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• Noise as a designable variable of the M-estimator due to its benefits.
• Maximizing the asymptotic efficiency of the M-estimator by optimizing the added noise PDF.
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• Approximate solutions of the optimal added noise PDF showing their feasibility with greatly improved asymptotic efficiency.
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a b s t r a c t

For the robust estimation of a location parameter, we consider a parallel array of
maximum likelihood type estimators (M-estimators). We investigate the possibility of
added noise as a design variable of the M-estimators, and characterize a nonzero
optimal amount of added noise maximizing the efficiency for estimation. The added
noise shows its benefits to the asymptotic efficiency of the M-estimator when the noise
level and the noise probability density are optimally tuned. The optimal noise level
can be theoretically derived by maximizing the asymptotic efficiency as the probability
density of added noise is given. Based on the Parzen-window density estimation tech-
nique, we approximate the infinite-dimensional non-convex optimization of the optimal
probability density of added noise as a simpler optimization problem with respect to a
finite-dimensional vector under certain constraints. This approximate solution for the
optimal probability density of added noise shows its feasibility for various M-estimators
with an arbitrary array size, which is also validated by simulation results.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Noise benefits are manifest in nonlinear signal processing systems if a suitable amount of noise (characterized by
the optimal noise level [1–5] or the optimal noise type [6–10]) is added into these systems. This constructive action of
noise has essentially been reported in physical systems as stochastic resonance coined by Benzi et al. [11], and now
has crossed disciplinary boundaries [2,12–26]. Since the term ‘stochastic resonance’ has a very specific definition for
the frequency of nonlinear system output in accordance with that of the weak periodic input signal, many researchers
describe stochastic resonance as one example of the potential benefits of noise. In order to exploit noise benefits in a
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single system [3,7,25–29] or an parallel array of nonlinearities [5,10,30–32], some researchers tune the noise level for
a given noise type [33–39] or find the optimal noise probability density function (PDF) [7,8,10,25,26,36–38,40–44] to
optimize the system performance. Among these studies, Chen et al. [7,25,26] first proved that the optimal dichotomous
noise can maximize the performances of suboptimal detectors and estimators based on Carathéodory theorem (convex
hull). Later, the optimality and effectiveness of the dichotomous noise was also demonstrated in various signal detection
and estimation problems [8,36–38,41–43]. Furthermore, for the M-ary hypothesis-testing problem, Bayram et al. proved
that the optimal noise PDF includes at most M mass points in the restricted Bayesian framework [45] and in the minimax
framework [46]. For transmitting a stochastic signal in a quantizer array with a large array size, McDonnell et al. [10]
found that an optimal noise PDF, depending on the input signal distribution in terms of Fisher information, can achieve
the maximum channel capacity. Meanwhile, Patel and Kosko [37] proved that the uniform quantizer noise provides the
fastest initial decrease in the mean-squared error for the linear estimator of the input signal. In addition, using the Gateaux
differential of functionals, Zhai et al. [44] also demonstrated that the optimal uniform noise in an array of binary quantizers
leads to the minimal distortion between the input signal and the output decoding.

Recently, in the robust estimation field, we proved that the optimal noise PDF for improving the asymptotic efficiency
of an array of maximum likelihood type estimators (M-estimators) is the solution of the weighted minimum L2-norm
with regularization constraints [38]. However, no general or approximate achievable PDF of the optimal added noise was
derived. In this letter, based on the results of our work [38], we further investigate the optimal added noise PDF for
improving the asymptotic efficiency of a parallel array of M-estimators. It is noted that finding the optimal added noise
for a parallel array of M-estimators is actually a non-convex infinite-dimensional optimization problem, and analytic
solutions of the optimal noise PDF are quite difficult to obtain in general. Using the Parzen–window density estimation
technique [47], we approximate the optimal noise PDF as a solution of an optimization problem with respect to a finite-
dimensional non-negative vector under certain constraints. Then, for this simpler optimization problem, we use the
interior-point approach [48,49] to find an approximate, but feasible, solution of the optimal noise PDF for enhancing
the asymptotic efficiency of M-estimators. It is emphasized that the optimal added noise PDF has non-trivial complicated
shapes and varies non-trivially with the array size, the score function of M-estimators and the background noise PDF.
Compared with some common added noise PDFs and the case without added noise but with optimal estimator parameters,
the obtained approximate form of optimal added noise does provide more benefits to the asymptotic efficiency of the M-
estimator. Thus, we argue that the added noise is a useful option to be exploited and designed as a generalized estimator
‘parameter’. The obtained results are also validated by numerical simulation.

2. Array of M-estimators and asymptotic efficiency

Consider a location model of observations [50,51]

xn = θ + wn, n = 1, 2, . . . ,N (1)

where θ is the unknown location parameter and wn are independent and identically distributed (i.i.d.) white noise
components (errors). Here, the background noise w has a symmetric scale-family PDF fw(w) = fw(w/σw)/σw and the scale
parameter σw . Note that σw also measures the level of the background noise, because w = σww and w is distributed as
the standardized noise PDF fw with unity noise level σw [10,36–38,51]. With a loss function ρ satisfying certain regularity
conditions [50,51], the M-estimator θ̂ for estimating the location parameter θ is defined as

θ̂ = argmin
θ

N∑
n=1

ρ(xn − θ ). (2)

If ρ is differentiable, differentiating Eq. (2) with respect to θ , the M-estimator θ̂ also satisfies
∑N

n=1 ψ(xn − θ̂ ) = 0,
where the score function ψ = dρ/dθ [50,51]. The maximum likelihood estimator is a special case of M-estimators when
ψ = ψM = −f ′

w/fw (f ′
w = dfw/dx) and ρ = − log fw . Here the score function ψ is assumed to be odd and with a

bounded derivative ψ ′
= dψ/dx [51]. Under regularity conditions, Huber showed [50,52] that a Fisher-consistent M-

estimator θ̂ satisfying Ew[ψ(x − θ )] = 0 is consistent and tends to a Gaussian distribution with mean θ and variance
V (ψ, fw)/N , where V (ψ, fw) = Ew[ψ2(x)]/E2

w[ψ ′(x)] and Ew(·) =
∫

·fw(x)dx stands for the expectation with respect to fw .
Moreover, the optimal estimator, i.e. maximum likelihood estimator, has the minimum variance [NJ(fw)]−1 with the Fisher
information J(fw) = Ew[(f ′

w)
2/f 2w] of the noise PDF fw [50,51,53]. Due to the unknown PDF fw of the background noise w,

the optimal estimator is unachievable in practice. Then, some easily implemented M-estimators, for instance, Huber or
bisquare estimators, are frequently designed with adjustable estimator parameters for the location estimation [50,51].
Therefore, in order to measure how near the variance V (ψ, fw)/N of the M-estimator θ̂ is to the minimum variance of
the optimal estimator, the asymptotic efficiency of θ̂ is defined as [50,51,53]

Eff(θ̂ ) =
[NJ(fw)]−1

V (ψ, fw)/N
=

1
J(fw)

E2
w[ψ ′(x)]

Ew[ψ2(x)]
. (3)
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Fig. 1. Block diagram representation of the array of M-estimators with added noises.

We here purposefully add mutually independent noise components ηl,n into an array of M-estimators, as shown in
Fig. 1, and consider the added noise as a design variable of the estimator θ̂l. Then, a new M-estimator averaging L
estimators θ̂l is given by

θ̂ =
1
L

L∑
l=1

θ̂l. (4)

As illustrated in Fig. 1, each M-estimator θ̂l is subject to the same observations xn added by the noise components ηl,n.
Therefore, the input of each M-estimator θ̂l is yl,n = xn+ηl,n = θ+wn+ηl,n = θ+zl,n, where noise components ηl,n are with
the common PDF fη and the composite noise components zl,n = wn +ηl,n have a convolved PDF fz(z) =

∫
fw(z −u)fη(u)du.

In our previous work [38], using the first-order Taylor expansion of ψ for each M-estimator θ̂l around the true
value of θ and according to the central limit theorem for a sufficiently large observation size N , we proved that the
proposed M-estimator θ̂ of Eq. (4) converges to a Gaussian distribution with mean θ and the asymptotic variance
V (ψ, fw, fη)/N =

{
Ez[ψ

2(z)] + Ew{E2
η[ψ(w+ η)]}(L − 1)

}
/(NLE2

z [ψ
′(z)]) [38]. Then, from Eq. (3), the asymptotic efficiency

of the proposed M-estimator θ̂ in Eq. (4) can be expressed as

Effa(θ̂ ) =
1

J(fw)
E2
z [ψ

′(z)]
1
L Ez[ψ2(z)]+ L−1

L Ew
{
E2
η[ψ(w + η)]

} , (5)

with expectations Ez(·) =
∫

·fz(x)dx and Eη(·) =
∫

·fη(x)dx. It is interesting to note that, for a given noisy environment of
existing background noise wn and added noise ηl,n, the asymptotic efficiency Effa(θ̂ ) in Eq. (5) is a monotonically increasing
function of the array size L [38]. For a very large size L, the asymptotic efficiency of Eq. (5) approaches

Eff∞a (θ̂ ) = lim
L→∞

Effa(θ̂ )≈
E2
z [ψ

′(z)]
J(fw)Ew

{
E2
η[ψ(w + η)]

} =
E2
w{Eη[ψ ′(w + η)]}

J(fw)Ew
{
E2
η[ψ(w + η)]

} (6)

with limL→∞ Ez[ψ
2(z)]/L = 0 and Ez[ψ

2(z)] < ∞. In practice, we can parallel as many M-estimator θ̂l as possible to
approach the limit value of Eff∞a (θ̂ ) given by Eq. (6) [38].

3. Optimal noise level and PDF

We emphasize that the asymptotic efficiency Effa(θ̂ ) of θ̂ in Eq. (5) is a nonlinear functional of the added noise PDF fη
that can act as a design variable of the M-estimator. In the following section, we will optimize the added noise level ση
and the added noise PDF fη to maximize the asymptotic efficiency Effa(θ̂ ) of Eq. (5).

3.1. Optimal noise level ση

For a given array size L, noise PDFs fw and fη , the level ση of the added noise is the tunable parameter. The noise
benefit to the asymptotic efficiency can be derived by the condition ∂Effa(θ̂ )/∂ση > 0, which indicates the occurrence
of the noise-enhanced asymptotic efficiency effect in M-estimators. When the inequality of ∂Effa(θ̂ )/∂ση > 0 holds for
ση ≥ 0, then ση can be gradually raised above zero up to the level σ opt

η > 0 satisfying the condition

∂Effa(θ̂ )
∂ση

⏐⏐⏐
ση=σ

opt
η

= 0 (7)
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and in this circumstance σ opt
η is an optimal noise level achieving a maximum of the asymptotic efficiency. Only when

the solution to Eq. (7) is unique can we expect to have a global maximum. In practice, the solution of Eq. (7) we show
in Figs. 2(b) and (c), although we cannot rigorously prove it corresponds to a global maximum due to the complicated
form of the derivative of the asymptotic efficiency in Eq (7), offers a useful and meaningful improvement obtained by
adding noise. Especially it substantiates the claim that enhancement of the efficiency Effa(θ̂ ) can be obtained by injecting
a nonzero level of added noise. For instance, for a sufficiently large size L and from Eq. (6), the condition of Eq. (7) can be
rewritten as

Ew{∂Eη[ψ ′(w + η)]/∂ση}
Ew{Eη[ψ ′(w + η)]}

=
Ew{Eη[ψ(w + η)]∂Eη[ψ(w + η)]/∂ση}

Ew{E2
η[ψ(w + η)]}

, (8)

which yields an optimal noise level σ opt
η if it exists.

For instance, consider the Huber estimator [52]

ψ(x) =

{
x, |x| ≤ γ ,

γ sgn(x), |x| > γ ,
(9)

where γ ≥ 0 is the estimator parameter. When γ → 0, the Huber function of Eq. (9) becomes ψ(x) = sgn(x) associated
with the median estimator, and as γ → ∞ the estimator yields the sample mean of the observation data. Specially,
consider the background noise with Cauchy PDF fw(w) = π−1(1 + w2)−1, Student PDF fw(w) = (3π )−1/2Γ −1(3/2)(1 +

w2/3)−2 and Laplacian PDF fw(w) = exp(−|w|)/2, and these noise PDFs all have the unity level of σw . The added Gaussian
noise PDF is fη(η) = exp(−η2/2σ 2

η )/(
√
2πση) with the noise level ση . Here, the standard deviation σw of the background

noise is set as the unit of the signal amplitude, to which all other signal amplitudes occurring in the problem will be
referred. We also provide in Appendix C, a mathematical proof that the asymptotic efficiencies of Eq. (5) for the Huber
estimator and the bisquare estimator are functions of the dimensionless variables γ /σw and ση/σw .

It is shown in Fig. 2(a) that, as the level ση of the added noise increases and for a fixed estimator parameter γ /σw = 0.1
in Eq. (9), the asymptotic efficiency Eff∞a (θ̂ ) of Eq. (6) shows the phenomenon of noise enhancement for Cauchy noise
and Student noise. For the situation of Laplacian noise and the given parameter γ /σw = 0.1, the addition of noise
degrades the asymptotic efficiency, as shown in Fig. 2(a). An alternative criterion, being capable of assessing noise benefit
effects, is to take as a reference the performance of the suboptimal array with no added noise instead of the best
performance achievable by the optimal estimator in the asymptotic efficiency we used, which can be written as the ratio
G(ψ, fw, fη) = V (ψ, fw)/V (ψ, fw, fη). From the definition of the asymptotic efficiency Effa(θ̂ ) = 1/(NJ(fw))/(V (ψ, fw, fη)/N),
the criterion G = (V (ψ, fw)J(fw))Effa(θ̂ ) can be directly deduced from the asymptotic efficiency, where V (ψ, fw)J(fw) is a
constant that does not vary with the added noise. So G will experience the same evolution with the added noise as the
asymptotic efficiency. As in Fig. 2(a), when there is a resonant evolution of Effa(θ̂ ) at a maximum for an optimal level σ opt

η

of the added noise, there will also be a resonant evolution of G culminating at a maximum for the same optimal level
σ opt
η of the added noise. Using the condition of the optimal noise level σ opt

η of Eq. (7), we plot the optimal noise level σ opt
η

as a function of the estimator parameter γ in Fig. 2(b). Here, the numerical algorithm of σ opt
η in Eq. (7) is a combination

of bisection, secant, and inverse quadratic interpolation methods [54,55] within the positive real number field.
It is interesting to note that, as the estimator parameter γ varies, a non-zero optimal noise level exists for Student

noise (0 ≤ γ /σw ≤ 4), Laplacian noise (γ /σw > 0.2) and Cauchy noise (0 ≤ γ /σw ≤ 0.4 and γ /σw > 1.95), which closely
depends upon the PDF fw of the background noise, the PDF fη of the added noise and the array size L. Fig. 2(c) shows the
optimal noise level σ opt

η versus the array size L. It is seen in Fig. 2(c) that, only as the array size L is larger than certain
values (e.g. L > 10 for Cauchy background noise), an optimal noise level σ opt

η exists. Here the Huber estimator parameter
γ /σw = 4. In Fig. 2(c), we also see that the optimal noise level σ opt

η increases as the array size L grows. As the array size
L is sufficiently large, the value of the optimal noise level σ opt

η tends to a constant for the three added noise types.

3.2. Optimal noise density fη

The condition of Eq. (7) for the noise benefit is based on the design variable of the added noise level ση , but the PDFs fw ,
fη , and the array size L are given. In practice, the background noise is often unavoidable (the noise PDF fw is fixed), while
the added noise PDF fη can be artificially designed. Naturally, in the following parts, an interesting question is how to
optimally design the PDF fη (including the noise level ση) of the added noise to improve the asymptotic efficiency Effa(θ̂ )
in Eq. (5), which can be viewed as an optimization problem

f optη = max
fη

E2
z [ψ

′(z)]
1
L Ez[ψ2(z)]+ L−1

L Ew
{
E2
η[ψ(w + η)]

} (10)

with constraints of the symmetric function fη(−x)=fη(x) for ensuring the Fisher consistency of the estimator, i.e. Ez[ψ(z)] =

0 [38], and regularity conditions of fη(x) ≥ 0 (x ∈ R) and
∫
fη(x)dx = 1. It is noted in Eq. (5) that the Fisher information

J(fw) of the noise density fw is also a fixed quantity, which is independent of the optimal noise PDF f optη in Eq. (10).
According to the definition of convex functionals [56], the asymptotic efficiency of Eq. (5) with respect to the

added noise PDF fη is a non-convex functional, and then the optimization problem of Eq. (10) is non-convex. Thus, the
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Fig. 2. (a) Asymptotic efficiency Eff∞a (θ̂ ) of Eq. (6) of the Huber estimator in Eq. (9) with γ /σw = 0.1 as a function of the level ση of the added
noise; (b) The optimal level σ opt

η of the added noise versus the Huber estimator parameter γ . (c) The optimal level σ opt
η of the added noise versus

the array size L for the estimator parameter γ /σw = 4.

optimization problem of Eq. (10) over the space of all possible PDFs of fη has high computational complexity, and is difficult
to solve theoretically. Here, we employ an approximation technique of the Parzen–window density estimation [57] to
approximate the PDF f optη of the optimal added noise [47] as

f̃ optη (η) =

K∑
k=1

νkrk(η − uk), (11)

where the normalization coefficients νk ≥ 0 and
∑K

k=1 νk = 1, and window functions rk(·) satisfy rk(u) ≥ 0 and∫
rk(u)du = 1 for k = 1, 2, . . . , K [47]. As the number K of window functions increases, the estimation form f̃ optη (η)

of Eq. (11) gradually converges to f optη (η) in Eq. (10) under certain conditions [47]. We further solve the approximate
PDF f̃ optη in a finite symmetric interval [−a, a] (a > 0), and the interval bound a needs to be iteratively chosen. For
0 < ∆a ≪ 1, if the corresponding calculation values of the asymptotic efficiency satisfy |Effa(θ̂ , a′

+∆a) − Effa(θ̂ , a′)| < ε

for a sufficiently small positive number ε, then we obtain the interval bound a = a′.
We divide the interval [−a, a] into K sub-intervals Λi = [ak−1, ak] with equal width ∆u = 2a/K , where ak =

a0 + k∆u and a0 = −a and the midpoint of each sub-interval is uk = (ak−1 + ak)/2 for k = 1, 2, . . . , K . Using
this discretization method, we prove in Appendix A that the solution of the optimization problem of Eq. (10) becomes
the simpler optimization problem of Eq. (A.5) with respect to a finite-dimensional vector ν = [ν1, ν2, . . . , νK ]

⊤. The
optimization problem of Eq. (A.5) is still non-convex in general, and some optimization techniques, such as particle-swarm
optimization [45,58–60], penalty function approaches [61,62], the sequential quadratic programming algorithm [62,63],
can be employed. Here, we use a kind of penalty function, i.e. the interior-point technique [48,49,64], to solve the
optimization problem of Eq. (A.5), whereby a barrier function is added into the objective function in order to replace
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Fig. 3. Approximate form f̃ optη (□) of the optimal added noise PDF in Eq. (11) and the theoretical optimal noise PDF f optη (solid line) in Eq. (10) for
L→∞, the hyperbolic secant background noise and the median estimator.

the inequality constraints. Then, we can transfer the problem of Eq. (A.5) to a sequence of barrier subproblems of the
form of Eq. (A.7), yielding the approximate form f̃ optη in Eq. (11) of the optimal noise PDF.

In order to validate the above-mentioned approach of Eq. (11), the hyperbolic secant background noise PDF fw(x) =

sech(πx/2)/2 with the unity level of σw and the median estimator ψ(x) = sign(x) are considered. The hyperbolic secant
distribution is an interesting model as it is close to the Gaussian distribution at small amplitude, while it tends to an
exponential distribution at large amplitude [65]. It is for instance applied in the context of financial return data [66,67].
Under these circumstances, it is theoretically proven by the Fourier transform and its inverse transform [38] that the
optimal Logistic noise PDF, as a solution of the optimization of Eq. (10) for L → ∞, has the form f optη (x) = πsech2(πx/2)/4,
as shown in Fig. 3 (solid line). The median estimator can benefit from the addition of the Logistic noise components
ηl,n and the asymptotic efficiency in Eq. (6) can be improved to reach the upper bound of unity, i.e. Eff∞a (θ̂ ) = 1 [38].
The approximate solution f̃ optη (□) of Eq. (11) is also plotted in Fig. 3 in the interval [−a/σw, a/σw] = [−2, 2], where a
rectangular window function rk(η) = 1/∆u for |η| ≤ ∆u/2 and zero otherwise, and the step ∆u/σw = 0.1. It is clearly
visible in Fig. 3 that the approximate form f̃ optη (η) of the optimal added noise (□) is consistent with the theoretical one f optη

(solid line) in the considered solution interval. Moreover, substituting the approximate form f̃ optη of Eq. (11) into Eq. (6),
we obtain the corresponding asymptotic efficiency Eff∞a (θ̂ ) = 0.995, which is very close to unity. This result shows the
feasibility of the approximate form f̃ optη in Eq. (11). As seen in Fig. 3, the tails of the approximate solution of f̃ optη go up
a little bit. Because of the normalization of the finitely-supported probability density f̃ optη approximating the theoretical
density f optη with infinite support, the very small probability of the theoretical optimal solution f optη , neglected outside the
interval of [−a/σw, a/σw] in the tails, shows up around the two limits of the interval supporting the finite-dimensional
solution f̃ optη .

Next, we consider the background Cauchy noise and the redescending bisquare M-estimator with the score function

ψ(x) = x
[
1 − (x/γ )2

]2 (12)

for |x| ≤ γ (γ > 0) and otherwise zero. Without the added noise components ηl,n, the optimal estimator parameter is
γ /σw = 3.3 and the corresponding maximum asymptotic efficiency Eff(θ̂ ) = 0.902 (see Fig. 5(b)). For different array
sizes L, Fig. 4 plots the approximate forms of f̃ optη in Eq. (11). It is seen in Fig. 4(a) that, for the array size L = 1, the
approximate optimal noise PDF f̃ optη (u) = 1/∆u for |u| < ∆u/2, which means that the addition of noise is not beneficial
to the asymptotic efficiency of the M-estimator. For L = 100, 1000 and 3000, the corresponding approximate optimal
noise PDFs are shown in Figs. 4(b), (c) and (d), respectively. Also of interest, with the obtained approximate optimal noise
PDFs and from Eq. (A.5), the corresponding asymptotic efficiencies Effa(θ̂ ) of Eq. (5) are calculated as 0.934 (L = 100),
0.981 (L = 1000) and 0.990 (L = 3000), which are all higher than the value of 0.902 obtained without added noise. It
is seen in Fig. 4 that the approximate PDFs f̃ optη (u) of the optimal noise have non-trivial complicated shapes and vary
non-trivially with the array size L. We also calculate the optimal noise PDFs in other configurations, for instance, the
Huber estimator under Cauchy or Logistic background noise (not shown here), which also present complicated shapes
and vary with the array size, the background noise PDF and the score function of the M-estimator. Consequently, it is
difficult to analytically characterize the optimal noise PDF in general, whence the approximate from of the optimal noise
PDF is very practical.

In Fig. 5(a), the asymptotic efficiency, as the array size L increases, benefits more and more from the addition of optimal
noise components ηl,n with PDF f̃ optη . In practice, for an arbitrary estimator parameter γ and a given array size L = 1000,
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Fig. 4. Approximate forms f̃ optη in Eq. (11) of the optimal noise PDF for different array sizes (a) L = 1, (b) L = 100, (c) L = 1000 and (d) L = 3000.
Here, the background noise is Cauchy distributed and the redescending bisquare M-estimator of Eq. (12) has the estimator parameter γ /σw = 3.3.
The interval bound value a/σw = 10.7 and the step ∆u/σw = 0.2 in Eq. (A.5).

Fig. 5. Asymptotic efficiency Effa(θ̂ ) of Eq. (5) obtained by the approximate optimal noise PDF f̃ optη of Eq. (11) versus (a) the array size L for the
parameter γ /σw = 3.3 of the bisquare estimator in Eq. (12); (b) the parameter γ of the bisquare M-estimator in Eq. (12) for the approximate
optimal noise (□ plus solid line), uniform noise (∗ plus solid line), Gaussian noise (dashed line), Laplacian noise (dotted line) and the case of no
added noise (solid line). Here, the array size L = 1000.
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Fig. 6. Numerical (▲) and theoretical (□) results of the asymptotic efficiency Effa(θ̂ ) of Eq. (5) obtained by the approximate form f̃ optη of the optimal
nose PDF as a function of the parameter γ of the bisquare estimator in Eq. (12). Here, the simulation results of the asymptotic efficiency (▲) are
computed by 104 Monte Carlo trials, the observation size N = 6000 and the tolerance parameter ζ/σw = 10−7 . The other parameters are the same
as in Fig. 5(b).

we always find an approximate PDF f̃ optη of the optimal noise that yields an improved asymptotic efficiency Effa(θ̂ ) (□ plus
solid line), as shown in Fig. 5(b). For comparison, we also plot the asymptotic efficiency Effa(θ̂ ) for the addition of uniform
noise (∗ plus solid line), Gaussian noise (dashed line), Laplacian noise (dotted line) by optimally tuning their noise levels.
Moreover, the asymptotic efficiency Effa(θ̂ ) in the case of no added noise (solid line) is also illustrated in Fig. 5(b). The
comparison results show that the asymptotic efficiency Effa(θ̂ ) (□ plus solid line) obtained by the approximate optimal
noise PDF f̃ optη is actually better.

In Appendix B, the procedure of the numerical simulation for the asymptotic efficiency Effa(θ̂ ) of the estimator θ̂ in
Eq. (4) by the iterative reweighting method is briefly introduced. The simulation results are presented in Fig. 6, and the
optimal noise components ηl,n are generated according to the approximate solution f̃ optη of the optimal noise. It is visible
in Fig. 6 that the numerical results of Effa(θ̂ ) are almost well consistent with the theoretical values, which validates the
practicability of the approximate noise PDF f̃ optη for enhancing the asymptotic efficiency of the M-estimator. We also note
that the small deviation between numerical and theoretical results might be caused by the limited simulation numbers
of the random samples and the difference between the sample distribution and the theoretical distribution. Due to some
of the approximations made in the derivations of Eq. (11), there might be also a deviation between the approximate and
the true PDF of the optimal noise. Therefore, a more accurate theoretical model needs to be established to reduce the
deviation in future studies.

4. Conclusion and discussion

In this paper, we investigate the noise benefit to the asymptotic efficiency of M-estimators arrayed in parallel and
treat the added noise as a design variable of M-estimators. It is shown that the asymptotic efficiency of an array of M-
estimators can be optimized by not only adjusting the added noise level, but also the added noise PDF. With the theoretical
expression of the asymptotic efficiency, the optimal added noise level can be derived as the noise type is given. For the
non-convex optimization of the added noise PDF, we use the Parzen-window density estimation approach to approximate
the optimal added noise PDF. Then, the infinite-dimensional non-convex optimization of the optimal noise PDF becomes
a simpler optimization problem with respect to a finite-dimensional vector under certain constrained conditions. Using
this approximate approach, we characterize the optimal noise PDF for various M-estimators, background noise types,
and different array sizes. The obtained optimal noise PDFs varies non-trivially with the array size, the background noise
distribution and the selected estimator. This result indicates that the optimal noise PDF has a complicated shape that
is difficult to describe theoretically, and the proposed approximate approach is very meaningful for practical signal
estimation problems. Compared with some common noise distributions and the M-estimator with optimal parameter
(without added noise), the optimal noise indeed provides a greatly improved asymptotic efficiency of M-estimators. The
numerical simulation results also support the above-mentioned theoretical analysis.

For the non-convex optimization problem of Eq. (A.5), various optimization approaches, such as particle-swarm
optimization [68–70], feasible point pursuit [71], genetic algorithms and differential evolution [72], could also be tested for
finding the optimal solution of added noise PDFs. In this paper, we only focus on the parallel array of identical estimators
in the field of robust estimation. Now, the addition of noise in nonlinear signal processor is recognized as a possibly useful
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option to contribute to signal processing techniques. Noise, as well as the processor parameters [5,7,8,10,25,26,30–32,34–
44] can be explored as a new design variable for the optimization of the performances of processors. Thus, the considered
approximate approach that finds the optimal noise PDF deserves to be further investigated in the weak signal detection
and transmission. The Parzen-window density estimation approach applies to the cases of the optimal noise probability
density f optη being mainly contained in the considered finite interval, and the accuracy of the approximate form f̃ optη is
quite high. Beyond these cases, some feasible density estimation approaches need to be developed. The results we show
are specific of a given background noise and a given score function for the estimator, but the approach we developed can
be applied to any other choices for these aspects. We propose an interesting hypothesis that, if the considered estimator
is not the maximum likelihood estimator for the location parameter in the background noise, an optimal added noise
certainly exists and is of great benefit to the asymptotic efficiency of an array of suboptimal estimators. The generality of
this hypothesis deserves to be tested and verified.
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Appendix A. Approximate form of the optimal noise PDF

In an interval [−a, a] and for a fixed equal step ∆u, the approximate form of noise PDF f̃ optη in Eq. (11) can be utilized
for the simplification of the expectations in Eq. (10). Then, we have

Eη[ψ(w + η)] ≈

∫ a

−a
ψ(w + η)f̃ optη (η)dη =

∫ a

−a
ψ(w + η)

K∑
i=1

νiri(η − ui)dη

=

K∑
i=1

νiqi(w) = ν⊤q(w), (A.1)

where vectors ν = [ν1, ν2, . . . , νK ]
⊤ and q(w) = [q1(w), q2(w), . . . , qK (w)]⊤ with its element qi(w) =

∫
Λi
ψ(w + η)ri(η−

ui)dη and Λi = [ai−1, ai]. The expectation Ew{E2
η[ψ(w + η)]} in Eq. (10) can be simplified as

Ew{E2
η[ψ(w + η)]}=Ew[ν⊤q(w)q⊤(w)ν]=ν⊤Ew[q(w)q⊤(w)]ν=ν⊤ϕν, (A.2)

where the matrix ϕ has its element ϕi,j = Ew[qi(w)qj(w)] for 1 ≤ i, j ≤ K . The expectation E2
z [ψ

′(z)] in Eq. (10) can be
rewritten as

E2
z [ψ

′(z)] = E2
w{Eη[ψ ′(w + η)]} = E2

w{Eη[ψ(w + η)]ψM(w)}
≈ E2

w[ν⊤q(w)ψM(w)] = ν⊤Ew[q(w)ψM(w)]Ew[q(w)ψM (w)]⊤ν

= ν⊤ϕν, (A.3)

where the matrix ϕ is with the element ϕi,j = Ew[qi(w)ψM(w)]Ew[qj(w)ψM(w)]. Similarly, Ez[ψ
2(z)] can be approximated

as

Ez[ψ
2(z)] = Eη{Ew[ψ2(w + η)]} ≈

∫ a

−a

K∑
i=1

νiri(η − ui)Ew[ψ2(w + η)]dη

=

K∑
i=1

νisi = s⊤ν (A.4)

with s = [s1, . . . , sK ]
⊤ and its ith element si =

∫
Λi

Ew[ψ2(w + η)]ri(η − ui)dη. Substituting Eqs. (A.2)–(A.4) into Eq. (10),
the infinite-dimensional non-convex optimization of Eq. (10) becomes a simpler optimization problem

max
ν

ν⊤ϕν
1
L s

⊤ν +
L−1
L ν⊤ϕν

,

s.t. νi ≥ 0 , i = 1, 2, . . . , K ,
K∑

i=1

νi = 1, ν = ν̃, (A.5)

where ν̃ = [νK , νK−1, . . . , ν1]
⊤ because of the symmetry of the added noise PDF fη .

Due to the positive terms ν⊤ϕν, s⊤ν and ν⊤ϕν, the maximization problem of Eq. (A.5) can be converted into the
equivalent minimization of the reciprocal of its objective function, i.e.

min
ν

B(ν) =
1
L

s⊤ν

ν⊤ϕν
+

L − 1
L

ν⊤ϕν

ν⊤ϕν
, (A.6)
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with the same constraints in Eq. (A.5). Here, we use the interior-point approach [48,49,64] to solve the optimization
problem of Eq. (A.6) as

min
ν,λ

g(ν, λ) = B(ν) − λ

K∑
i=1

log(νi)

s.t.
K∑

i=1

νi = 1, ν = ν̃, (A.7)

where −λ
∑K

i=1 log(νi) is the barrier function and the barrier parameter λ is a small positive scalar. When λ decreases
to zero [48,49,62,64], the minimum of Eq. (A.7) converges to the solution of the problem of Eq. (A.6). To solve the
constrained minimization problem of (A.7), many methods such as Newton algorithm [73], Davidon–Fletcher–Powell
algorithm (DFP) [74,75] and Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [75] can be used. We can also make use
of the professional software of Matlab or Lingo. Here, we use the Matlab function of ‘fmincon’ to solve this minimization
constrained problem of Eq. (A.6) and set the option parameter of ‘Algorithm’ as ‘interior-point’ [48,49,62,64]. Interestingly,
for the limit case of L → ∞ and the terms 1/L → 0 in B(ν), the optimization problem of (A.5) becomes

max
ν

ν⊤ϕν

ν⊤ϕν
, (A.8)

which can be regarded as the maximization of the generalized Rayleigh quotient with the same constraints as in Eq. (A.5).

Appendix B. Numerical simulation of the asymptotic efficiency with the benefit of the optimal noise

The estimator θ̂ in Eq. (2) can be computed as a weighted mean [51]

θ̂ =

∑N
n=1 Wn xn∑N
n=1 Wn

, (B.1)

with Wn = W (xn − θ̂ ) and

W (x) =

{
ψ(x)/x, x ̸= 0,
ψ ′(x), x = 0.

(B.2)

The weighted average expression of Eq. (B.1) suggests an iterative procedure for computing the M-estimator θ̂ in Eq. (2) by
using the updated samples generated by the optimal noise distribution. From Eq. (11) and Eq. (A.7), the approximate form
of the optimal noise PDF f̃ optη is solved. Then the random noise components are generated by the acceptance–rejection
method [76] according to f̃ optη , yielding L groups of mutually independent noise samples ηl,n with the length of N (1 ≤ l ≤ L
and n = 1, 2, . . . ,N).

Then, by using the iterative reweighting method of Eq. (B.1), compute the M-estimators θ̂l (1 ≤ l ≤ L) with L groups of
noisy observations, respectively. For each estimator θ̂l, the steps of the iterative reweighting method start from an initial
estimator θ̂l(0) as the median of the updated observations yl = (yl,1, yl,2, . . . , yl,N ). According to Eq. (B.1), compute the kth
iteration value of θ̂l(k) =

∑N
n=1 Wk−1,ln yl,n/

∑N
n=1 Wk−1,ln with Wk,ln = W (yl,n − θ̂l(k)). The iteration procedure continues

until |θ̂l(k) − θ̂l(k − 1)| < ζ , where ζ is a small positive tolerance parameter. Finally, the proposed estimator θ̂ is computed
by averaging L estimators θ̂l as

∑L
l=1 θ̂l/L. The numerical results of the M-estimator θ̂ are achieved by 104 Monte Carlo

trials, and then the sample mean and variance of the M-estimator θ̂ can be numerically calculated. Substituting the sample
variance into Eq. (3), the numerical value of the asymptotic efficiency Effa(θ̂ ) is obtained.

Appendix C. Asymptotic efficiency of M-estimators for the scale family of noise PDFs

We consider the scale-family PDFs fw(w) = fw(w/σw)/σw of the background noise and fη(η) = fη(η/ση)/ση of the added
noise, where fw and fη are the standardized PDFs with unity scale. The noise cumulative distribution function (CDF) of
the added noise satisfies Fη(η) = Fη(η/ση) and with Fη being the standardized CDF of fη . J(fw) = J(fw)/σ 2

w and J(fw) is the
Fisher information of fw [53]. We can derive that the asymptotic efficiencies Effa(θ̂ ) of the Huber estimator in Eq. (9) and
the bisquare estimator in Eq. (12) are a function of the dimensionless variables γ /σw and ση/σw as follows.

For the Huber estimator in Eq. (9), we have

Ez[ψ
′(z)] = Ew[Fη(γ − w) − Fη(−γ − 2)]

= Ew[Fη((γ − w)/ση) − Fη((−γ − w)/ση)]

=

∫
∞

−∞

[
Fη((γ − w)/ση) − Fη((−γ − w)/ση)

]
fw(w/σw)d(w/σw)
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=

∫
∞

−∞

[
Fη((γ − wσw)/ση) − Fη((−γ − wσw)/ση)

]
fw(w)dw

= Ew
[
Fη

(
γ /ση − w/(ση/σw)

)
− Fη

(
−γ /ση − w/(ση/σw)

)]
= hA(γ /σw, ση/σw). (C.1)

We also find

Ew{E2
η[ψ(w + η)]} = Ew

[(
γ −

∫ γ−w

−γ−w

Fη(η)dη
)2

]

= Ew

[(
γ −

∫ γ−w

−γ−w

Fη(η/ση)dη
)2

]

= Ew

[(
γ − ση

∫ (γ−w)/ση

(−γ−w)/ση
Fη(η)dη

)2
]

= σ 2
η Ew

[(
γ /ση −

∫ (γ−w)/ση

(−γ−w)/ση
Fη(η)dη

)2
]

= σ 2
η Ew

[(
γ /ση −

∫ γ /ση−w/(ση/σw )

−γ /ση−w/(ση/σw )
Fη(η)dη

)2
]

= σ 2
η hB(γ /σw, ση/σw), (C.2)

and

Ew{Eη[ψ2(w + η)]} = Ew

[
γ 2

− 2
∫ γ−w

−γ−w

(w + η)Fη(η)dη

]

= Ew

[
γ 2

− 2ση

∫ (γ−w)/ση

(−γ−w)/ση
(w + σηη)Fη(η)dη

]

= σ 2
η Ew

[
(γ /ση)2 − 2

∫ (γ−w)/ση

(−γ−w)/ση

(
w/ση + η

)
Fη(η)dη

]

= σ 2
η Ew

[
(γ /ση)2 − 2

∫ (γ−wσw )/ση

(−γ−wσw )/ση

(
wσw/ση + η

)
Fη(η)dη

]

= σ 2
η Ew

[
(γ /ση)2 − 2

∫ γ /ση−w/(ση/σw )

−γ /ση−w/(ση/σw )

(
w/(ση/σw) + η

)
Fη(η)dη

]
= σ 2

η hC (γ /σw, ση/σw). (C.3)

Then, by substituting Eqs. (C.1)–(C.3) in Eq. (5), the asymptotic efficiency of the Huber estimator in Eq. (9) can be
calculated as

Effa(γ /σw, ση/σw, L) =
1

J(fw)
1

(ση/σw)2
h2
A

1
L hC +

L−1
L hB

, (C.4)

which can be expressed as a function of γ /σw and ση/σw . Similarly, for the bisquare estimator in Eq. (12), we also derive
the asymptotic efficiency as

Effa(γ /σw, ση/σw, L) =
1

J(fw)
h2
A

1
L hC +

L−1
L hB

,

where the functions

hA = Ew
[∫ γ /ση−w/(ση/σw )

−γ /ση−w/(ση/σw )

[
1 −

(
w/(γ /σw) + η/(γ /ση)

)2][
1 − 5

(
w/(γ /σw) + η/(γ /ση)

)2]
fη(η)dη

]
,

hB = Ew
[(∫ γ /ση−w/(ση/σw )

−γ /ση−w/(ση/σw )

(
w + (ση/σw)η

)[
1 −

(
w/(γ /σw) + η/(γ /ση)

)2]2
fη(η)dη

)2]
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and

hC = Ew
[∫ γ /ση−w/(ση/σw )

−γ /ση−w/(ση/σw )

(
w + (ση/σw)η

)2[
1 −

(
w/(γ /σw) + η/(γ /ση)

)2]2
fη(η)dη

]
are all functions of γ /σw and ση/σw .
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