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• A new Bell-type inequality for nonlocal correlation in quantum systems is derived.
• The Tsallis entropy is used as a generalized metric of statistical dependence.
• It is applied to classical outcomes of quantum measurements, as in the EPR setting.
• Superiority and complementarity of the generalized Bell inequality is demonstrated.
• It is able to detect nonlocal quantum correlation from a larger set of observables.
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a b s t r a c t

A new Bell-type inequality is derived through the use of the Tsallis entropy to quantify the
dependence between the classical outcomes of measurements performed on a bipartite
quantum system, as typical of an EPR experiment. This new inequality is confronted with
standard correlation-based Bell inequalities, and with other known Bell-type inequalities
based on the Shannon entropy for which it constitutes a generalization. For an optimal
range of the Tsallis order, the new inequality is able to detect nonlocal quantum correla-
tionwithmeasurements from a larger set of quantum observables. In this respect it is more
powerful and also complementary compared to the previously known Bell-type inequali-
ties.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Nonlocal quantum correlation and entanglement are now considered as important resources for quantum information
processing and communication, although they are far from being completely understood and mastered [1,2]. Distant parts
of a quantum system can exhibit correlations or dependence that cannot be understood by classical theory. Such quantum
correlations, challenging physical realism and locality, were first envisaged in the Einstein–Podolsky–Rosen (EPR) thought
experiment of Ref. [3]. Quantitative tests practically implementable to detect such nonlocal quantum correlations were
proposed with the Bell inequalities [4], later generalized with the CHSH inequalities from Ref. [5]. A Bell inequality [4], or
a Bell-type inequality like the CHSH inequality of Ref. [5], is an inequality relating statistics on pairs of random variables
constituted by the classical outcomes frommeasurements performed on the two parts of a bipartite quantum system. Such
Bell inequalities concern classical variables accessible as measurement outcomes, and are derived based on the assumption
of a joint probability distribution existing for these classical variables, as implied by local realism. However, measurements
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performed on entangled quantum states can lead to violation of Bell inequalities [6]. Such violation was experimentally
demonstrated in Refs. [7,8], as a concrete manifestation of nonlocal quantum correlations associated with entanglement.
Entangled quantumstates andnonlocal correlations are specially important as they are now recognized as specific anduseful
resources practically applicable to information processing [9,2], for instance for superdense coding [10], teleportation [11],
quantum error correction [12], quantum cryptography [13], or quantum games and strategies [14–19].

In order to identify nonlocal quantum correlations (dependences) betweenmeasurements, common statistics considered
first for Bell and CHSH inequalities were realized by simple linear cross-correlation [4,5]. Later, other metrics of statistical
dependencewere also examined. This is accomplishedwithmetrics based on the Shannon entropy in Refs. [20,21]. Bell-type
inequalities are derived in Refs. [20,21] with the Shannon entropy to assess statistical dependence between measurement
outcomes from a bipartite quantum system. Such Bell-type inequalities can also be violated by measurements from an
entangled quantum state, as reported in Refs. [20,21]. However, the (quantumprojective)measurements leading to violation
of correlation-based (as in Refs. [4,5]) or Shannon-entropy-based (as in Refs. [20,21]) Bell-type inequalities, do not coincide,
as shown in Ref. [21]. For a same entangled state, a given measurement protocol may lead to violation of the correlation-
based inequality and not of the Shannon-entropy-based inequality; and conversely for another measurement protocol. In
this respect, the two classes of Bell-type inequalities are complementary for a broader ability to detect quantum correlation
inherent to an entangled state, from some given quantum projective measurements.

In the present study,wewill investigate the possibility of another class of Bell-type inequalities.Wewill turn to the Tsallis
entropy as a basis to assess statistical dependence between themeasurement outcomes performed on the bipartite quantum
system involved in a Bell inequality. The Tsallis entropy is a generalization to the Shannon entropy. Especially, the Tsallis
entropy is a nonadditive generalization to the additive Shannon entropy [22]. As a consequence, the Tsallis entropy does
not share all the properties of the Shannon entropy. This is especially relevant for the behavior of the joint and conditional
entropies, which play an essential role in the derivation of Bell inequalities, and which differ for the Tsallis and Shannon
cases. We will however demonstrate the possibility of Bell inequalities based on the Tsallis entropy, which generalize those
based on the Shannon entropy, and which in some sense can be considered as more powerful.

In the present paper, we first briefly review in Section 2 the derivation of Bell inequalities based on the Shannon entropy
as in Refs. [20,21]. This will especially serve as a useful guideline for our extension to the Tsallis entropy. Section 3 briefly
reviews some basic properties of the Tsallis entropy, with a special focus on joint and conditional Tsallis entropies relevant
to the derivation of Bell-type inequalities for a bipartite quantum system. Next, in Section 4, we explicitly derive an original
Bell-type inequality based on the Tsallis entropy, and generalizing the previously known Bell inequalities based on the
Shannon entropy as in Refs. [20,21]. Then, Sections 5–7 examine the behavior of the new Tsallis–Bell inequality to quantify
correlations in an EPR experiment. Violations of the new Tsallis–Bell inequality are exhibited, showing superior capabilities
compared to previously known Bell-type inequalities, for detecting quantum nonclassical correlations frommeasurements
on distant parts of a quantum system. Finally, Section 8 also discusses the relation of the present results with some other
applications of the Tsallis entropy previously reported for quantum information.

2. Bell inequalities with Shannon entropy

For a generic random variable A assuming different states awith respective probabilities Pr{A = a} = P(a), the Shannon
entropy H(A) is the nonnegative quantity defined as Ref. [23]

H(A) = −


a

P(a) log[P(a)]; (1)

while for two random variables A and B the conditional Shannon entropy H(A|B) is an averaged entropy defined as Ref. [23]

H(A|B) =


b

P(b)H(A|b) = −


a,b

P(a, b) log[P(a|b)], (2)

with P(a|b) and P(a, b) respectively the conditional and the joint probability distributions for A and B. For A and B
independent, P(a|b) = P(a) leads to H(A|B) = H(A).

The joint Shannon entropy H(A, B) is the entropy according to Eq. (1) based on the joint probability distribution P(a, b);
from P(a, b) = P(a)P(b|a), it verifies a chain rule [23]

H(A, B) = H(A)+ H(B|A), (3)

especially giving H(A, B) = H(A) + H(B) at independent A and B. The concavity (∩) of the function −x log(x) yields the
conditioning inequality

H(A|B) ≤ H(A), (4)

and with a third random variable C ,

H(A|B, C) ≤ H(A|B). (5)
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Now for four random variables A1, A2, B1 and B2, it follows that

H(A1, B2) ≤ H(A1, B1, A2, B2) = H(A1|B1, A2, B2)+ H(B1|A2, B2)+ H(A2|B2)+ H(B2). (6)

The inequality in Eq. (6) results from the nonnegativity of the Shannon entropy and the chain rule of Eq. (3) when (A1, B2) is
identified to A and (A2, B1) to B. The equality in Eq. (6) results from repeated applications of the chain rule of Eq. (3). Since
from the conditioning inequality of Eq. (5) one hasH(A1|B1, A2, B2) ≤ H(A1|B1) andH(B1|A2, B2) ≤ H(B1|A2), it follows that

H(A1, B2) ≤ H(A1|B1)+ H(B1|A2)+ H(A2|B2)+ H(B2), (7)

which, by subtracting H(B2) on both sides and rearranging, yields

0 ≤ H(A1|B1)+ H(B1|A2)+ H(A2|B2)− H(A1|B2). (8)

Eq. (8), relating conditional Shannon entropies on pairs among four random variables, represents an entropic Bell inequality.
Such entropic Bell inequalities have been introduced in Ref. [20]. They have been studied on three variables in Ref. [21].

Now our purpose is to examine the possibility of deriving a Bell inequality comparable to Eq. (8), yet in a generalized
form involving the Tsallis entropy. As we shall see, the derivation of Section 2 cannot be directly repeated with the Tsallis
entropy, because the Tsallis entropy, as a nonadditive generalization to the Shannon entropy, does not satisfy the chain rule
of Eq. (3) which is an essential ingredient of the derivation. We will show however that adaptation of the chain rule and
associated conditioning inequality comparable to Eq. (5) can be performed so as to derive, with the Tsallis entropy, a Bell
inequality generalizing Eq. (8). We proceed with a review of the properties of the Tsallis entropy that will be relevant to our
purpose of deriving a Bell inequality.

3. Tsallis entropy

For a randomvariable Awith probability distribution P(a), the Tsallis entropyHq(A) of order q is the nonnegative quantity
defined as Refs. [24,22]

Hq(A) =
1

q − 1


1 −


a

Pq(a)


=


a

hq[P(a)], (9)

with

hq(x) =
x − xq

q − 1
(10)

a nonnegative concave (∩) function of x ∈ [0, 1] for any q ≥ 0. At the limit q = 1, one obtains H1(A) = −


a P(a) ln[P(a)]
matching the Shannon entropy of Eq. (1). In this way, the Tsallis entropy of Eq. (9) represents a generalization of the Shannon
entropy of Eq. (1). The Tsallis entropy, however, does not share all the properties of the Shannon entropy. In particular, for
two independent random variables, the Tsallis entropy is nonadditive, and for this reason it has been postulated to form
the ground of a nonextensive generalization to statistical mechanics [24,22]. We want here to investigate the possibility of
Bell-type inequalities based on the Tsallis entropy. For this purpose, it is very important to review and specify the behaviors
of the Tsallis entropy on joint random variables, so as to identify properties available for the derivation of a Bell inequality
along the line of Section 2.

With another random variable B assuming states b with probabilities P(b), and related to A through conditional
probabilities P(a|b), the Tsallis entropy

Hq(A|b) =


a

hq[P(a|b)], (11)

conforms to Eq. (9) since P(a|b) defines over a a probability distribution for any b. Through an average of Hq(A|b) over P(b),
a conditional Tsallis entropy can be defined as

Hq(A|B) =


b

P(b)Hq(A|b) =


a,b

P(b)hq[P(a|b)]. (12)

When A and B are independent, then P(a|b) = P(a) andHq(A|B) = Hq(A). On the contrary, when A is fully (deterministically)
determined by B, then the conditional probabilities P(a|b) can only assume values 1 or 0, and since hq(0) = hq(1) = 0, it
follows that Hq(A|b) = 0 for any b, and its average Hq(A|B) = 0.

For any a one has
b

P(b)hq[P(a|b)] ≤ hq


b

P(b)P(a|b)


= hq[P(a)], (13)

where the inequality in Eq. (13) follows from the concavity (∩) of hq(·). Then by summing Eq. (13) over a one obtains the
inequality

Hq(A|B) ≤ Hq(A). (14)
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In a similar way, based on the concavity (∩) of hq(·), with a third random variable C one has

Hq(A|B, C) ≤ Hq(A|B). (15)

Eqs. (14)–(15) represent conditioning inequalities which are shared in common by the Tsallis entropy of any order q ≥ 0
and by the Shannon entropy (q = 1) as expressed by Eqs. (4)–(5).

It is to note that another notion of conditional Tsallis entropy exists, which in place of the average of Hq(A|b) over P(b)
in Eq. (12), averages over the so-called escort probability distribution Qq(b) = Pq(b)/


b P

q(b) to define the alternative
conditional entropy [25]

Hesc
q (A|B) =


b

Qq(b)Hq(A|b). (16)

At independence of A and B, one has simultaneously Hq(A|B) = Hesc
q (A|B) = Hq(A). The two notions of conditional Tsallis

entropy Hq(A|B) of Eq. (12) and Hesc
q (A|B) of Eq. (16) also coincide at q = 1 to recap the common notion of conditional

Shannon entropy in Eq. (2). At arbitrary q, the escort-based conditional entropy Hesc
q (A|B) of Eq. (16) displays interesting

behavior for joint random variables (see Eq. (22)); however, since the inequality analog to Eq. (13) is no longer satisfied,
Hesc

q (A|B) does not verify the conditioning inequalities of Eqs. (14)–(15) which played a part in the derivation of the entropic
Bell inequality of Section 2.

For the derivation of entropic Bell inequalities, in addition to conditioning inequalities, a chain rule for the entropy is also
essential, that we now examine for the Tsallis entropy. For the joint Tsallis entropy Hq(A, B) based on the joint probabilities
P(a, b) = P(a|b)P(b), the difference with the marginal Tsallis entropy Hq(A) can be expressed from the definition of Eq. (9),
as

Hq(A, B)− Hq(A) =
1

q − 1


−


a

Pq(a)

b

Pq(b|a)+


a

Pq(a)

, (17)

which is also

Hq(A, B)− Hq(A) =
1

q − 1


a

Pq(a)

1 −


b

Pq(b|a)


(18)

=


a

Pq(a)Hq(B|a). (19)

A chain rule is then obtained for the Tsallis entropy as

Hq(A, B) = Hq(A)+


a

Pq(a)Hq(B|a). (20)

The chain rule of Eq. (20) can be further evolved to a special form if one resorts to the escort distribution Qq(a) =

Pq(a)/


a P
q(a) previously mentioned. Inversion of Eq. (9) yields the sum


a P

q(a) = 1 − (q − 1)Hq(A), which can be
used for dividing Eq. (19) to give

Hq(A, B)− Hq(A)
1 − (q − 1)Hq(A)

=


a

Qq(a)Hq(B|a) = Hesc
q (B|A), (21)

involving the escort-based conditional entropy Hesc
q (B|A) from Eq. (16), and leading to an alternative chain rule as

Hq(A, B) = Hq(A)+ Hesc
q (B|A)+ (1 − q)Hq(A)Hesc

q (B|A). (22)

The chain rules of Eq. (20) or Eq. (22) express a nonadditive character attached to the Tsallis entropy, as exploited in the
nonextensive generalization of statistical mechanics [24,22]. Both chain rules of Eqs. (20) and (22) coincide at q = 1, to
provide the standard chain rule verified by the Shannon entropy in Eq. (3). It is however the chain rule of Eq. (20), associated
with the conditional Tsallis entropy of Eq. (12), which will be useful to us for the derivation of a Bell inequality; (and not the
chain rule of Eq. (22) based on the conditional Tsallis entropy of Eq. (16)).

4. A Bell-type inequality with Tsallis entropy

The derivation of Eqs. (6)–(8) of the Bell inequality in Eq. (8) was based on the properties of the Shannon entropy. We
will now demonstrate how it is possible to reproduce a comparable derivation with the Tsallis entropy. For four random
variables A1, A2, B1 and B2, we start with a Tsallis analog of Eq. (6), as

Hq(A1, B2) ≤ Hq(A1, B1, A2, B2) = Hq(B1, A2, B2)+


b1,a2,b2

Pq(b1, a2, b2)Hq(A1|b1, a2, b2). (23)
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The inequality in Eq. (23) results from the nonnegativity of the Tsallis entropy and the chain rule of Eq. (20) when (A1, B2)
is identified to A and (A2, B1) to B. The equality in Eq. (23) results from the chain rule of Eq. (20).

Next in Eq. (23) for Hq(B1, A2, B2) by the chain rule of Eq. (20) one has

Hq(B1, A2, B2) = Hq(A2, B2)+


a2,b2

Pq(a2, b2)Hq(B1|a2, b2). (24)

Through a similar step, in Eq. (24) for Hq(A2, B2) by the chain rule of Eq. (20) one has

Hq(A2, B2) = Hq(B2)+


b2

Pq(b2)Hq(A2|b2). (25)

Similarly from Eq. (20), the first term in Eq. (23) is

Hq(A1, B2) = Hq(B2)+


b2

Pq(b2)Hq(A1|b2). (26)

By using Eqs. (24), (25), (26) in Eq. (23) and rearranging, one obtains a Tsallis analog of Eq. (8) as

0 ≤


b1,a2,b2

Pq(b1, a2, b2)Hq(A1|b1, a2, b2)+


a2,b2

Pq(a2, b2)Hq(B1|a2, b2)

+


b2

Pq(b2)Hq(A2|b2)−


b2

Pq(b2)Hq(A1|b2). (27)

Eq. (27) cannot yet play the role of a Bell inequality because it does not involve only statistics on pairs of random variables
alone. A step further can be taken based on the conditioning inequalities

a2,b2

Pq(a2, b2)Hq(B1|a2, b2) ≤


a2

Pq(a2)Hq(B1|a2), (28)

and 
b1,a2,b2

Pq(b1, a2, b2)Hq(A1|b1, a2, b2) ≤


b1

Pq(b1)Hq(A1|b1), (29)

which are however valid only for q ≥ 1. Eq. (29) follows from Eq. (28); and Eq. (28) follows from the inequality


a P
q(a)

+


b P
q(b) ≤ 1 +


ab P

q(a, b) applying for q ≥ 1 for any joint probability distribution P(a, b) when the power function
xq is superadditive, i.e. (x+ y)q ≥ xq + yq, and gives xq ≤ x for any x, y ∈ [0, 1]. Then Eqs. (28)–(29) associated with Eq. (27)
lead to

0 ≤


b1

Pq(b1)Hq(A1|b1)+


a2

Pq(a2)Hq(B1|a2)+


b2

Pq(b2)Hq(A2|b2)−


b2

Pq(b2)Hq(A1|b2). (30)

Eq. (30) involving only statistics on pairs of random variables, has the form of a Bell inequality expressed with the Tsallis
entropy, and comparable to Eq. (8) expressed with the Shannon entropy. Especially, at q = 1, Eqs. (30) and (8) coincide.
At any order q ≥ 1 where Eq. (30) is expected to apply, one has access to a broad family of Bell-type inequalities. Eq.
(30), in common with any standard Bell-type inequality, is established here as a necessary condition, that follows from the
existence of a joint probability distribution P(a1, a2, b1, b2) on four compatible random variables (A1, A2, B1, B2), and that
is necessarily satisfied by the two-variable probability distributions derived from an underlying four-variable probability
distribution P(a1, a2, b1, b2). Violation of Eq. (30) would imply the impossibility of a four-variable probability distribution
P(a1, a2, b1, b2) connecting the two-variable probability distributions P(a1, b1), P(b1, a2), P(a2, b2), P(a1, b2) involved in
Eq. (30). This is the common rationale of any standard Bell-type inequality, which is preserved here with the generalized
Tsallis–Bell inequality of Eq. (30). We plan now to investigate the newly established Tsallis–Bell inequality of Eq. (30), for
assessment of correlation or statistical dependence between the outcomes ofmeasurements performed on two distant parts
of a nonseparable quantum system in an EPR experiment.

5. EPR experiment

We consider the standard setting of an EPR experiment [6,26]. Two protagonists, conventionally called Alice and Bob,
share a pair of entangled qubits prepared in a so-called Bell or EPR quantum state

|ψAB
⟩ =

1
√
2


|01⟩ − |10⟩


. (31)

Alice has access to the first qubit of the pair, Bob to the secondqubit, and each of themcan separately performameasurement
on her/his qubit. Alice and Bob can measure observables of the form [26]

O(θ) = sin(θ)X + cos(θ)Z, (32)
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where X and Z are the standard Pauli operators [6] for a spin-1/2measurement. In the computational basis {|0⟩, |1⟩}, the ob-
servable O(θ) of Eq. (32) has the two eigenstates |V+(θ)⟩ = [cos(θ/2), sin(θ/2)]⊤ and |V−(θ)⟩ = [sin(θ/2),− cos(θ/2)]⊤
associated with the two eigenvalues ±1.

Alice can choose a direction θ = α and measure on her qubit the observable A ≡ O(θ = α); Bob independently can
choose a direction θ = β and measure on his qubit the observable B ≡ O(θ = β). Due to their quantum character, the
outcome of such measurements occur at random, for Alice as the random variable A = ±1, and for Bob as B = ±1. Since
these measurements take place on a qubit pair in an entangled state |ψAB

⟩, one is interested in quantifying the correlation
or statistical dependence between their outcomes.

For this purpose of quantifying statistical dependence, one has the joint probability

P(A = +1, B = +1) =
⟨ψAB

|V+(α)⊗ V+(β)⟩
2 . (33)

In the bipartite basis {|00⟩, |01⟩, |10⟩, |11⟩} one has

|V+(α)⊗ V+(β)⟩ = cos(α/2) cos(β/2)|00⟩ + cos(α/2) sin(β/2)|01⟩

+ sin(α/2) cos(β/2)|10⟩ + sin(α/2) sin(β/2)|11⟩, (34)

from where it follows that

P(A = +1, B = +1) =
1
4
[1 − cos(α − β)]. (35)

In a similar way, one obtains

P(A = +1, B = −1) =
⟨ψAB

|V+(α)⊗ V−(β)⟩
2

=
1
4
[1 + cos(α − β)], (36)

and

P(A = −1, B = +1) =
1
4
[1 + cos(α − β)], (37)

P(A = −1, B = −1) =
1
4
[1 − cos(α − β)]. (38)

From the joint probabilities of Eqs. (35)–(38), by summation, the marginal probabilities follow as

P(A = +1) = P(A = −1) = P(B = +1) = P(B = −1) =
1
2
. (39)

And from the Bayes rule, the conditional probabilities are

P(A = +1|B = +1) =
P(A = +1, B = +1)

P(B = +1)

=
1
2
[1 − cos(α − β)] = P(A = −1|B = −1), (40)

and

P(A = +1|B = −1) = P(A = −1|B = +1) =
1
2
[1 + cos(α − β)]. (41)

One has then access to the correlation between Alice’s and Bob’s measurements, as used in standard Bell inequalities, as
the average

⟨AB⟩ = − cos(α − β). (42)

For entropic Bell inequalities, one has access for instance for the conditional Tsallis entropy according to Eq. (11), to

Hq(A|B = −1) = Hq(A|B = +1) = hq


1
2
[1 − cos(α − β)]


+ hq


1
2
[1 + cos(α − β)]


. (43)

Wenote that in general themeasurement of quantumobservables A and B performed byAlice and Bob on their respective
qubit of the pair are compatible and can be made separately since they occur on two distinct qubits. On the contrary,
measurement of two distinct observables A1 ≡ O(θ = α1) and A2 ≡ O(θ = α2) at two angles α1 ≠ α2 on the same
qubit, cannot be performed simultaneously; the commutator [A1,A2] = sin(α2 − α1)[Z,X] = sin(α2 − α1)2iY does not
vanish in general precluding simultaneous measurement of the incompatible observables A1 and A2 on the same qubit.

To quantify the correlation or statistical dependence between the outcomes of measurements performed by Alice and
Bob, we will now investigate the capabilities of the new Tsallis–Bell inequality of Eq. (30), and its confrontation with other
previously established Bell inequalities.
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6. Measurements from three observables

For an effective analysis of the behavior of the new Tsallis–Bell inequality of Eq. (30), we examine the situation where
Alice and Bob can choose tomeasure three distinct observables. This is the original Bell scenario considered in Ref. [4]. Also a
comparable approach is taken in Refs. [20,21] for Bell inequalities based on the Shannon entropy, with a general formulation
in four variables as with our Eq. (30), followed by a concrete analysis on reduced conditions allowing to observe nontrivial
violation of the Bell inequalities.

Alice and Bob, each time they perform ameasurement, can separately decide through independent local random choices,
to measure one among two observables. For her two observables Alice settles A1 ≡ O(α1 = 0) = Z and A2 ≡ O(α2) at an
arbitrary angle α2. In a comparable way, Bob settles his two observables as B1 ≡ O(β1 = 0) = Z and B2 ≡ O(β2) at an
arbitrary angle β2. When Alice and Bob measure the observable Z on their respective qubit of the pair in the entangled state
|ψAB

⟩, their measurements A1 and B1 are perfectly correlated as A1 = −B1, yielding ⟨A1B1⟩ = −1 and H(A1|B1) = 0. Then
the entropic Shannon–Bell inequality of Eq. (8) becomes

0 ≤ H(B1|A2)+ H(A2|B2)− H(A1|B2), (44)

also expressible on three variables (A2, B1, B2) alone since H(A1|B2) = H(B1|B2). Eq. (44) is comparable with the entropic
Bell inequalities on three variables studied in Ref. [21]. The same reason A1 = −B1 leads similarly to Hq(A1|b1) = 0 for any
b1, and Hq(A1|b2) = Hq(B1|b2) for any b2, so the new Tsallis–Bell inequality of Eq. (30) becomes

0 ≤


a2

Pq(a2)Hq(B1|a2)+


b2

Pq(b2)Hq(A2|b2)−


b2

Pq(b2)Hq(A1|b2). (45)

And since, from Eq. (39) for a qubit pair in the maximally entangled state |ψAB
⟩ of Eq. (31), the marginal probabilities of the

measurements are all equal, one obtains for the Tsallis–Bell inequality,

0 ≤ Hq(B1|A2)+ Hq(A2|B2)− Hq(A1|B2), (46)

applying for any q ≥ 1, and which is also expressible on three variables (A2, B1, B2) since Hq(A1|B2) = Hq(B1|B2) for any
q. The Tsallis–Bell inequality of Eq. (46) at q = 1 coincides with the Shannon–Bell inequality of Eq. (44), and constitutes a
generalization at q ≥ 1.

By permutations of the variables in Eq. (46), two other nonequivalent inequalities can be obtained as

0 ≤ Hq(A1|B2)+ Hq(B2|A2)− Hq(B1|A2), (47)

0 ≤ Hq(A2|B1)+ Hq(A1|B2)− Hq(A2|B2). (48)

Again, since A1 = −B1 and Hq(A1|B2) = Hq(B1|B2), the Tsallis–Bell inequalities of Eqs. (46)–(48) represent inequalities on
the three nonequivalent variables (A2, B1, B2). Yet, under the forms of Eqs. (46)–(48), the three Tsallis–Bell inequalities
are computable from statistics involving only pairs of random variables occurring as outcomes of compatible quantum
measurements that can be simultaneously performed on each one of the two parts of the bipartite system. This is a
requirement for a Bell inequality, so as to be experimentally evaluable to serve as an experimental test for quantum
correlation.

For comparison, it is also interesting to establish a standard correlation-based Bell inequality on the three variables
(A2, B1, B2). For measurements confined to ±1, the quantity B1A2 + (A2 − B1)B2 is 1 when B1 = A2, and it is −1 ± 2 ≤ 1
when B1 = −A2. One therefore has the average

⟨B1A2⟩ + ⟨A2B2⟩ − ⟨B1B2⟩ ≤ 1, (49)

and by permutations,

⟨B1B2⟩ + ⟨B2A2⟩ − ⟨B1A2⟩ ≤ 1, (50)
⟨A2B1⟩ + ⟨B1B2⟩ − ⟨A2B2⟩ ≤ 1 (51)

which are similar to the three correlation-based Bell inequalities on three variables considered in Ref. [21]. For experimental
evaluation from pairs of compatible quantummeasurements on each part of the bipartite system, one again uses A1 = −B1
to obtain the equivalent inequalities

⟨B1A2⟩ + ⟨A2B2⟩ + ⟨A1B2⟩ ≤ 1, (52)
−⟨A1B2⟩ + ⟨B2A2⟩ − ⟨B1A2⟩ ≤ 1, (53)
⟨A2B1⟩ − ⟨A1B2⟩ − ⟨A2B2⟩ ≤ 1. (54)
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Fig. 1. For the measurement angles α2 and β2 determining the observables A2 ≡ O(α2) and B2 ≡ O(β2) from Eq. (32) measured respectively by Alice and
Bob on their qubit of a shared entangled pair in state |ψAB

⟩ of Eq. (31), in the domain (α2, β2) ∈ [0, π]
2 , the colored regions indicate the measurement

configurations (α2, β2) violating the Tsallis–Bell inequalities of Eqs. (46)–(48) at order q = 1, which coincide with the Shannon–Bell inequalities similar to
Eq. (44). Six crosses (×) locate the maximal violations when the right-hand side of inequalities Eqs. (46)–(48) uniformly reaches−0.134 Sh = −0.093 nat.
The green region indicates violation of Eq. (46), with maximal violation at (0.126π, 0.252π) and (0.874π, 0.748π); the blue region is for Eq. (47), with
maximal violation at (0.252π, 0.126π) and (0.748π, 0.874π); and the red for Eq. (48), withmaximal violation at (0.126π, 0.874π) and (0.874π, 0.126π).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7. Violation of the Bell inequalities

The derivation of Bell inequalities connecting randomvariables is based on the existence of a joint probability distribution
between the variables. This existence assumes local realism and implies compatibility of measurement jointly for all the
variables. This classical assumption underlies the derivation of any Bell inequality, in a standard correlation form as in
Eqs. (52)–(54), or based on the Shannon entropy as in Section 2, and this is also true with the Tsallis entropy for the
derivation in Section 4. Bell inequalities can be violated by measurements performed on entangled quantum states, which
break the classical assumption of local realism. Entanglement is a necessary condition for violation of Bell inequalities;
therefore violation of Bell inequalities identifies nonclassical, i.e. quantum, nonlocal correlation or dependence which can
exist between distant parts of a physical system. We investigate here the conditions of violation of the new Tsallis–Bell
inequalities in their form of Eqs. (46)–(48), so as to test their ability to register nonclassical quantum correlation, especially
as a function of the order q ≥ 1.

Alice and Bob configure their measurements through the choice of the angles, respectively α2 and β2, determining their
observables A2 ≡ O(α2) or B2 ≡ O(β2). Given the symmetries of the quantum process, it is enough to consider the
angles α2 and β2 in the interval [0, π] to cover the relevant measurement configurations. We have tested the configurations
(α2, β2) ∈ [0, π]

2 that lead to violation of the Tsallis–Bell inequalities of Eqs. (46)–(48) at various q ≥ 1.
Fig. 1 presents in the domain (α2, β2) ∈ [0, π]

2 of the plane, all themeasurement configurations (α2, β2) that lead to vio-
lation of the Tsallis–Bell inequalities of Eqs. (46)–(48) at order q = 1, which coincide with the corresponding Shannon–Bell
inequalities similar to Eq. (44). The violations of each of the three inequalities of Eqs. (46)–(48) are shown separately in
Fig. 1 with three different colors over the domain (α2, β2) ∈ [0, π]

2. Also shown in Fig. 1 is the location of the configura-
tions (α2, β2) achieving maximal violation of each of the three inequalities (46)–(48).

Fig. 1 shows that the violations of each of the three inequalities of Eqs. (46)–(48) occur separately in different regions
of the domain (α2, β2) ∈ [0, π]

2. This means that different choices of observables A2 and B2 may lead to violation of one
Bell inequality and no violation of the two others among Eqs. (46)–(48) at q = 1. The three inequalities are therefore
nonredundant, and their combination allows for the largest set of observables A2 and B2 capable of detecting nonclassical
quantum correlation between distant measurements by Alice and Bob. An interesting possibility with the Tsallis–Bell
inequalities of Eqs. (46)–(48), is that this set of violating observables can be enlarged by increasing the order q > 1. For
illustration, Fig. 2 addresses the violation of the three Tsallis–Bell inequalities of Eqs. (46)–(48) at a higher order q = 2.46
superior to the Shannon order q = 1 of Fig. 1.

The results of Fig. 2 demonstrate enlarged regions in the domain (α2, β2) ∈ [0, π]
2 leading to violation of the Tsallis–Bell

inequalities of Eqs. (46)–(48) at q = 2.46, compared to the same inequalities at q = 1 in Fig. 1. As the order q increases
between Figs. 1 and 2, one observes enlargement of each one of the three regions corresponding to violation of each one
of the three Tsallis–Bell inequalities (46)–(48). Also, the location of the configurations (α2, β2) of maximal violation are
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Fig. 2. Same as Fig. 1 but at the order q = 2.46, when the Tsallis–Bell inequalities of Eqs. (46)–(48) no longer coincide with the Shannon–Bell inequalities
similar to Eq. (44). Six crosses (×) locate the maximal violations when the right-hand side of inequalities (46)–(48) uniformly reaches −0.161 Sh =

−0.112 nat. The green region indicates violation of Eq. (46), with maximal violation at (0.169π, 0.338π) and (0.831π, 0.662π); the blue region is for
Eq. (47), with maximal violation at (0.338π, 0.169π) and (0.662π, 0.831π); and the red for Eq. (48), with maximal violation at (0.169π, 0.831π) and
(0.831π, 0.169π). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Relative area in the domain [0, π]
2 of the total region of all measurement configurations (α2, β2) violating a Tsallis–Bell inequality among Eqs.

(46)–(48), as a function of the order q.

slightly displaced between Figs. 1 and 2. Also, as indicated with Figs. 1 and 2, the magnitude of the maximal violation
itself is enhanced as the order q increases. In this way, increasing the order q above 1 allows higher sensitivity for
detecting nonclassical quantum correlation. This is materialized by a larger set of observables A2 and B2 capable of detecting
nonclassical quantum correlation between the measurements by Alice and Bob. This is a benefit of the generalized entropy
used for the new Tsallis–Bell inequalities of Eqs. (46)–(48), to allow for a larger set of observables for detecting quantum
correlation.

We have quantified the total area in the domain [0, π]
2 associated withmeasurement configurations (α2, β2) violating a

Tsallis–Bell inequality among Eqs. (46)–(48). This corresponds to the cumulated area of all colored regions in Fig. 1 or Fig. 2.
Especially, we have observed that the three areas associated with the three Tsallis–Bell inequalities (46)–(48) at a given q
are found equal, even though the region associated with inequality (48) (the red region in Figs. 1–2) differs in shape; and
this equality is observed for any order q, manifesting a form of equivalence for the three inequalities (46)–(48). This total
violation area has been evaluated as a function of the Tsallis order q, and the resulting evolution is depicted in Fig. 3.

In Fig. 3, a maximum relative area of 0.758 is obtained at the optimal order q = qopt = 2.46. This is at this optimal value
of q that we chose to represent the violating regions (α2, β2) in Fig. 2. Therefore, from Fig. 3, an optimal order qopt = 2.46
exists thatmakes the Tsallis–Bell inequalities of Eqs. (46)–(48)maximally sensitive for the detection of quantum correlation.
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Fig. 4. Same as Figs. 1 and 2 but for the standard correlation-based Bell inequalities of Eqs. (52)–(54). No violation occurs for Eqs. (52) and (53). The red
region indicates violation of Eq. (54), with the maximal violation at (2π/3, π/3) indicated by the cross (×), when the left-hand side of inequality (54)
reaches 1.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Especially, this optimal Tsallis order qopt = 2.46 is markedly distinct from the Shannon order q = 1. Tsallis–Bell inequalities
(46)–(48) around the optimal order qopt = 2.46 are in this respect more sensitive than Shannon–Bell inequalities similar to
Eq. (44), for the detection of quantum correlation. It is interesting to observe that in this way, the condition where the
Tsallis–Bell inequality is maximally sensitive in Fig. 3, singles out a nontrivial optimal value qopt = 2.46 of the Tsallis
order. Maximum sensitivity does not occur at the trivial order q = 1 associated with the standard Shannon entropy. The
sensitivity either does not monotonically evolve as q increases. At very large q → ∞, one has for Eq. (10) the behavior
hq(x) ∼ x/q, except at x = 0 or 1 where hq(x) = 0; then from Eq. (11) one obtains Hq(A|b) ∼


a P(a|b)/q = 1/q, for any

b (configurations with hq(x = 0) = hq(x = 1) = 0 possibly occurring in the sum have no effect on Hq(A|b)). One therefore
obtains an asymptotic inequality at q → ∞ for Eq. (30) as 0 ≤


b1

Pq(b1) +


a2
Pq(a2), which is obviously satisfied by

any probability distributions, hence no measurement configuration exists that could lead to a violation. This explains the
relative violation area in Fig. 3 going to zero at q → ∞. There is then clearly in Fig. 3 a nonmonotonic action of the Tsallis
order q on the sensitivity, with maximum efficacy at a nontrivial order qopt = 2.46. Relatively few phenomena reveal a
nonmonotonic response selecting a finite nontrivial optimal value qopt ≠ 1 for the Tsallis order [27–29], and the present
Tsallis–Bell inequality can also be recognized for this reason.

As another basis for comparison, Fig. 4 shows the measurement configurations (α2, β2) ∈ [0, π]
2 leading to violation of

the standard correlation-based Bell inequalities of Eqs. (52)–(54).
It is visible from Fig. 4 that the measurement configurations (α2, β2) violating the correlation-based Bell inequalities of

Eqs. (52)–(54), do not coincide everywhere with the configurations (α2, β2) violating the Tsallis–Bell inequalities of Eqs.
(46)–(48) as shown in Figs. 1–2 at various orders q. This confirms that the metric used for statistical dependence, be it a
standard cross-correlation or a conditional Shannon entropy or a generalized conditional Tsallis entropy, has a direct impact
on the resulting Bell inequalities and their violation conditions, which do not occur for the same set of observables A2 and B2.
This propertywas previously observed in Ref. [21]with the Shannon entropy, and is extended here in generalized conditions
with the Tsallis entropy. In Fig. 4, a relative area of 0.5 is obtained for the region of allmeasurement configurations (α2, β2) in
[0, π]

2 violating the standard correlation-based Bell inequalities of Eqs. (52)–(54). A slightly superior violation area of 0.567
is obtainedwith the Shannon–Bell inequalities similar to Eq. (44), as visible from Fig. 3 at order q = 1. At higher order q > 1,
the Tsallis–Bell inequalities of Eqs. (46)–(48) lead to larger violation areas. As visible in Fig. 3, for any order q ∈ (1, 5.89],
the violation area is superior with the Tsallis–Bell inequalities compared to the Shannon-based Bell inequalities at q = 1.
At q = 5.89, the violation area for the Tsallis–Bell inequalities based on Hq(·) returns to its value for the Shannon–Bell
inequalities based on H1(·); andmoreover at q = 5.89, the violating regions are returned to the same shapes as in Fig. 1. For
any order q ∈ [1, 6.90] in Fig. 3, the violation area is superior with the Tsallis–Bell inequalities compared to the correlation-
based Bell inequalities. In this respect, for the detection of nonclassical quantumcorrelation, the newTsallis–Bell inequalities
at orders q in the vicinity of qopt = 2.46, exhibit enhanced sensitivity compared to the other previously known Bell-type
inequalities, since they allow a larger set of observables A2 and B2 producing violating measurements. For the correlation-
based Bell inequalities of Eqs. (52)–(54), the maximal violation of 1.5 given in Fig. 4 has only a relative meaning, since it is
tied to the arbitrary values ±1 ascribed to the two outcomes of a spin measurement. Meanwhile, the informational values
of the maximal violations given in Figs. 1–2 are more intrinsically meaningful for statistical dependence.
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8. Discussion

From the classical outcomes of measurements performed on a bipartite quantum system, nonlocal correlations can be
detected by the violation of a Bell inequality. We have derived a new Bell-type inequality, Eq. (30). This new inequality is
based on the Tsallis entropy as a metric to quantify the dependence between the classical random variables formed by the
outcomes of quantummeasurements performed on a bipartite quantum system. The new Bell-type inequality based on the
Tsallis entropy generalizes previously known inequalities based on the Shannon entropy. We have studied the conditions of
violation of this Tsallis–Bell inequality, in an EPR experimentwhen themeasurements are performed on a bipartite quantum
system in a maximally entangled state. We have shown that, for an appropriate range of the Tsallis order q, violation of the
Tsallis–Bell inequality occurs with measurements from a larger set of quantum observables, compared to previously known
Bell inequalities based on the Shannon entropy or on cross-correlation. In this respect, the new Tsallis–Bell inequality can be
considered asmore sensitive ormore powerful than these previously known Bell inequalities. They are also complementary,
because their violation does not always occur for the same measurement configurations, and putting together the new
Tsallis–Bell inequality and the standard correlation-based Bell inequality offers the largest set of measurements capable of
detecting nonlocal quantum correlation.

Other applications have been reported of the Tsallis entropy in quantum information, which however differ from the
present results. A whole line of studies, inaugurated in Refs. [30–32], explored the application of the Tsallis entropy to
provide a test for separability or nonseparability of a quantum state. A bibliographic review of these studies can be found
in Ref. [22], and some very recent extensions in Ref. [33]. In these studies, the Tsallis entropy is used in its quantum form
as Sq(A) = [1 − Tr(ρq

A)]/(q − 1) operating on a density operator ρA for a quantum system A. The associated conditional
quantum entropy can go negative, contrary to its classical counterpart associated with Eq. (9) or Eq. (1) which is always
nonnegative [34]. Negativity of the conditional quantum entropy occurs only for entangled quantum states. In this way,
nonnegativity of the conditional quantum entropy Sq(A|B) ≥ 0 plays the role of an entropic Bell inequality satisfied when
a bipartite density operator ρAB is separable. Violation of this condition with a negative conditional quantum entropy
Sq(A|B) < 0 is used as a test of nonseparability or entanglement of a bipartite density operator ρAB, and controlling the
order q of the quantum Tsallis entropy increases the power of the test assessed through the size of the set of detected
entangled states [30,35]. An extension for characterizing entanglement in a multipartite quantum state is done in Ref. [36].
The problem we address here with the Tsallis entropy is different. The Tsallis entropy is not used here under its quantum
form Sq(A) = [1− Tr(ρq

A)]/(q− 1) on density operators, so as to characterize a quantum state which in itself is not directly
observable. Instead, the Tsallis entropy is used here under its classical form of Eq. (9) on the classical random variables
resulting from measurements on a quantum state. In this way, the Tsallis entropy is used for an experimental test on
measurable quantities, in the spirit of the original Bell and CHSH inequalities related to an EPR experiment [4,5,3]. As a
result, the Tsallis–Bell inequality of Eq. (30) is new here and not present in previous studies.

Other applications of the Tsallis entropy in quantum information, and related to the line of studies of Refs. [30–32]
to characterize density operators, were reported for the inference of quantum states with minimum fake entanglement
[37–39], for metrics of disorder or mixedness [40–43] or purification [44] of quantum states, and for new metrics of quan-
tumness [45–47].

The Tsallis–Bell inequality of Eq. (30) has been tested herewithmeasurements performedon a qubit pair in themaximally
entangled singlet state |ψAB

⟩ of Eq. (31), which represent fundamental reference conditions for an EPR experiment. Beyond,
the inequality can be tested on other quantum states, either pure or mixed states [48–50], and also with quantum systems
of larger dimensionality, higher than the dimension two of the qubit [51,20,52–54]. All these conditions are accessible to
exploration with the inequality in its general form given by Eq. (30). Other quantum experiments involving a statistical
characterization of entanglement can also be approached with the present generalized methodology. In this direction, EPR
experiment in the presence of noise could be examined [55–57] especially to test if the optimal Tsallis order qopt is affected.

As in the present analysis, these broader conditions could reveal extended capabilities for the characterization of
quantumstates andmeasurements also stemming from theuse of a generalized entropy. Also, this could bring further insight
on the nonclassical correlation or dependence associated with entanglement in composite quantum systems. This would
contribute to better understanding of the important resources for quantum information processing and communication
formed by nonlocal quantum correlation and entanglement [58,2].
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