our results show that these oscillations with a period of the cardiac activity are not
visible on the entropy H[Y +

τ ] nor on the entropy H[Y −
τ ] of LDF_RECG signals, nor on the ones

of HRV data. The cardiac activity may therefore play a dominant role in the time irreversibility
properties of LDF signals. Our findings could be used to test future models for LDF signals.
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