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h i g h l i g h t s

• Several generic informational quantities characterizing the qubit are analyzed.
• Qubit decoherence is represented by a quantum thermal noise at arbitrary temperature.
• Nontrivial regimes of variation are reported for the informational quantities.
• They do not always degrade but can show nonmonotonic variation at increasing temperature.
• Higher noise temperatures or increased decoherence may prove beneficial informationally.
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a b s t r a c t

Informational quantities characterizing the qubit are analyzed in the presence of quantum
thermal noise modeling the decoherence process due to interaction with the environment
represented as a heat bath at arbitrary temperature. Nontrivial regimes of variation are
reported for the informational quantities, which do not necessarily degrademonotonically
as the temperature of the thermal noise increases, but on the contrary can experience
nonmonotonic variations where higher noise temperatures can prove more favorable.
Such effects show that increased quantum decoherence does not necessarily entail poorer
informational performance, and they are related to stochastic resonance or noise-enhanced
efficiency in information processing.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

For information processing it is known that, in some specific situations, noise is not necessarily a nuisance but can
sometimes prove beneficial. Such possibility has been largely explored in the context of classical (non-quantum) information
processing, especially in relation to the phenomenon of stochastic resonance under its many forms [1–7]. Investigation of
stochastic resonance or noise-enhanced efficiency in information processing, has been extended to the quantum domain.
Early studies on quantum stochastic resonance concentrated on noise-enhanced transmission of a periodic driving [8–13].
In different information processing contexts, stochastic resonance has been shown in networks of coupled spins [14–16],
or in other high-dimensional quantum systems [17–19]. For tasks of quantum state detection or discrimination stochastic
resonance has been reported in [20,21], and for quantum state estimation in [22,23].

For information transmission over noisy qubit channels – which is the main theme of the present report – stochastic
resonance has been addressed by several studies. Refs. [24–26] considered Pauli qubit channels, forming a special class
of unital noise channels, and found that enhancement by noise is dependent on the measure of performance and does not
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always exist for common informationalmeasures. Ref. [27] showed stochastic resonance in a convex combination of a phase-
flip channel and an amplitude damping channel. A related effect is investigated in [28,29] under the name of superactivation,
when two noisy quantum channels with zero information capacity can be used together to provide a positive capacity, with
illustration with the depolarizing channel in [29].

Here in this report, we concentrate on quantum thermal noise, which is a (nonunital) noise model of great significance
where the decohering environment affecting the qubits is represented as a heat bath at an arbitrary temperature. This
quantum noise model has been recently analyzed for noise-enhanced detection [21] or estimation [22,23] tasks. In the
present report, to further assess the possibility of noise-enhanced performance,we analyze informational quantities relevant
to the qubit and based on the vonNeumann entropy. Especially, among the informational quantitieswe shall examine are the
entropy exchange, the coherent information, the quantummutual information, the information loss, the information noise,
and theHolevo information. Each of these quantities comeswith a significance in relation to specific informational processes,
and can serve as a measure of performance related to such informational processes. Based on the geometric representation
of qubit states with Bloch vectors and on the Kraus representation of the quantum thermal noise, analytical expressions will
be derived for each informational quantity. Especially, these analytical expressions will allow us to analyze the impact of
the temperature of the thermal noise on the informational quantities. Nontrivial regimes of variation will be reported here
for the first time for such informational measures, demonstrating that they do not necessarily degrade monotonically as the
temperature of the thermal noise increases, but that on the contrary they can experience nonmonotonic variations where
higher noise temperatures can prove more favorable to information transmission.

2. Qubit entropy

A qubit with two-dimensional Hilbert space H2 is prepared in a quantum state represented by the density operator ρ
parameterized in Bloch representation as [30]

ρ =
1
2

(
I2 + r⃗ · σ⃗

)
, (1)

with the real 3-dimensional Bloch vector r⃗ ∈ R3 of Euclidean norm ∥r⃗ ∥ ≤ 1, and σ⃗ a formal vector assembling the three
2 × 2 Pauli matrices [σx, σy, σz] = σ⃗ , and I2 the identity of H2.

A qubit with Bloch vector r⃗ has a density operator ρ in Eq. (1) with two eigenvalues λ± = (1 ± ∥r⃗ ∥)/2, so that its von
Neumann entropy S(ρ) = − tr[ρ log(ρ)] results as

S(ρ) = h
(
1 + ∥r⃗ ∥

2

)
+ h

(
1 − ∥r⃗ ∥

2

)
, (2)

with the auxiliary function h(u) = −ulog2(u). The von Neumann entropy S(ρ) of Eq. (2) is a nonnegative and monotonically
decreasing function of the Bloch vector norm ∥r⃗ ∥. A qubit in a pure state ρ has ∥r⃗ ∥ = 1 and entropy S(ρ) = 0. Amixed state
ρ has ∥r⃗ ∥ < 1 and entropy S(ρ) > 0, which reaches the maximum S(ρ) = 1 when ∥r⃗ ∥ = 0 for the maximally mixed state
ρ = I2/2. It results that the entropy S(ρ) is interpretable as a measure of disorder or unpredictability of the quantum state
ρ, with S(ρ) monotonically increasing as ρ passes from a pure quantum state to the maximally mixed state ρ = I2/2.

We consider that the qubit in state ρ is transmitted by a noisy communication channel generally representable by a
completely positive trace-preserving superoperator N (·) implementing the input–output transformation [30,31]

ρ −→ ρ ′
= N (ρ) =

K∑
k=1

ΛkρΛ
†
k , (3)

characterized by the K Kraus operators Λk satisfying
∑K

k=1Λ
†
kΛk = I2. This is equivalent to transforming the Bloch vectors

by the affine map [30,31]

r⃗ −→ r⃗ ′
= Ar⃗ + c⃗ , (4)

with A a 3 × 3 real matrix and c⃗ a real vector in R3. We are specifically interested in studying the impact of a quantum
noise channel N (·) very important for the qubit, which is the generalized amplitude damping noise or quantum thermal
noise [30,31]. Such thermal noise, unlike other less sophisticated noise models for the qubit, lends itself to nontrivial noise
effects manifested by the entropy and other useful informational measures exhibiting unusual variations, as we shall see.
The quantum thermal noise [30,31] is characterized in Eq. (3) by the K = 4 Kraus operators

Λ1 =
√
p
[
1 0
0

√
1 − γ

]
, (5)

Λ2 =
√
p
[
0

√
γ

0 0

]
, (6)

Λ3 =

√
1 − p

[√
1 − γ 0
0 1

]
, (7)
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Λ4 =

√
1 − p

[
0 0

√
γ 0

]
, (8)

with the associated affine map in Eq. (4) following as

r⃗ ′
= Ar⃗ + c⃗ =

⎡⎣√
1 − γ 0 0
0

√
1 − γ 0

0 0 1 − γ

⎤⎦ r⃗ +

[ 0
0

(2p − 1)γ

]
. (9)

This noise model describes the interaction of the qubit with an uncontrolled environment represented as a thermal bath
at temperature T . The parameter γ ∈ [0, 1] is a damping factor which often can be expressed [30] as a function of the
interaction time t of the qubit with the bath as γ = 1 − e−t/T1 , where T1 is a time constant for the interaction (such as the
spin-lattice relaxation time T1 in magnetic resonance). At long interaction time t → ∞, then γ → 1 and the qubit relaxes to
the equilibriummixed state ρ∞ = p|0⟩⟨0| + (1− p)|1⟩⟨1| of Bloch vector r⃗∞ = c⃗. At equilibrium, the qubit has probabilities
p of being measured in the ground state |0⟩ and 1 − p of being measured in the excited state |1⟩. With the energies E0 and
E1 > E0 respectively for the states |0⟩ and |1⟩, the equilibrium probabilities are governed by the Boltzmann distribution

p =
exp[−E0/(kBT )]

exp[−E0/(kBT )] + exp[−E1/(kBT )]
=

1
1 + exp[−(E1 − E0)/(kBT )]

. (10)

In this way, in the quantum thermal noise of Eq. (9), the probability p is determined by the temperature T of the bath via
Eq. (10). From Eq. (10), the probability p is a decreasing function of the temperature T . At T = 0 the probability is p = 1 for
the ground state |0⟩, while at T → ∞ the ground state |0⟩ and excited state |1⟩ are equiprobable with p = 1/2. Therefore,
from Eq. (10), when the temperature T monotonically increases from 0 to∞, the probability pmonotonically decreases from
1 to 1/2. In turn, the output noisy state ρ ′ determined by the Bloch vector r⃗ ′ of Eq. (9), is influenced by the noise temperature
T only through the probability p. The remarkable feature we will demonstrate in the sequel is that, as the noise temperature
T rises from 0 to ∞, the von Neumann entropy and other quantum informational measures associated to the output noisy
state ρ ′, do not necessarily evolve monotonically, but on the contrary can experience nonmonotonic variations.

The input Bloch vector r⃗ = [rx, ry, rz]⊤ transformed by Eq. (9) yields the output Bloch vector r⃗ ′
= Ar⃗ + c⃗ having the

squared norm

∥r⃗ ′
∥
2

= (1 − γ )(r2x + r2y ) + r ′2
z , (11)

with the squared z-component

r ′2
z =

[
(1 − γ )rz + (2p − 1)γ

]2 (12)

carrying via p the dependence of ∥r⃗ ′
∥
2 with the noise temperature T . The von Neumann entropy S(ρ ′) of the output state ρ ′

with Bloch vector r⃗ ′ is controlled by the norm ∥r⃗ ′
∥ inserted in Eq. (2). To analyze the influence of the noise temperature T

on the entropy S(ρ ′) of the noisy output state, we recall that S(ρ ′) is a monotonically decreasing function of the norm ∥r⃗ ′
∥.

In turn ∥r⃗ ′
∥, or ∥r⃗ ′

∥
2 in Eq. (11), is influenced by T only through the probability p in r ′2

z of Eq. (12). The squared z-component
r ′2
z of Eq. (12) is a ∪-shaped parabola in the variable p, however limited by the allowed range p ∈ [1/2, 1]. The minimum of
this parabola is zero and occurs when (1 − γ )rz = −(2p − 1)γ , corresponding for the variable p to the critical value

pc =
1
2

−
1 − γ

2γ
rz . (13)

As the temperature T rises from 0 to ∞, inducing p to decrease from 1 to 1/2, it results that three regimes of variation of
∥r⃗ ′

∥
2 in Eq. (11), and subsequently of the output entropy S(ρ ′) from Eq. (2), are accessible, depending on the situation of pc

of Eq. (13) in relation to the allowed interval [1/2, 1] ∋ p. These variations will take place between the two extreme values,
at T = 0 (i.e. at p = 1) determined in Eq. (12) by r ′2

z (T = 0) = [(1 − γ )rz + γ ]
2 setting the entropy S(ρ ′

; T = 0) via Eq. (2),
and at T = ∞ (i.e. at p = 1/2) determined by r ′2

z (T = ∞) = [(1 − γ )rz]2 setting S(ρ ′
; T = ∞). Especially, depending

on the conditions, one can have S(ρ ′
; T = 0) < S(ρ ′

; T = ∞), which is the natural expectation of a larger entropy of the
noisy output at a larger noise temperature. But the opposite S(ρ ′

; T = 0) > S(ρ ′
; T = ∞) can also be found, as we shall see,

manifesting the counterintuitive property of a smaller entropy at a larger noise temperature. Between these two extremes
at T = 0 and T = ∞, as indicated three regimes of variation are accessible for the entropy S(ρ ′) of the noisy output state,
which we now analyze.

2.1. Increasing entropy

When the input state ρ is such that rz ≥ 0, then pc ≤ 1/2 in Eq. (13), so that theminimum of the∪-shaped parabola r ′2
z of

Eq. (12) located at pc always occurs before the allowed interval [1/2, 1] ∋ p. As a consequence, r ′2
z of Eq. (12) increases as the

probability p increases in [1/2, 1]; the same is true for ∥r⃗ ′
∥
2 in Eq. (11), and this translates into a decreasing output entropy

S(ρ ′) in Eq. (2) when p increases in [1/2, 1] or equivalently when the temperature T decreases from∞ to 0. Therefore, as the
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Fig. 1. Increasing output entropy S(ρ ′) as a function of the noise temperature Tp , for the damping factor γ increasing from γ = 0.1 to γ = 1 by step 0.1,
for an input state ρ = |0⟩⟨0| of r⃗ = [0, 0, 1]⊤ .

temperature T of the thermal noise increases from 0 to ∞, the probability p resulting from Eq. (10) decreases from 1 to 1/2,
and the output entropy S(ρ ′) from Eq. (2) increases from S(ρ ′

; T = 0) to S(ρ ′
; T = ∞) > S(ρ ′

; T = 0). This is the natural
expected regime where the entropy S(ρ ′) of the output state ρ ′ of the noisy channel, increases as the noise temperature T
increases. Typical illustrations for this regime of increasing entropy are presented in Fig. 1.

In the illustrations of Fig. 1 and following figures, the influence of the noise temperature is quantitatively displayed as
a function of the auxiliary variable Tp = 2(1 − p) interpreted as a reduced or equivalent noise temperature. In this way,
from Eq. (10), this Tp is a monotonically increasing function of the temperature T , for any value of the energy difference
E1 − E0 > 0. When T is 0 then p is 1 and Tp is 0, while when T is ∞ then p is 1/2 and Tp is 1. So a temperature T increasing
from 0 to ∞ is monotonically mapped into a reduced temperature Tp increasing from 0 to 1. This offers the convenience of a
finite range in terms of Tp ∈ [0, 1] to display the influence of the noise temperature T ∈ [0, ∞[ , and also disencumbers the
quantitative analysis of the unimportant specific value of the energy difference E1 − E0 > 0.

2.2. Resonant entropy

When the input state ρ is such that −γ < (1 − γ )rz < 0 or equivalently −γ /(1 − γ ) < rz < 0, then pc ∈ ]1/2, 1[ in
Eq. (13), so that the minimum of the∪-shaped parabola r ′2

z of Eq. (12) located at pc always occurs inside the allowed interval
[1/2, 1] ∋ p. As a consequence, both r ′2

z of Eq. (12) and ∥r⃗ ′
∥
2 of Eq. (11) experience a ∪-shaped variation as p increases in

[1/2, 1] and pass through their minimum at p = pc . This translates into an output entropy S(ρ ′) in Eq. (2) which experiences
a ∩-shaped resonant variation as p increases in [1/2, 1] with S(ρ ′) culminating at a maximum in p = pc . This is equivalent
to an output entropy S(ρ ′) also experiencing a ∩-shaped resonant variation as the noise temperature T increases from 0 to
∞, with S(ρ ′) culminating at a maximum for a critical temperature Tc related to pc via Eq. (10). Typical illustrations for this
regime of resonant entropy are presented in Fig. 2.

The resonant variations of Fig. 2 especially show that when the entropy S(ρ ′) is interpreted as a measure of disorder or
unpredictability of the quantum state ρ ′, then a range of finite temperatures exists where such measure of unpredictability
of ρ ′ is maximized, depending on the conditions. This identifies ranges of finite temperatures that are specially detrimental
to the purity or immunity of the quantum state, and that lower, but also higher, temperatures, will be less harmful to the
quantum state in this respect.

2.3. Decreasing entropy

When the input state ρ is such that (1− γ )rz ≤ −γ or equivalently rz ≤ −γ /(1− γ ), then pc ≥ 1 in Eq. (13), so that the
minimum of the ∪-shaped parabola r ′2

z of Eq. (12) located at pc always occurs after the allowed interval [1/2, 1] ∋ p. As a
consequence, both r ′2

z of Eq. (12) and ∥r⃗ ′
∥
2 of Eq. (11) decreasewhen p increases in [1/2, 1]. This translates into an increasing

output entropy S(ρ ′) in Eq. (2) when p increases in [1/2, 1] or equivalently when the temperature T decreases from ∞ to
0. Therefore, as the temperature T of the thermal noise increases from 0 to ∞, now the output entropy S(ρ ′) from Eq. (2)
decreases from S(ρ ′

; T = 0) to S(ρ ′
; T = ∞) < S(ρ ′

; T = 0). Typical illustrations for this regime of decreasing entropy are
presented in Fig. 3.

An input state ρ has a Bloch vector r⃗ with a z-component necessarily limited as rz ∈ [−1, 1], and the thermal noise
has a damping factor γ ∈ [0, 1]. Across these feasible conditions, Fig. 4 represents the three domains in the plane (γ , rz)
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Fig. 2. Resonant output entropy S(ρ ′) as a function of the noise temperature Tp , for the damping factor γ = 0.6, 0.7 and 0.8, for an input state ρ = |1⟩⟨1|
of r⃗ = [0, 0, −1]⊤ .

Fig. 3. Decreasing output entropy S(ρ ′) as a function of the noise temperature Tp , for the damping factor γ increasing from γ = 0.1 to γ = 0.5 by step 0.1,
for an input state ρ = |1⟩⟨1| of r⃗ = [0, 0, −1]⊤ .

Fig. 4. For (γ , rz ) ∈ [0, 1]×[−1, 1], the three domains of variation, with the noise temperature T , of the entropy S(ρ ′) of the output state ρ ′ from Eq. (2) for
the channel with quantum thermal noise. Domain (1) is an increasing S(ρ ′) when rz ≥ 0; domain (2) in gray is a resonant S(ρ ′) when−γ /(1−γ ) < rz < 0;
domain (3) is a decreasing S(ρ ′) when rz ≤ −γ /(1 − γ ). The curve separating domains (2) and (3) has equation rz = −γ /(1 − γ ).
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corresponding to the three regimes of variation feasible for the output entropy S(ρ ′) as a function of the noise temperature
T , as controlled by the position of pc in Eq. (13) in relation to the interval [1/2, 1].

The present analysis especially shows that there does not exist a fourth regime of variation, where a nonmonotonic
entropy S(ρ ′) could antiresonate at a minimum for some critical temperature T , identifying some beneficial nonzero
temperature where the unpredictability of the state ρ ′ would be minimized. Regarding nonmonotonic variations of the
entropy S(ρ ′), there only exist configurations as in Fig. 2, where S(ρ ′) resonates at amaximum around a critical temperature.
We will now examine other useful measures related to the fundamental measure of von Neumann entropy, and their
variation with the noise temperature, and characterizing the flow of entropy into the environment and the performance
for information communication over the noisy channel.

3. Entropy exchange

Another useful informational quantity is the entropy exchange S(ρ,N ), which represents [30,32] the amount of entropy
generated in the environment by the action of the quantum channel N (·) implementing the noisy transmission of state ρ.
From an informational standpoint, S(ρ,N ) quantifies the information exchanged between the quantum system initially in
state ρ and the environment during the evolution by N (·). As such, S(ρ,N ) in particular limits the amount of information
an eavesdropper could acquire about the system in a quantum cryptographic protocol.

When the environment starts in a pure state (it is always feasible, possibly via a purification step), after the action of the
noise channelN (·) on ρ the environment terminates in a mixed state ρ ′

E expressible [32,30] with the matrix representation
ρ ′

E = [Wkℓ] of matrix elements

Wkℓ = tr(ΛkρΛ
†
ℓ) , (14)

for k, ℓ = 1 to K . The entropy exchange is then equivalent to the final entropy of the environment, i.e. S(ρ,N ) = S(ρ ′

E).
When the input state ρ is expressed as a 2 × 2 matrix function of the three components of the Bloch vector r⃗ = [rx, ry, rz]⊤,
then by using Eqs. (5)–(8) in Eq. (14) one obtains the final state of the environment as

ρ ′

E =
1
2⎡⎢⎢⎢⎢⎣

p[2 − γ (1 − rz )] p
√

γ (rx − iry) 2
√
p(1 − p)

√
1 − γ

√
p(1 − p)

√
γ (1 − γ )(rx + iry)

p
√

γ (rx + iry) pγ (1 − rz )
√
p(1 − p)

√
γ (1 − γ )(rx + iry) 0

2
√
p(1 − p)

√
1 − γ

√
p(1 − p)

√
γ (1 − γ )(rx − iry) (1 − p)[2 − γ (1 + rz )] (1 − p)

√
γ (rx + iry)√

p(1 − p)
√

γ (1 − γ )(rx − iry) 0 (1 − p)
√

γ (rx − iry) (1 − p)γ (1 + rz )

⎤⎥⎥⎥⎥⎦ .

(15)

Then to evaluate the entropy S(ρ ′

E), the four eigenvalues ofρ
′

E of Eq. (15) are to be determined. Exact analytical expressions
can be found but they are too bulky to be written down here, in general form. However, for the damping γ = 0 when there
is no noise, the state ρ ′

E of Eq. (15) reduces to

ρ ′

E =

⎡⎢⎢⎣
p 0

√
p(1 − p) 0

0 0 0 0√
p(1 − p) 0 1 − p 0

0 0 0 0

⎤⎥⎥⎦ , (16)

having the four eigenvalues 0 with multiplicity 3 and 1, so that at no noise the entropy exchange S(ρ ′

E) vanishes as expected.
Also, when the input state ρ for the qubit is pure, with the environment starting in a pure state, the joint qubit-environment
systemundergoes a unitary evolutionwhere their joint state remains pure. It results that at the endof the interactionwith the
environment materializing the effect of noise on the qubit, the final reduced state ρ ′ of the noisy qubit and the final reduced
state ρ ′

E of the environment have the same entropy. In other words, when the input state ρ is pure, the entropy exchange
S(ρ ′

E) coincides with the output entropy S(ρ ′), ensuring that the entropy exchange S(ρ ′

E) can also experience the same
three regimes of variation (decreasing, antiresonant, increasing) as the output entropy S(ρ ′) when the noise temperature
T increases.

In addition, to investigate the same possibilities of variation of the entropy exchange S(ρ ′

E) also with a mixed (non-pure)
input state ρ, we turn to the restricted class where ρ is characterized by the Bloch vector r⃗ = [0, 0, rz]⊤ with rz ∈ [−1, 1],
leading in Eq. (15) to the final state of the environment

ρ ′

E =
1
2

⎡⎢⎢⎣
p[2 − γ (1 − rz)] 0 2

√
p(1 − p)

√
1 − γ 0

0 pγ (1 − rz) 0 0
2
√
p(1 − p)

√
1 − γ 0 (1 − p)[2 − γ (1 + rz)] 0

0 0 0 (1 − p)γ (1 + rz)

⎤⎥⎥⎦ . (17)
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Fig. 5. Increasing entropy exchange S(ρ ′

E ) as a function of the noise temperature Tp , for the damping factor γ increasing from γ = 0 to γ = 1 by step 0.1,
for a pure input state ρ = |0⟩⟨0| of r⃗ = [0, 0, 1]⊤ (panel A), and for a mixed input state ρ of r⃗ = [0, 0, 0.9]⊤ (panel B).

To evaluate the entropy S(ρ ′

E), the four eigenvalues of ρ ′

E of Eq. (17) follow as

λ1 =
1
4

[
(2p − 1)γ rz + 2 − γ −

√
Γ

]
, (18)

λ2 =
1
4

[
(2p − 1)γ rz + 2 − γ +

√
Γ

]
, (19)

λ3 =
1
2
(1 − p)γ (1 + rz) , (20)

λ4 =
1
2
pγ (1 − rz) , (21)

with

Γ = γ 2r2z + 2(2p − 1)γ (2 − γ )rz + (2p − 1)2γ 2
+ 4(1 − γ ) . (22)

In the special case when rz = −1, the four eigenvalues of Eqs. (18)–(21) reduce to pγ , 1 − pγ and 0 with multiplicity 2;
while when rz = 1, they reduce to (1 − p)γ , 1 − (1 − p)γ and 0 with multiplicity 2. This is an instance of the configuration
of ρ pure addressed above, where the entropy exchange S(ρ ′

E) exactly coincides with the output entropy S(ρ ′), so that S(ρ ′

E)
also experiences the same three regimes of variation as S(ρ ′) when the noise temperature T increases. We illustrate in the
sequel in Figs. 5–7, other conditions withmixed input states ρ, also governed by Eqs. (18)–(21), where the entropy exchange
S(ρ ′

E) no longer coincides with the output entropy S(ρ ′) but where the three regimes of variation of S(ρ ′

E) are still observed
as the noise temperature T increases.

Fig. 5 can be viewed as the more standard behavior, where the entropy exchange S(ρ ′

E) representing the entropy in the
environment, increases as the noise temperature T increases. This can occurwith a pure input state ρ aswell as with amixed
input state ρ, as illustrated in Fig. 5.

Comparatively, Figs. 6–7 demonstrate the possibility of less standard behaviors, where the entropy exchange S(ρ ′

E)
resonates or decreases when the noise temperature T increases, this with pure and with mixed input states ρ. Fig. 6 shows
resonant variations, where S(ρ ′

E) culminates at a maximum at some finite critical value of the noise temperature.
Fig. 7 shows decreasing variations, where the entropy exchange S(ρ ′

E) is steadily reduced as the noise temperature T
increases.

4. Coherent information

From the output entropy S(ρ ′) and the entropy exchange S(ρ ′

E) one defines the coherent quantum information [33] as

Ic(ρ,N ) = S(ρ ′) − S(ρ ′

E) , (23)

The coherent information Ic(ρ,N ) is not necessarily non-negative, and is closely related to the quantum capacity of
the noisy channel N (·) [33]. For a pure input state ρ we have seen that S(ρ ′) = S(ρ ′

E) implying Ic(ρ,N ) = 0 for any
noise parameters (γ , T ). However, for a mixed input state ρ, the coherent information Ic(ρ,N ) of Eq. (23) is in general
non-vanishing. Moreover, it can be verified from Eq. (23) that Ic(ρ,N ) can experience, depending upon the conditions on ρ

and γ , three regimes of variation (decreasing, antiresonant, increasing) as the noise temperature T is raised.
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Fig. 6. Resonant entropy exchange S(ρ ′

E ) as a function of the noise temperature Tp , for damping factors γ between 0.5 and 0.8, for a pure input state
ρ = |1⟩⟨1| of r⃗ = [0, 0, −1]⊤ (panel A), and for a mixed input state ρ of r⃗ = [0, 0, −0.9]⊤ (panel B).

Fig. 7. Decreasing entropy exchange S(ρ ′

E ) as a function of the noise temperature Tp , for the damping factor γ increasing from γ = 0.1 to γ = 0.5 by step
0.1, for a pure input state ρ = |1⟩⟨1| of r⃗ = [0, 0, −1]⊤ (panel A), and for a mixed input state ρ of r⃗ = [0, 0, −0.9]⊤ (panel B).

One can also define the quantum mutual information [33] as

I(ρ,N ) = S(ρ) + S(ρ ′) − S(ρ ′

E) = S(ρ) + Ic(ρ,N ) , (24)

which is non-negative, and quantifies the mutual information between the input quantum state ρ and output quantum
state ρ ′

= N (ρ). This I(ρ,N ) vanishes for pure input states ρ, just like S(ρ) and Ic(ρ,N ). For mixed input states ρ, from
the present analysis we verify that I(ρ,N ) also, depending upon the conditions on ρ and γ , can experience three regimes of
variation (decreasing, antiresonant, increasing) as the noise temperature T is raised.

Decreasing quantum informations Ic(ρ,N ) and I(ρ,N ) is the standard behavior which can be expected as the noise
temperature T is raised. This expresses the expected property of an informational efficiency of the transmission channel
which monotonically degrades as the level of noise increases. On the contrary, nonmonotonic antiresonant variations and
increasing variations for Ic(ρ,N ) and I(ρ,N ) represent an unconventional behavior, reminiscent of stochastic resonance,
stemming from the sophisticated action of the quantum thermal noise, and revealing the possibility, under some conditions,
of improving the informational efficiency of the transmission channel by increasing the level of noise through increasing the
noise temperature.

One can also define the information loss [33] as

L(ρ,N ) = S(ρ) + S(ρ ′

E) − S(ρ ′) = S(ρ) − Ic(ρ,N ) , (25)

which is non-negative, and quantifies the mutual information between the input and the environment. The loss L(ρ,N )
vanishes for pure input states ρ, just like S(ρ) and Ic(ρ,N ). For mixed input states ρ, from the present analysis we verify
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that L(ρ,N ) also, depending upon the conditions on ρ and γ , can experience three regimes of variation (increasing, resonant,
decreasing) as the noise temperature T is raised.

One can also define the information noise [33] as

N(ρ,N ) = S(ρ ′

E) + S(ρ ′) − S(ρ) , (26)

which is non-negative, and quantifies the mutual information between the output and the environment. The information
noiseN(ρ,N ) does not generally vanish on pure input statesρ in the presence of thermal noise. From the present analysiswe
verify that N(ρ,N ) also, depending upon the conditions on ρ and γ , can experience three regimes of variation (increasing,
resonant, decreasing) as the noise temperature T is raised.

Increasing information loss L(ρ,N ) and noise N(ρ,N ) is the standard expected behavior as the noise temperature T is
raised, expressing degradation of the transmission channel as the level of noise increases. On the contrary, nonmonotonic
resonant and decreasing variations for L(ρ,N ) and N(ρ,N ) is an unconventional behavior, manifesting the possibility of
some improvement of the transmission by increasing the level of thermal noise.

5. Holevo information

The previous informational quantities characterize the behavior of the channel in transmitting a single generic input state.
A further fundamental informational quantity characterizes signaling over the channel with a statistical ensemble of input
states, as would occur for instance for communication of random symbols with quantum encoding. Accordingly, we consider
that at the channel input a quantum state ρj is selected with probability pj from a set of a number J of such quantum states.
The noisy channel delivers the output states ρ ′

j = N (ρj) for j = 1 to J . A fundamental quantity to assess the informational
performance is the Holevo information, defined from the von Neumann entropy as [30,34]

χ (ρ ′) = S(ρ ′) −

J∑
j=1

pjS(ρ ′

j ) , (27)

with the average output state ρ ′
=

∑J
j=1pjρ

′

j .
The Holevo information χ (ρ ′) of Eq. (27) forms a lower bound to the compression rate of a lossless coding of a sequence

of independent quantum states ρ ′

j [35,36]. Also,χ (ρ ′) is an upper bound to the input–outputmutual information for classical
information transmission via successive independent uses of the quantum channel.Moreover,χ (ρ ′) forms an achievable rate
for classical information transmission, usually reachable by encodingwith long blocks of successive independent input states
ρj. As such, χ (ρ ′) represents themaximum rate of the quantum channel for classical information transmission via successive
independent channel uses [34,37,38]. The interesting point here is to realize that, as the noise temperature increases, the
Holevo information χ (ρ ′) of Eq. (27) does not necessarily monotonically decreases. On the contrary, χ (ρ ′) can experience
the three regimes of variation that were shown in Section 2 accessible to the vonNeumann entropy of a noisy quantum state.

The Holevo information χ (ρ ′) of Eq. (27) depends on the J input states ρj and on their probabilities pj, together offering a
large range of possible configurations. For illustration of the nontrivial variations of the Holevo information χ (ρ ′) of Eq. (27)
with the temperature T of the thermal noise, we consider a transmission protocol with J = 2 pure input states ρ0 and
ρ1 chosen equiprobable with p0 = p1 = 1/2. Fig. 8 shows configurations with the two states (ρ0, ρ1) yielding a Holevo
information χ (ρ ′) experiencing a monotonic decay as the noise temperature T increases.

With a decreasing Holevo information χ (ρ ′), Fig. 8 illustrates the standard expected behavior of a performance of the
quantum channel for information transmission which monotonically degrades has the noise temperature T increases. By
contrast, Fig. 9 reveals the possibility of configurations with the two states (ρ0, ρ1) yielding a Holevo information χ (ρ ′)
which does not monotonically decay as the noise temperature T increases.

Fig. 9 (dotted line) displays a configuration of the coding states (ρ0, ρ1) leading to an antiresonant variation of the Holevo
informationχ (ρ ′). Here there exists a finite critical temperature around Tp ≈ 0.7 in Fig. 9where the thermal noise is specially
detrimental to the transmission,manifested by aminimumof theHolevo informationχ (ρ ′). In such configurations, operating
the channel at lower, but also at higher, temperatures is more efficient for information transmission as assessed by χ (ρ ′).
This antiresonant variation of the performance χ (ρ ′) for information transmission, is identifiable with an effect of stochastic
antiresonance, where a finite level of noise exists that minimizes the performance and where operating at smaller, but also
at larger, noise levels turns out to be more favorable. Such stochastic antiresonance was also observed in other situations,
quantum [23,39,40] or classical [41–44], yet with other performance measures differing from the informational quantities
considered here.

Fig. 9 (solid line) also displays a configuration of the coding states (ρ0, ρ1) where the Holevo information χ (ρ ′)
monotonically increases as the noise temperature T grows. This is a nonstandard behavior, where enhancing the noise
temperature yields better performance in information transmission. In practice however, the temperature will have to be
limited before it can cause damage to the transmission system. The possibility of such regime where increasing the noise
temperature is always beneficial to the performance in information processing, has also been observed for quantum state
detection [20,21] or estimation [22,23]. It manifests another aspect by which the quantum decoherence is not necessarily
detrimental but can prove beneficial.
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Fig. 8. Holevo information χ (ρ ′) from Eq. (27) as a function of the noise temperature Tp , at three values of the damping factor γ , for two pure input states
with Bloch vectors r⃗0 = [0, 0, 1]⊤ and r⃗1 = [1, 0, 0]⊤ and probabilities p0 = p1 = 1/2.

Fig. 9. Holevo information χ (ρ ′) from Eq. (27) as a function of the noise temperature Tp , for two pure input states with Bloch vectors r⃗0 and r⃗1 and
probabilities p0 = p1 = 1/2. Dashed line: r⃗0 = [0, 0, −1]⊤ and r⃗1 = [1, 0, 0]⊤ at damping γ = 0.3. Solid line: r⃗0 = [0, 0, −1]⊤ and r⃗1 = [

√
0.84, 0, −0.4]⊤

at damping γ = 0.1.

6. Discussion

In this report we have considered informational quantities characterizing the qubit. These informational quantities have
been analyzed in the presence of quantum thermal noise modeling the decoherence process caused by interaction with
an uncontrolled environment represented as a heat bath at arbitrary temperature. It has been specifically observed that the
informational quantities do not necessarily degrademonotonically as the noise temperature increases. On the contrary, they
can experience nontrivial and nonmonotonic variations where higher noise temperatures can prove more favorable to the
informational contents. Such nontrivial variations have been observed for the von Neumann entropy S(ρ ′) of a noisy qubit
state ρ ′. Other informational quantities related to the von Neumann entropy have also been examined, with the entropy
exchange or entropy generated in the environment S(ρ,N ) = S(ρ ′

E), with the coherent information Ic(ρ,N ), with the
quantum mutual information I(ρ,N ), with the information loss L(ρ,N ), and information noise N(ρ,N ). All of them were
also found capable of experiencing nontrivial and nonmonotonic regimes of variation as the noise temperature increases. In
addition, when a statistical ensemble of qubit states is used for information communication over a noisy quantum channel,
the fundamental quantity formed by the Holevo information χ (ρ ′) was also found capable of experiencing similar nontrivial
regimes. In particular, this identifies configurationswhere information transmission over the noisy channel can be improved
by operating at higher noise temperatures. Regimes of antiresonance for the performance measures were also observed,
identifying other configurations where specific finite values of the noise temperature are maximally detrimental.

Concerning the physical accessibly of the conditions explored in Figs. 1–9 andwhere interesting noise effects are reported,
the following remarks can bemade. For the thermal relaxation times T1 discussed just after Eq. (9), typical values, for instance
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Fig. 10. Thermodynamic ratio kBT/∆E = 1/ln(−1 + 2/Tp) deduced from Eq. (10), as a function of the reduced temperature Tp = 2(1 − p) of the quantum
thermal noise.

in nuclear magnetic resonance, are in the order of T1 ∼ 100 ms. On this basis, it is physically feasible to gain access to
interaction times t that can range from t ≪ T1 up to t ≫ T1, allowing in this way to obtain a damping factor γ = 1 − e−t/T1

that can cover the interval [0, 1] and span the values of γ tested in Figs. 1–9. For the useful ranges of the reduced temperature
Tp = 2(1−p) tested in Figs. 1–9 and where interesting noise effects occur, one has the faculty to invert Eq. (10) to obtain the
thermodynamic ratio kBT/∆E = 1/ln(−1 + 2/Tp) plotted in Fig. 10, with ∆E = E1 − E0 > 0 the transition energy between
the ground state |0⟩ and excited state |1⟩ of the qubit.

From Fig. 10 one can observe that the interesting values of Tp in [0, 1] concerned by Figs. 1–9, can be practically covered
with a ratio kBT/∆E varying from 0.1 to 10; and kBT/∆E below 0.1 would physically corresponds to Tp ≈ 0 while
kBT/∆E above 10 would corresponds to Tp ≈ 1. So kBT/∆E in [0.1, 10] sets the physical domain of conditions giving
access to the interesting noise effects reported in Figs. 1–9. At room temperature T ≈ 300 K one has the thermodynamic
temperature kBT ≈ 1/40 eV, translating for the quantum system into a transition energy ∆E ∈ [1/400, 1/4] eV. Such
ranges of energy are typically involved in photosynthetic processes of living plants, for which noise-assisted phenomena at
the quantum level have been reported [45,46] and which, although distinct, may be related to the stochastic resonance
effects reported here. Around room temperature, the stochastic resonance effects reported here with quantum thermal
noise, might therefore possibly apply to photosynthetic processes, although this remains to be further explored. Current
technological systems developed for quantum computing typically operate with much lower transition energies ∆E. They
are much fragile to thermal fluctuations and have usually to be operated well below room temperature. For instance with
liquid helium at T ≈ 3 K we are at a factor of 10−2 below room temperature, associated with transition energies ∆E ∈

[1/400 × 10−2, 1/4 × 10−2
] eV which come closer to transition energies of technological quantum systems. Consistently,

for such current technological quantum systems, the present noise effects will typically occur at temperatures well below
room temperature.

The quantities analyzed here are based on the von Neumann entropy and carry informational significance. Such
significance could be extended by considering generalized versions based on generalized, nonadditive or nonextensive
quantum entropies [47–50], these having found useful applications for quantum information especially in relation to
quantum correlation by entanglement [51–53]. It could therefore be interesting to examine if such generalized informational
quantities can also, in the presence of quantum noise, experience nontrivial variations escaping monotonic degradation at
increasing noise level.

The nontrivial regimes of variation reported here for informational quantities upon increasing the noise temperature,
demonstrate sophisticated properties of quantumdecoherence. Increased decoherence does not always translate into poorer
informational performance. The present study identifies and analyzes new situations where such counterintuitive behavior
of decoherence takes place. Such results are relevant to contribute to deeper understanding and control of decoherence
which are essential steps needed for the advancement of quantum information and quantum technologies.

References

[1] R. Benzi, A. Sutera, A. Vulpiani, The mechanism of stochastic resonance, J. Phys. A 14 (1981) L453–L458.
[2] L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance, Rev. Modern Phys. 70 (1998) 223–287.
[3] F. Chapeau-Blondeau, Noise-assisted propagation over a nonlinear line of threshold elements, Electron. Lett. 35 (1999) 1055–1056.
[4] F. Chapeau-Blondeau, Stochastic resonance and the benefit of noise in nonlinear systems, in: M. Planat (Ed.), Noise, Oscillators and Algebraic

Randomness: from Noise in Communication Systems To Number Theory, in: Lecture Notes in Physics 550, Springer, Berlin, 2000, pp. 137–155.

http://refhub.elsevier.com/S0378-4371(18)30652-6/sb1
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb2
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb3
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb4
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb4
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb4


230 N. Gillard et al. / Physica A 507 (2018) 219–230

[5] M.A. Fuentes, R. Toral, H.S. Wio, Enhancement of stochastic resonance: The role of non Gaussian noises, Physica A 295 (2001) 114–122.
[6] F. Duan, D. Abbott, Binary modulated signal detection in a bistable receiver with stochastic resonance, Physica A 376 (2007) 173–190.
[7] M.D. McDonnell, N.G. Stocks, C.E.M. Pearce, D. Abbott, Stochastic Resonance: From Suprathreshold Stochastic Resonance To Stochastic Signal

Quantization, Cambridge University Press, Cambridge, 2008.
[8] R. Löfstedt, S.N. Coppersmith, Quantum stochastic resonance, Phys. Rev. Lett. 72 (1994) 1947–1950.
[9] I. Goychuk, P. Hänggi, Quantum stochastic resonance in symmetric systems, Phys. Rev. E 59 (1999) 5137–5141.

[10] V.J. Menon, N. Chanana, Y. Singh, Single-particle treatment of quantum stochastic resonance, Physica A 275 (2000) 505–530.
[11] T. Wellens, A. Buchleitner, Stochastic resonance in the coherence of a quantum system, Phys. Rev. Lett. 84 (2000) 5118–5121.
[12] H.H. Adamyan, S.B. Manvelyan, G.Y. Kryuchkyan, Stochastic resonance in quantum trajectories for an anharmonic oscillator, Phys. Rev. A 63 (2001)

022102 1–9.
[13] P.K. Ghosh, D. Barik, D.S. Ray, Noise-induced transition in a quantum system, Phys. Lett. A 342 (2005) 12–21.
[14] F. Caruso, S.F. Huelga, M.B. Plenio, Noise-enhanced classical and quantum capacities in communication networks, Phys. Rev. Lett. 105 (2010) 190501

1–4.
[15] C.K. Lee, L.C. Kwek, J. Cao, Stochastic resonance of quantum discord, Phys. Rev. A 84 (2011) 062113 1–5.
[16] M. Rafiee, C. Lupo, S. Mancini, Noise to lubricate qubit transfer in a spin network, Phys. Rev. A 88 (2013) 032325 1–6.
[17] M.M. Wilde, B. Kosko, Quantum forbidden-interval theorems for stochastic resonance, J. Phys. A 42 (2009) 465309 1–23.
[18] G. Bowen, S. Mancini, Noise enhancing the classical information capacity of a quantum channel, Phys. Lett. A 321 (2004) 1–5.
[19] C. Lupo, S. Mancini, M.M. Wilde, Stochastic resonance in Gaussian quantum channels, J. Phys. A 46 (2013) 045306 1–15.
[20] F. Chapeau-Blondeau, Quantum state discrimination and enhancement by noise, Phys. Lett. A 378 (2014) 2128–2136.
[21] N. Gillard, E. Belin, F. Chapeau-Blondeau, Qubit state detection and enhancement by quantum thermal noise, Electron. Lett. 54 (2018) 38–39.
[22] F. Chapeau-Blondeau, Qubit state estimation and enhancement by quantum thermal noise, Electron. Lett. 51 (2015) 1673–1675.
[23] N. Gillard, E. Belin, F. Chapeau-Blondeau, Stochastic antiresonance in qubit phase estimation with quantum thermal noise, Phys. Lett. A 381 (2017)

2621–2628.
[24] J.J.L. Ting, Stochastic resonance for quantum channels, Phys. Rev. E 59 (1999) 2801–2803.
[25] J.J.L. Ting, Noise effects for the depolarizing channel, Phys. Lett. A 259 (1999) 349–354.
[26] J.J.L. Ting, Noise effects on one-Pauli channel, Eur. Phys. J. B 13 (2000) 527–530.
[27] G. Bowen, S. Mancini, Stochastic resonance effects in quantum channels, Phys. Lett. A 352 (2006) 272–275.
[28] G. Smith, J. Yard, Quantum communication with zero-capacity channels, Science 321 (2008) 1812–1815.
[29] F.G.S.L. Brandão, J. Oppenheim, S. Strelchuk, When does noise increase the quantum capacity?, Phys. Rev. Lett. 108 (2012) 040501 1–5.
[30] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.
[31] F. Chapeau-Blondeau, Optimization of quantum states for signaling across an arbitrary qubit noise channel withminimum-error detection, IEEE Trans.

Inform. Theory 61 (2015) 4500–4510.
[32] B. Schumacher, M.A. Nielsen, Quantum data processing and error correction, Phys. Rev. A 54 (1996) 2629–2635.
[33] A.S. Holevo, V. Giovannetti, Quantum channels and their entropic characteristics, Rep. Progr. Phys. 75 (2012) 046001 1–30.
[34] M.M. Wilde, Quantum Information Theory, Cambridge University Press, Cambridge, 2013.
[35] B. Schumacher, Quantum coding, Phys. Rev. A 51 (1995) 2738–2747.
[36] H. Barnum, C.M. Caves, C.A. Fuchs, R. Jozsa, B. Schumacher, On quantum coding for ensembles of mixed states, J. Phys. A 34 (2001) 6767–6785.
[37] B. Schumacher, M.D. Westmoreland, Sending classical information via noisy quantum channels, Phys. Rev. A 56 (1997) 131–138.
[38] A.S. Holevo, The capacity of the quantum channel with general signal states, IEEE Trans. Inform. Theory 44 (1998) 269–273.
[39] D.P.K. Ghikas, A.C. Tzemos, Stochastic anti-resonance in the time evolution of interacting qubits, Int. J. Quantum Inf. 10 (2012) 1250023 1–15.
[40] A.C. Tzemos, D.P.K. Ghikas, Dependence of noise induced effects on state preparation in multiqubit systems, Phys. Lett. A 377 (2013) 2307–2316.
[41] N.V. Agudov, A.V. Krichigin, Stochastic resonance and antiresonance in monostable systems, Radiophys. Quantum Electronics 51 (2008) 812–824.
[42] L.S. Borkowski, Multimodal transition and stochastic antiresonance in squid giant axons, Phys. Rev. E 82 (2010) 041909 1–5.
[43] Y.J. Wadop Ngouongo, G. Djuidjé Kenmoé, T.C. Kofané, Effect of coupling on stochastic resonance and stochastic antiresonance processes in a

unidirectionally N-coupled systems in periodic sinusoidal potential, Physica A 472 (2017) 25–31.
[44] S. Rajasekar, M.A.F. Sanjuan, Nonlinear Resonances, Springer, Berlin, 2016.
[45] A.W. Chin, A. Datta, F. Caruso, S.F. Huelga, M.B. Plenio, Noise-assisted energy transfer in quantum networks and light-harvesting complexes, New J.

Phys. 12 (2010) 065002 1–16.
[46] S.F. Huelga, M.B. Plenio, Vibrations, quanta and biology, Contemp. Phys. 54 (2013) 181–207.
[47] C. Tsallis, S. Lloyd, M. Baranger, Peres criterion for separability through nonextensive entropy, Phys. Rev. A 63 (2001) 042104 1–6.
[48] S. Abe, Nonadditive entropies and quantum entanglement, Physica A 306 (2002) 316–322.
[49] N. Canosa, R. Rossignoli, Generalized nonadditive entropies and quantum entanglement, Phys. Rev. Lett. 88 (2002) 170401 1–4.
[50] M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, J. Math. Phys.

54 (2013) 122203.
[51] R. Rossignoli, N. Canosa, Generalized disorder measures and the detection of quantum entanglement, Physica A 344 (2004) 637–643.
[52] A.P. Majtey, A.R. Plastino, A. Plastino, New features of quantum discord uncovered by q-entropies, Physica A 391 (2012) 2491–2499.
[53] F. Chapeau-Blondeau, Tsallis entropy for assessing quantum correlation with Bell-type inequalities in EPR experiment, Physica A 414 (2014) 204–215.

http://refhub.elsevier.com/S0378-4371(18)30652-6/sb5
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb6
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb7
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb7
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb7
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb8
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb9
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb10
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb11
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb12
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb12
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb12
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb13
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb14
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb14
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb14
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb15
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb16
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb17
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb18
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb19
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb20
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb21
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb22
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb23
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb23
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb23
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb24
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb25
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb26
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb27
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb28
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb29
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb30
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb31
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb31
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb31
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb32
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb33
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb34
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb35
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb36
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb37
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb38
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb39
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb40
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb41
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb42
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb43
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb43
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb43
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb44
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb45
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb45
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb45
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb46
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb47
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb48
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb49
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb50
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb50
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb50
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb51
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb52
http://refhub.elsevier.com/S0378-4371(18)30652-6/sb53

	Enhancing qubit information with quantum thermal noise
	Introduction
	Qubit entropy
	Increasing entropy
	Resonant entropy
	Decreasing entropy

	Entropy exchange
	Coherent information
	Holevo information
	Discussion
	References


