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Abstract

We consider sensor devices with saturation in their response, in charge of the transmission of a sinusoidal signal buried in Gaussian w
with a performance assessed by an input–output gain in the signal-to-noise ratio. We show that such saturating devices can always
achieve a signal-to-noise ratio gain larger than unity. When replicated to form parallel arrays, further improvement of the gain can be
with independent noise injected on the sensors. This provides smart arrays of simple nonlinear sensors capable of acting as noise-aide
and where the highest gains in signal-to-noise ratio are always obtained at a nonzero level of the added noises.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear processes where fluctuations and noise play a
eficial role are currently an active area of research. Such
nomena especially exhibit very interesting potentialities for
nal and information processing. Stochastic resonance[1,2] can
be presented as designating such a class of phenomena,
the action of noise can improve some processing perfor
on a signal. For stochastic resonance in isolated nonlinear
tems, a common mechanism of improvement can be desc
as a displacement by noise of the operating zone, initially
positioned, of a nonlinear system, towards a region more fa
able to the signal. Since more recently, a distinct mechanism
stochastic resonance is being investigated, which arises w
nonlinear systems are replicated into parallel arrays[3–9]. In
the array, each individual system is subjected to an additi
independent noise. As a consequence, each system res
differently to a common input applied to the array. When
responses are collected or averaged over the array, it turn
that the global response of the array with added noise ca
more efficient, in regard to some processing performed on
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input, than a single system with no added noise. This form
stochastic resonance in arrays was introduced and studied
the name of suprathreshold stochastic resonance in[3,4], where
it was applied to the transmission by threshold comparator
a noise-free input with arbitrary (not necessarily subthresh
amplitude. This form of stochastic resonance was latter
plied to process a signal-noise mixture as the input, thro
injection of additional independent noise in the array[8,9]. So
far, stochastic resonance in parallel arrays of nonlinearities
essentially been reported and investigated for threshold
linearities, including some neuron models[10–13], and shown
applicable to several distinct signal processing tasks.

In the present Letter we will concentrate on the impro
ment of the signal-to-noise ratio (SNR) of a sinusoidal sig
buried in Gaussian white noise. Improving the SNR of a si
soid in noise is often desirable in many areas of experime
sciences and technologies. The sinusoid can be in itsel
(fixed) signal of interest, or it can be a carrier conveying us
information through (slow) modulation of some of its param
ters. Moreover, the SNR of a sinusoid in noise and its evolu
through nonlinear transformation, is often taken as a refere
in the studies of the various forms and modalities of stocha
resonance. We will show that nonlinear sensor devices, li
for small inputs and saturating at large inputs (a common
havior for sensors[14]), are capable of an amplification of th
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SNR of a sinusoid in Gaussian white noise. In addition, we
demonstrate that when these saturating devices are asso
into parallel arrays, further improvement of the SNR can
cur, through the action of independent noises injected into
array. Our results extend the phenomenon of stochastic
nance in parallel arrays to threshold-free nonlinearities ta
the form of saturating sensors. They also establish a novel
of SNR-amplifying systems, under the form of parallel arra
of saturations aided by noise.

2. Evaluation of an SNR gain

Consider the signal-plus-noise mixturex(t) = s(t) + ξ(t),
wheres(t) is deterministic with periodTs , andξ(t) is a station-
ary white noise, independent ofs(t), with cumulative distrib-
ution functionFξ (u) and probability density functionfξ (u) =
dFξ (u)/du. The input signalx(t) = s(t) + ξ(t) is applied onto
a parallel array ofN identical sensors, conforming to the arc
tecture also considered in[3,10,15]. Each sensor of the array
endowed with the same input–output static or memoryless c
acteristicg(·). A noiseηi(t), independent ofx(t), can be added
to x(t) at each sensori, so as to produce the output

(1)yi(t) = g
[
x(t) + ηi(t)

]
, i = 1,2, . . . ,N.

TheN noisesηi(t) are white, mutually independent and iden
cally distributed (i.i.d.) with cumulative distributionFη(u) and
probability densityfη(u) = dFη(u)/du. The responsey(t) of
the array is obtained by averaging the outputs of all the sen
as

(2)y(t) = 1

N

N∑
i=1

yi(t).

The transmission ofs(t) by the array is assessed by t
output SNR which is standard in stochastic resonance stu
[2,16]. When s(t) is deterministic with periodTs , the output
signaly(t) generically is a cyclostationary random signal,
dowed with a power spectrum containing spectral lines a
teger multiples of 1/Ts , emerging out of a continuous nois
background[16]. The output SNRRout is defined as the powe
contained in the output spectral line at the fundamental 1/Ts

divided by the power contained in the noise background
small frequency band�B around 1/Ts .

For the output signaly(t) of Eq. (2), the power contained
in the output spectral line at the frequency 1/Ts is given[16]
by |Ȳ1|2, whereȲ1 is the Fourier coefficient at the fundamen
of theTs -periodic nonstationary output expectation E[y(t)], i.e.

(3)Ȳ1 =
〈
E
[
y(t)

]
exp

(
−ı

2π

Ts

t

)〉
,

with the time average defined as

(4)〈· · ·〉 = 1

Ts

Ts∫
0

· · · dt.

The magnitude of the continuous noise background in
output spectrum is measured[16] by the stationarized outpu
l
ted
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variance〈var[y(t)]〉, with the nonstationary variance given b
var[y(t)] = E[y2(t)] − E[y(t)]2 at a fixed timet .

The output SNRRout, at the fundamental frequency 1/Ts ,
follows as

(5)Rout = |〈E[y(t)]exp(−ı2πt/Ts)〉|2
〈var[y(t)]〉�t�B

,

where�t is the time resolution of the measurement (i.e.,
signal sampling period in a discrete time implementation).
white noise assumption, throughout, models broadband p
ical noises with a correlation duration much smaller than
other relevant time scales, i.e.Ts and�t [16].

At time t , for a fixed given valuex of the inputx(t), one has,
according to Eq.(2), the conditional expectations

(6)E
[
y(t)|x] = E

[
yi(t)|x

]
and

(7)E
[
y2(t)|x] = 1

N
E
[
y2
i (t)|x] + N − 1

N
E2[yi(t)|x

]
,

which are both independent ofi since theηi(t) are i.i.d. The
large array limitN = ∞, when needed, will be simply acces
ble by letting E[y2(t)|x] = E2[yi(t)|x] in Eq.(7).

Next, since x(t) = s(t) + ξ(t), the probability density
for x(t) is fξ (x − s(t)), and one has

(8)E
[
y(t)

] =
+∞∫

−∞
E
[
y(t)|x]

fξ

(
x − s(t)

)
dx,

and

(9)E
[
y2(t)

] =
+∞∫

−∞
E
[
y2(t)|x]

fξ

(
x − s(t)

)
dx.

Because of Eq.(1), one has for anyi,

(10)E
[
yi(t)|x

] =
+∞∫

−∞
g(x + u)fη(u)du

and

(11)E
[
y2
i (t)|x] =

+∞∫
−∞

g2(x + u)fη(u)du.

Owing to its practical importance, we will consider in t
sequel the case of a sinusoidal input

(12)s(t) = Asin(2πt/Ts)

buried in zero-mean Gaussian noiseξ(t) with varianceσ 2
ξ (the

present theory being however valid for anyTs -periodic s(t)

with any probability density forξ(t)).
An input SNRRin for x(t), defined in a similar way asRout

of Eq.(5), is then

(13)Rin = A2/4

σ 2
ξ �t�B

.
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The resulting input–output SNR gain follows as

(14)G = Rout

Rin
= |〈E[y(t)]exp(−ı2πt/Ts)〉|2

〈var[y(t)]〉
σ 2

ξ

A2/4
.

In the following, we will consider forg(·) the hard saturation
defined as

(15)g(u) =
{−λ for u � −λ,

u for − λ < u < λ,

λ for u � λ.

The “clipping” parameterλ > 0 will especially be used as a
adjustable parameter in order to optimize the SNR gainG.
Such threshold-free nonlinearities with saturation as in Eq.(15),
have already been considered in the context of stochastic
nance in parallel arrays[17,18], but they were not investigate
as optimizable SNR amplifiers for a noisy input consisting o
sinusoid in Gaussian noise.

The characteristic of Eq.(15) allows an explicit evaluation
of the integrals(10)–(11)as

E
[
yi(t)|x

] = λ + (−λ − x)Fη(−λ − x) − (λ − x)Fη(λ − x)

(16)− Gη(−λ − x) + Gη(λ − x),

and

E
[
y2
i (t)|x] = λ2 + (

λ2 − x2)[Fη(−λ − x) − Fη(λ − x)
]

− 2x
[
Gη(−λ − x) − Gη(λ − x)

]
(17)− Hη(−λ − x) + Hη(λ − x),

with the functions Gη(u) = ∫ u

−∞ vfη(v) dv and Hη(u) =∫ u

−∞ v2fη(v) dv.
The expressions of Eqs.(16)–(17)are then plugged into Eqs

(6)–(7)so as to provide expressions for the conditional exp
tations E[y(t)|x] and E[y(t)2|x].

To proceed, since theηi ’s can be considered as purpose
added noises for the operation of the array, rather than no
imposed by the physical world, we choose their probab
densityfη(u) uniform over[−a, a]. This allows, with the char
acteristic of Eq.(15) associated to Eqs.(16)–(17), an explicit
analytical evaluation of the integrals(8)–(9)as detailed inAp-
pendix A. An explicit evaluation then follows for the SN
gainG of Eq.(14).

3. Improvement by noise of the SNR gain

From the derivation of Section2 andAppendix A, the SNR
gainG of Eq. (14) realized by the array, is known, in partic
lar for any value of the clipping parameterλ of the saturating
nonlinearityg(·) of Eq.(15). For a fixed given value ofλ, and a
fixed input noise levelσξ , the evolution of the SNR gainG can
be studied as a function of the rms amplitudeση of the added
array noisesηi(t). For illustration,Fig. 1presents such an evo
lution, in typical conditions with a zero-mean Gaussian in
noiseξ(t).

Fig. 1 shows that, in genuine arrays of sizeN > 1, the
added array noisesηi(t) can produce an improvement of th
SNR gainG. An optimal nonzero value of the levelση of
the array noisesηi(t) raises the gainG to a maximum, which
o-

-

es

t

Fig. 1. Input–output SNR gainG of Eq.(14), as a function of the rms amplitud
ση = a/

√
3 of the uniform array noisesηi (t), with λ = 0.3 andσξ = 0.5 (in

units ofA = 1).

is always higher than the value ofG in the absence of th
added noisesηi(t), provided thatN > 1. This is a phenom
enon of noise-aided transmission, or stochastic resonanc
parallel nonlinear arrays, which was also reported with m
sures of performance other thanG and with other nonlinearitie
[3–9]. Threshold nonlinearities in arrays were shown to le
themselves to such a phenomenon of noise-aided transmis
named on this occasion “suprathreshold stochastic resona
[3,4]. The results ofFig. 1 prove that noise-aided transmissi
in arrays does not necessarily require threshold nonlinear
It can occur with simple saturating nonlinearities as Eq.(15),
which are also easily implementable as electronic devices
instance.

In addition,Fig. 1shows that the input–output SNR gainG

achieved by the array of saturations, can be larger than u
This amplification of the SNR especially occurs inFig. 1 for
the sinusoids(t) of Eq. (12) added to Gaussian noiseξ(t). It
is to note that such an SNR amplification is impossible w
a linear device, static or dynamic, whatever its complexity
high order: a linear device, in the frequency domain, multip
both the coherent spectral line at 1/Ts and the noise back
ground around 1/Ts by the same factor, the squared modu
of its transfer function at 1/Ts , and therefore leaves the SN
unchanged. Also, an amplificationG > 1 has never been ob
tained with a threshold nonlinearity for a sinusoid in Gauss
noise. The SNR amplificationG > 1 in Fig. 1 obtained with
the saturating nonlinearityg(·) of Eq. (15), occurs in a strong
clipping regime ofg(·), with λ = 0.3 for the transmission o
the sinusoids(t) of Eq.(12)with amplitudeA = 1. This strong
clipping has the ability to reduce the input noiseξ(t) more than
it reduces the signals(t), whence the improved SNR. Alte
natively, a large clipping parameterλ → ∞ would lead to a
linear transmission byg(·) of Eq.(15), yielding the array outpu
y(t) = s(t) + ξ(t) + N−1 ∑N

i=1 ηi(t), a purely additive signal–
noise mixture with no possibility of SNR amplificationG > 1.
Amplification of the SNR is possible only through a truely no
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Fig. 2. Optimal valueλopt of the clipping parameterλ (top), optimal value
ση,opt of the rms amplitudeση of the array noisesηi(t) (middle), and maxi-
mum of the input–output SNR gainG at (λopt, ση,opt) (bottom), as a function
of the rms amplitudeσξ (in units of A = 1) of the zero-mean Gaussian inp
noiseξ(t). The curves ofλopt and of maximumG at N = 1 andN = 15 are
distinct but close, that they cannot be visibly separated on the graphs.

linear action byg(·) of Eq.(15). A natural question which arise
at this point, is to examine how to tune at its bestλ the saturat-
ing nonlinearityg(·) of Eq. (15), so as to maximize the SN
gainG.

4. Optimization of the SNR gain

With the expression of the SNR gainG from Section2, we
have, for each input noise levelσξ , determined both the optima
value λopt of the clipping parameterλ and the optimal leve
ση,opt of the added array noisesηi(t), that jointly maximize the
SNR gainG of Eq. (14). These results are presented inFig. 2
for the sinusoids(t) in Gaussian noiseξ(t) with different array
sizesN .

The results ofFig. 2demonstrate several interesting prop
ties afforded by these saturating nonlinearities.

At N = 1, i.e. for isolated nonlinearities, the results ofFig. 2
reveal that at the optimal tuningλopt, the SNR gainG is already
always strictly above unity. This means that for a sinuso
signals(t), especially in Gaussian noiseξ(t) as inFig. 2, the
saturating nonlinearityg(·) of Eq. (15) when used in isolation
can always be tuned to achieve an SNR gainG > 1. This is
an interesting property, since again SNR amplification can
be obtained with a linear system; and with other types of s
ple nonlinear system, like a hard-threshold nonlinearity, S
amplification has never been obtained simultaneously wi
l

t
-

a

sinusoid and Gaussian noise[19,20]. By contrast, SNR ampli
fication is easily obtainable with a saturating nonlinearity. T
faculty can be attributed to the clipping effect implemented b
single saturating nonlinearity, which is able to reduce the n
more than the signal. The theoretical expressions of Secti2
andAppendix A make it easy to verify that the SNR ampli
cationG > 1 is preserved with non-Gaussian input noiseξ(t).
This property of SNR amplification with an isolated satur
ing nonlinearity was also reported in[21]. Here, we extend th
investigation by incorporating the possibility of examining t
impact of added noisesηi(t) and replication of the saturatin
nonlinearity into arrays. FromFig. 2, at N = 1, it is visible
that the maximum SNR gainG always occurs at a zero lev
of the added noiseη1(t): noise addition brings no improveme
to the transmission by a single saturating nonlinearity optim
tuned. Yet, this is no longer the case in arrays withN > 1.

At N > 1, i.e. for genuine arrays, the results ofFig. 2reveal
that at the optimal tuningλopt, the SNR gainG is always strictly
above unity, and also strictly above the gainG achieved at
N = 1. The maximum gain realized by the optimized array,
creases as its sizeN grows. An important property of the arra
is that the maximum gain is in general obtained for a nonz
valueση,opt of the levelση of the added array noisesηi(t). This
is the main finding of the present study, that association of s
rating nonlinearities into arrays with added noises can imp
the SNR amplificationG above unity, with a maximum for th
gainG which generally occurs for a nonzero level of the add
noises. For any given input noise levelσξ , the best SNR am
plification is always achieved by large arrays withN → ∞
and occurs at a nonzero level of the added array noisesηi(t).
This property revealed byFig. 2 in representative condition
(Gaussian input noiseξ(t) with sinusoidals(t)), is robustly
preserved in other conditions, as it can be verified with the
oretical expressions for the gainG derived in Section2 and
Appendix A. Beyond the practical interest of arrays of sim
nonlinearities like Eq.(15) to act as SNR amplifiers, there is a
important conceptual significance to the present results: T
demonstrate a situation of signal processing where the op
configuration of the processing system that achives the bes
formance, is always associated with a nonzero optimal am
of added noise.

5. Discussion

The issue of the amplification of the SNR of a perio
signal in noise has often been addressed in stochastic
nance studies[19,20,22–24]. Input–output SNR gains large
than unity have been reported, separately for periodic no
nusoidal signals in Gaussian noise, and for a sinusoidal s
in non-Gaussian noise. For the important case of a sinuso
Gaussian noise that we address here, a few papers have a
ported an SNR gain larger than unity[23–25]. In this respect
for the sinusoid in Gaussian noise, the maximum gain we re
here inFig. 2 are found higher than those reported in[23–25],
revealing a superior efficacy of the present arrays of satura
devices for serving as SNR amplifiers.
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We also emphasize that the present arrays arestatic nonlin-
ear systems, which do not impose, by themselves, frequ
limitations. As a consequence, their SNR amplification w
take place in the same way, in principle, whatever the freque
of the sinusoidal signal. This is a notable difference affor
by static systems, compared to dynamic systems as those
sidered in[23,24] which may introduce frequency limitation
through their specific time constants. This may authorize m
ulation schemes of the sinusoid, for instance a slowly va
ing frequency, or an epoch-wise fixed frequency which mi
switch at an appropriate rhythm between two predefined
ues, and SNR amplification may still be expected for suc
modulated sinusoid. Frequency limitations may arise in p
tice (i) if the white noise assumption breaks down, when
correlation duration of the physical noise ceases to be neg
ble compared to the other time constants of the process, (
from the physical implementation of the static nonlineariti
for instance through the use of operational amplifiers com
with they own cut-off frequencies. These aspects remain o
for further investigation.

The essential features that result from the observation
this article can be summarized as follows.

(i) Isolated saturating nonlinearities can act as SNR am
fiers for a sinusoid in Gaussian noise, a property wh
is not afforded by linear systems or by other simple n
linearities like hard thresholds. Power-law nonlinearit
were shown in[25] to also exhibit this faculty of SNR
amplification, although the maximum gains achieved
slightly lower, and from a practical standpoint they a
more complex to implement compared to the satura
nonlinearities studied here. Other nonlinearities offer
still better positioning in terms of maximum SNR gain a
simplicity of practical implementation may exist, but a
today not known as such.

(ii) The possibility of improving the operation of a nonline
device through replication into a parallel array with add
noises, is not restricted to threshold devices. This seem
be a general property shared by many nonlinear dev
not critically dependent on the presence of a threshold
related to the action of the added noises which enha
the variability and richness of representation of an in
by several distinct nonlinear outputs averaged over the
ray.

(iii) The beneficial effect of added noise in nonlinear s
tems is sometimes interpreted as a linearization by n
of the response. A linear system would at best yield
SNR gainG = 1. Clearly, the present nonlinear arra
with an optimal amount of added noises are not m
equivalent, for their action on the SNR, to such a lin
system, since they are capable of an SNR amplifica
G > 1. In this respect, the arrays act here as nonlin
systems performing better than linear systems for a g
information-processing task, thanks to the beneficial
tion of noise.

(iv) At this stage of the studies on stochastic resonance
picture which emerges is that, among the systems repo
cy

y

n-

-
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to realize an SNR amplificationG > 1 of a sinusoid in
Gaussian noise through addition of noise, those syst
achieving the highest gainsG > 1 are the present arrays
clipping devices operating with a nonzero optimal amo
of added noise.

These specifically interesting properties arise at the inter
tion of nonlinearity, noise and array structure. These ingredi
are also present in neuronal processes, which are very
cient for information processing, through detailed modali
largely remaining to be understood. All these elements co
tute strong motivation to further investigate nonlinear syste
assembled in arrays and aided by noise for efficient informa
processing.

Appendix A

In this appendix we detail the analytical evaluation of
integrals(8)–(9), when the array is used with the nonlinear
of Eq. (15) and the noisesηi(t) are zero-mean uniform ove
[−a, a]. In this case, we have the cumulative distribution fu
tion

(A.1)Fη(u) =



0 for u � −a,
u+a
2a

for − a < u < a,

1 for u � a,

and

(A.2)Gη(u) =
u∫

−∞
vfη(v) dv =




0 for u � −a,

u2−a2

4a
for − a < u < a,

0 for u � a,

and

(A.3)Hη(u) =
u∫

−∞
v2fη(v) dv =




0 for u � −a,

u3+a3

6a
for − a < u < a,

a2/3 for u � a.

Eqs. (A.1)–(A.3) when plugged into Eqs.(16)–(17) pro-
vide expressions for the conditional expectations E[yi(t)|x]
and E[y2

i (t)|x], and then through Eqs.(6)–(7), expressions fo
E[y(t)|x] and E[y2(t)|x]. Next, these two last expressions ha
to be integrated according to Eqs.(8)–(9), and for this pur-
pose we introduce the four functionsGξ(u) = ∫ u

−∞ vfξ (v) dv,
Hξ(u) = ∫ u

−∞ v2fξ (v) dv, Kξ(u) = ∫ u

−∞ v3fξ (v) dv and
Lξ (u) = ∫ u

−∞ v4fξ (v) dv.

A.1. Evaluation of E[y(t)]

The integral of Eq.(8) comes out as

(A.4)E
[
y(t)

] = λ + I1(λ) − I1(−λ),

with the functionI1(λ) = I11(λ) + I12(λ) and

(A.5)I11(λ) = −(λ + s)Fξ (u) − Gξ(u)
∣∣
u=−λ−s−a

(the function of the right-hand side is evaluated atu = −λ −
s − a) and
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I12(λ) = 1

4a

[
(λ + s − a)2Fξ (u)

(A.6)+ 2(λ + s − a)Gξ (u) + Hξ(u)
]u=−λ−s+a

u=−λ−s−a

(in the right-hand side the difference is taken of the value of
function atu = −λ − s + a minus its value atu = −λ − s − a).
Throughout thisAppendix Awe writes for s(t).

A.2. Evaluation of E[y2(t)]

For the integral of Eq.(9), we first have

(A.7)

+∞∫
−∞

E
[
y2
i (t)|x]

fξ (x − s) dx = λ2 + I2(λ) − I2(−λ),

with the functionI2(λ) = I21(λ) + I22(λ) and

I21(λ) = (
λ2 − s2 − a2/3

)
Fξ (u)

(A.8)− 2sGξ (u) − Hξ(u)
∣∣
u=−λ−s−a

and

I22(λ) = 1

6a

[
(−2λ + s − a)(λ + s − a)2Fξ (u)

− 3
[
λ2 − (s − a)2]Gξ(u)

(A.9)+ 3(s − a)Hξ (u) + Kξ(u)
]u=−λ−s+a

u=−λ−s−a
.

We next have

+∞∫
−∞

E2[yi(t)|x
]
fξ (x − s) dx

(A.10)

= λ2 + 2λ
[
I1(λ) − I1(−λ)

] + I3(λ) + I3(−λ) − 2I4,

with the functionI3(λ) = I31(λ) + I32(λ) and

(A.11)

I31(λ) = (λ + s)2Fξ (u) + 2(λ + s)Gξ (u) + Hξ(u)
∣∣
u=−λ−s−a

and

I32(λ) = 1

16a2

[
(λ + s − a)4Fξ (u)

+ 4(λ + s − a)3Gξ(u) + 6(λ + s − a)2Hξ(u)

(A.12)+ 4(λ + s − a)Kξ (u) + Lξ (u)
]u=−λ−s+a

u=−λ−s−a
.

We introduce

(A.13)I41 = (
s2 − λ2)Fξ (u) + 2sGξ (u) + Hξ(u)

∣∣
u=−λ−s−a

,

and

I42(u) = 1

4a

[
(λ + s − a)2(λ − s)Fξ (u)

+ (λ + s − a)(λ − 3s + a)Gξ (u)

(A.14)− (λ + 3s − 2a)Hξ (u) − Kξ(u)
]
.

Now, if a � λ, one has

(A.15)I4 = I41 + [
I42(u)

]u=−λ−s+a

u=−λ−s−a
,

e

else ifa > λ, one has

(A.16)I4 = I41 + [
I42(u)

]u=λ−s−a

u=−λ−s−a
+ [

I43(u)
]u=−λ−s+a

u=λ−s−a
,

with

I43(u) = 1

16a2

[[
λ2 − (s − a)2]2

Fξ (u)

− 4(s − a)
[
λ2 − (s − a)2]Gξ(u)

− 2
[
λ2 − 3(s − a)2]Hξ(u)

(A.17)+ 4(s − a)Kξ (u) + Lξ (u)
]
.

This completes the analytical evaluation of the integra
Eq.(9) for E[y2(t)], with an arbitrary densityfξ (u).

A.3. Gaussian input noise

When the input noiseξ(t) has the Gaussian density

(A.18)fξ (u) = 1

σξ

√
2π

exp

(
− u2

2σ 2
ξ

)
,

the cumulative distribution function is

(A.19)Fξ (u) = 1

2
+ 1

2
erf

(
u√
2σξ

)
,

and it follows thatGξ(u) = −σ 2
ξ fξ (u), Hξ(u) = uGξ (u) +

σ 2
ξ Fξ (u), Kξ(u) = (u2 + 2σ 2

ξ )Gξ (u) andLξ (u) = u3Gξ(u) +
3σ 2

ξ Hξ (u).
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