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In an ad hoc suboptimal detector, the benefits of non-Gaussian noise to narrowband weak signal detection
are demonstrated. Particularly, for a noise envelope with a Rice distribution, we can improve the detector
performance by tuning threshold parameter but keeping noise level, or increasing the noise level for a
fixed threshold. It is verified that, under certain circumstances, the optimal detection probability achieved
by tuning noise level is superior to that obtained by optimizing the detector threshold.
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1. Introduction

In long-range communication and radar systems, the receiver
bandwidth is sufficiently narrow that only the frequency compo-
nents centered on a carrier frequency can pass. In this context,
narrowband noise refers to possessing a bandwidth that is suffi-
ciently narrow relative to the carrier frequency [1–4]. For detecting
weak narrowband signals, the generalized Neyman–Pearson crite-
rion leads to an asymptotic locally optimum detector on the basis
of a known noise distribution [1–4]. When a priori knowledge of
noise is absent or the noise intensity is time-varying, a number of
ad hoc correlation detectors can be practically employed, which can
provide comparable robust performance relative to the locally opti-
mum detector in a variety of underlying noise environments [1–4].
Although an ad hoc detector is suboptimal to the corresponding
locally optimum one, recent research results show that there is
an opportunity for exploiting noise benefit, i.e. stochastic reso-
nance [5–19]. The essential feature of stochastic resonance is the
performance enhancement of nonlinear systems by an appropriate
non-zero noise level [5–19]. In the field of signal detection, noise-
enhanced low-pass known signal detection has been frequently
reported [6–15,20–22]. In these studies, the low-pass signal has
a power spectrum concentrated around zero, and its bandwidth is
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much smaller than the cut-off frequency. Noise is assumed to have
a wide frequency band, i.e. broadband noise. It is clearly shown
[9–15,20–22] that noise, as an optional approach, can improve the
detection performance of suboptimal but practical nonlinear detec-
tors.

In this letter, we focus on the benefits of non-Gaussian noise
to narrowband weak signal detection in an ad hoc hard-limiter
correlation detector. Three noise envelope distributions, of gener-
alized Rayleigh, Hall and Rice models, are observed to possess the
potential ability of improving the detector performance. In particu-
lar, for the Rice distribution model of noise envelope, the detector
performance can be enhanced by two methods. One is by tuning
threshold parameter, while the noise level is fixed. The other way
is by increasing noise level for a fixed threshold parameter. We
prove that the maximum detection probability achieved by tun-
ing noise level is superior to that obtained by tuning the detector
threshold. This advantageous result further confirms the potential
capability of noise in performance improvement in the context of
nonlinear signal processing.

2. Narrowband signal detection model

Consider the observation model of a known narrowband signal
observed in additive noise [1–4]

X(t) = θν(t) cos
[
2π f0t + φ(t)

] + W (t), (1)
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where ν(t) and φ(t) are known amplitude and phase modula-
tions, and θ is the overall signal strength. The carrier frequency
is f0, and the noise process W (t) is assumed to be stationary,
zero-mean, bandlimited white noise with a constant power spec-
tral density over a frequency band ( f0 − B/2, f0 + B/2) and zero
outside (B � f0). The narrowband noise process W (t) can be ex-
pressed as [1]

W (t) = W I (t) cos(2π f0t) + W Q (t) sin(2π f0t) (2)

with its inphase and quadrature components W I (t) and W Q (t), re-
spectively. Assume sI (t) = ν(t) cos φ(t) and sQ (t) = −ν(t) sin φ(t),
the observation model of Eq. (1) can be also represented as

X(t) = XI (t) cos(2π f0t) + X Q (t) sin(2π f0t) (3)

with the inphase component XI (t) = θ sI (t) + W I (t) and the
quadrature component X Q (t) = θ sQ (t) + W Q (t). Given a set of
samples of observation Xi , i = 1,2, · · · ,n, we are interested of
testing θ = 0 versus θ > 0, formulated by binary hypotheses on
the joint probability density function

H0: f I Q (XI , X Q ) =
n∏

i=1

f I Q (XIi, X Q i), for θ = 0, (4)

H1: f I Q (XI , X Q ) =
n∏

i=1

f I Q (XIi − θ sIi, X Q i − θ sQ i),

for θ > 0, (5)

where the inphase and quadrature samples W Ii and W Q i form
a set of statistical independent random vectors governed by the
common bivariate joint probability density function f I Q [1–4].

Based on generalized Neyman–Pearson criterion [1–4], the lo-
cally optimum detector takes a test statistic TLO representing the
maximum derivative of the logarithm of the joint probability den-
sity function f I Q at θ = 0. Therefore, the locally optimum test
statistic TLO is given by [1–4]

TLO(XI , X Q ) = d

dθ

[
ln

n∏
i=1

f I Q (XIi − θ sIi, X Q i − θ sQ i)

]∣∣∣∣∣
θ=0

≈
n∑

i=1

sIi

[− ∂
∂ XIi

f I Q (XIi, X Q i)

f I Q (XIi, X Q i)

]

+
n∑

i=1

sQ i

[− ∂
∂ X Q i

f I Q (XIi, X Q i)

f I Q (XIi, X Q i)

]
. (6)

Furthermore, assume the observation envelope Ri =
√

X2
I i + X2

Q i

and phase variable Φi = arctan(XIi/X Q i) at the i-th sampling time.
An interesting noise model is with a circularly symmetric bivari-
ate density function under the hypothesis H0, i.e. f I Q (xI , xQ ) =
h(R). Then, the noise envelope distribution can be expressed as
f R(R) = 2π Rh(R), and the phase Φ is uniformly distributed over
[0,2π ] with fΦ(Φ) = 1/(2π). With circular symmetry, the locally
optimum test statistic TLO of Eq. (6) becomes

TLO(XI , X Q ) =
n∑

i=1

−sIi
X Ii

Ri

h′(Ri)

h(Ri)
− sQ i

X Q i

Ri

h′(Ri)

h(Ri)

=
n∑

i=1

gLO(Ri)[sIi X Ii + sQ i X Q i], (7)

with the derivative h′(R) = dh(R)/dR and the locally optimum
nonlinearity gLO(R) = −h′(R)/[Rh(R)], which is a sufficient statis-
tic under the assumptions of weak signal limit and large sample
size [1–4].
However, the structure of the locally optimal nonlinearity
gLO(R) in Eq. (7) is determined by the noise probability distri-
bution and also the noise level. Then, for some practical signal
processing tasks, the locally optimal nonlinearity may be too com-
plex to be implemented, and also cannot be established for an
unknown noise distribution [1,4,15]. Therefore, this provides an
opportunity for the suboptimal nonlinearity to improve the de-
tectability by the SR effect. Thus, we consider the test statistic of a
generalized narrowband correlation detector given by

T (XI , X Q ) =
n∑

i=1

g(Ri)(sIi X Ii + sQ i X Q i)

=
n∑

i=1

Ri g(Ri)
[
sIi cos(Φi) + sQ i sin(Φi)

]
, (8)

where the characteristic g(R) is an ad hoc piecewise nonlinear-
ity being a function of the observation envelope R [1,4]. Since the
phase Φ is uniformly distributed over [0,2π ], then under the hy-
pothesis H0, the expectation

E[T |H0] =
n∑

i=1

ER
[

Ri g(Ri)
]
EΦ

[
sIi cos(Φi) + sQ i sin(Φi)

] = 0 (9)

and the variance

var[T |H0] =
n∑

i=1

ER
[

R2
i g2(Ri)

]
EΦ

{[
sIi sin(Φi) + sQ i cos(Φi)

]2}

= ER
[

R2 g2(R)
] n∑

i=1

(
s2

I i + s2
Q i

)
/2

= nP 2
s ER

[
R2 g2(R)

]
, (10)

where ER [·] = ∫ ∞
0 · f RdR , EΦ [·] = ∫ 2π

0 · fΦdΦ and the average sig-
nal power P 2

s = ∑n
i=1(s2

I i + s2
Q i)/(2n). Under the hypothesis H1 and

for weak signal strength θ → 0, the joint distribution can be ex-
panded to the first-order as

f I Q (xIi − θ sIi, xQ i − θ sQ i)

≈ h(Ri) − θh′(Ri)
[
sIi cos(Φi) + sQ i sin(Φi)

]
. (11)

Then, the expectation E[T |H1] can be approximated as

E[T |H1] ≈ −θER
[

Rg(R)h′(R)/h(R)
] n∑

i=1

EΦ

{[
sIi sin(Φi)

+ sQ i cos(Φi)
]2}

= −θnP 2
s ER

[
Rg(R)h′(R)/h(R)

]
, (12)

and the variance var[T |H1] ≈ var[T |H0] [1–4].
Therefore, in the asymptotic case of θ → 0 and n → ∞, the test

statistics T , according to the central limit theorem, both converge
to Gaussian distributions under hypothesis H0 and H1. For a fixed
false alarm probability P f , the decision threshold γ can be de-
termined. When the test statistic T (XIi, X Q i) > γ , the hypothesis
H1 is accepted. Fig. 1 illustrates the structure of the generalized
narrowband correlation detector for hypothesis H1 versus hypoth-
esis H0. Thus, the detection probability Pd [1–4] can be computed
as

Pd = Q
[

Q −1(P f ) −
√

nθ2 P 2
s

√
ξ(T )

]
, (13)

with Q (x) = ∫ ∞
x exp[−t2/2]/√2π dt and its inverse function

Q −1(x). Here, the total signal power is nθ2 P 2
s for the observation
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Fig. 1. Structure of generalized narrowband correlation detector.

data with size n, and the detection probability Pd is a mono-
tonically increasing function of the normalized detector efficacy
defined as [1–4]

ξ(T ) = lim
n→∞

{dE[T (X)|H1]/dθ |θ=0}2

nP 2
s var[T (X)|H0]

= E2
R [Rg(R)h′(R)/h(R)]

ER [R2 g2(R)] .

(14)

3. Results of noise benefits

Based on the Schwarz–Cauchy inequality, the efficacy ξ(T ) in
Eq. (14) is maximized as ξmax(T ) = ER [h′2(R)/h2(R)] by the lo-
cally optimum nonlinearity gLO(R) = Ch′(R)/[Rh(R)] for any con-
stant C [1]. It is noted that gLO is designed on the basis of explicit
a priori knowledge of the underlying noise environment, which is
sometimes difficult or costly to implement due to its complexity
[1–4]. In practice, suboptimal detectors are employed, which com-
prises the nonlinear characteristic g(R) in Eq. (8) usually chosen as
an ad hoc piecewise function. More specifically, here we consider
the hard-limiter characteristic

gλ(R) =
{

1/R, R ≥ λ,

0, 0 ≤ R < λ,
(15)

where the threshold parameter λ ≥ 0. Then, the detector efficacy
can be computed as

ξ(T ) = E2
R [Rgλ(R)h′(R)/h(R)]

ER [R2 g2
λ(R)] = [ f R(λ) + ∫ ∞

λ
f R(R)/RdR]2

1 − F R(λ)
,

(16)

with the cumulative distribution function F R(R) = ∫ R
0 f R(r)dr. Sub-

stituting Eq. (16) into Eq. (13), we can calculate the detection
probability Pd for the considered noise envelope density.

We first consider the generalized Rayleigh noise envelope den-
sity

f R(R) = Rα(k)

σ 2
exp

[
−

(
R

σβ(k)

)k]
, R ≥ 0, (17)

with α(k) = kβ−2(k)Γ −1(2/k) and β(k) = √
2Γ (2/k)/Γ (4/k)

[1,2,4]. Here, σ 2 is the common variance of the inphase and
quadrature noise components, and k is the exponential parameter.
For a fixed threshold parameter λ = 1, the detection probability Pd
is plotted as a function of noise level σ for different exponents k,
as shown in Fig. 2. It is seen in Fig. 2 that there is an optimal noise
level σ corresponding to the maximum Pd . For larger exponents k,
the maximum detection probability Pd is apparently enhanced by
noise. This ad hoc hard-limiter characteristic is suitable for detect-
ing weak signals in more impulsive noise with large exponents k.
Here, the false alarm probability is a constant P f = 10−3. For a
large observation size n and the overall signal strength θ , the aver-
age signal power P 2

s is chosen in such a way that the total signal
power nθ2 P 2

s = 1 in Eq. (13).
Fig. 2. Detection probability Pd as a function of noise level σ of generalized Rayleigh
model from Eq. (17) for different exponents k.

Fig. 3. Detection probability Pd as a function of noise level σ of Hall model from
Eq. (18) for different exponents k.

We further consider an atmospheric channel noise of Hall dis-
tribution model with its envelope density

f R(R) = kRσ k

(R2 + σ 2)1+k/2
, R ≥ 0, (18)

where σ is the scale parameter and the exponent parameter is k
[23]. For a given k, the scale parameter σ represents the ratio of
Gaussian noise variance to the variance of slowly modulation pro-
cess [23]. It is shown in Fig. 3 that, upon increasing the noise scale
parameter σ , the detection probability Pd also exhibits the noise-
enhanced effect for different exponents k. In Fig. 3, the threshold
parameter λ = 1, the constant false alarm probability P f = 10−3

and the total signal power nθ2 P 2
s = 2. Here, we emphasize that

the value of overall signal power nθ2 P 2
s will affect the detection

probability Pd , but not the occurrence of stochastic resonance.
We finally consider the inphase and quadrature noise compo-

nents XI and X Q both satisfying the Gaussian mixture noise dis-
tribution as

f (x) = 1

2
√

2πε2

[
exp

(−(x − μ)2

2ε2

)
+ exp

(−(x + μ)2

2ε2

)]
,

(19)
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Fig. 4. Contours of detection probability Pd as a function of the noise level ε of the
Rice model from Eq. (20) and the detector threshold λ. Here, the parameter μ = 0.1
in Eq. (20). (For interpretation of the colors in this figure, the reader is referred to
the web version of this article.)

where the variance σ 2 = μ2 + ε2 and parameters μ,ε ≥ 0. After

some mathematical manipulations, the envelope R =
√

X2
I + X2

Q

can be found to have the Rice distribution

f R(R) = R

ε2
exp

(
− R2 + 2μ2

2ε2

)
I0

(√
2Rμ

ε2

)
, R ≥ 0, (20)

where I0(x) is zero-order modified Bessel function.
In Fig. 4, for the given parameter μ = 0.1, the contours of de-

tection probability Pd are plotted as a function of the noise level
ε and the detector threshold λ. It is seen in Fig. 4 that there is
a peak region around the non-zero noise level ε = 0.18, this is
the stochastic resonance effect. For an arbitrary threshold λ, there
is an optimal noise level ε that maximizes Pd . Here, the total
signal power nθ2 P 2

s = 1 and the constant false alarm probability
P f = 10−3.

An important issue is that, for a given noise level, we can tune
the threshold λ to maximize the detection probability Pd [1,8,11].
Then, it is interesting to compare the maximum detection prob-
ability Pd achieved by tuning noise level with that obtained by
tuning threshold parameter λ. For instance in Fig. 4, the red square
marker in the plane (ε , λ) corresponds to the detection probabil-
ity Pd = 0.47 for the given noise level parameters ε = 0.12 and
threshold parameter λ = 0.1. There are two methods of further en-
hancing the detection probability Pd . Keeping noise level ε = 0.12,
we can tune the threshold parameter λ to 0.02, and obtain the op-
timized Pd = 0.76, as shown in Fig. 4 by the blue circle. However,
it is shown in Fig. 4 that, we can also keep the detector threshold
λ = 0.1, and increase the noise level ε from 0.12 to 0.18, lead-
ing to the optimal detection probability Pd = 0.90 indicated by
the downward green triangle. This comparison result demonstrate
that the method of noise-enhanced detection is superior to the
parameter tuning method in the considered cases. We note that
this conclusion holds in the region of ε < 0.15 and λ ≤ 0.1 for the
Rice distribution, as shown in Fig. 4 divided by dashed green lines.
However, this positive argument of noise is not observed for the
generalized Rayleigh and Hall noise model.

4. Conclusion

In this paper, we explore non-Gaussian noise benefits to nar-
rowband weak signal detection in an ad hoc hard-limiter detector.
Assuming the joint probability density of inphase and quadrature
noise components is circularly symmetric, the noise-enhanced de-
tection effects are demonstrated for the generalized Rayleigh, Hall
and Rice noise models. Importantly, for the Rice noise model, the
detectability can be improved by optimizing the threshold or the
noise level. It is found that, under some conditions, the optimal
detection probability achieved by the noise-enhanced method is
better than that obtained by the method of tuning threshold. This
interesting result indicates that, in some special cases, noise can
actually play an alternative helpful part in improving the detector
performance.

For low-pass weak signal detection, the performance of a lo-
cally optimum detector is closely tied to the quantity of Fisher
information of noise distribution. Based on the Fisher information
inequalities, we demonstrated that the addition of extra noise can-
not improve locally optimal processing under the asymptotic con-
ditions [15]. However, outside these restrictive conditions of weak
signal and large sample size, improvement by addition of noise
through stochastic resonance can be achieved, and becomes an at-
tractive option for nonlinear signal processing. For the narrowband
signal detection, the maximum efficacy of the locally optimum de-
tector in Eq. (14) is not exactly the Fisher information of noise
envelope distribution. Moreover, the addition of extra noise to the
given narrowband signal will result in the joint probability density
of inphase and quadrature noise components being not circularly
symmetric. Therefore, there is an open question in narrowband sig-
nal detection, as to whether or not the addition of extra noise to
the signal can improve the performance of a locally optimum de-
tector. This question deserves to be further studied. Besides the
considered hard-limiter detector having a very simple practical im-
plementation, there are other available suboptimal detectors em-
ployed for narrowband signal detection, such as the soft-limiter
detector [1], adaptive detector [4] and robust limiter-square detec-
tor [24]. Although such detectors are more complex for practical
implementation, it is also interesting to verify the noise-enhanced
effect in these detectors.
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