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In this paper, we evaluate the encoding efficiency of suprathreshold stochastic resonance (SSR) based on 
a local information-theoretic measure of stimulus-specific information (SSI), which is the average specific 
information of responses associated with a particular stimulus. The theoretical and numerical analyses of 
SSIs reveal that noise can improve neuronal coding efficiency for a large population of neurons, which 
leads to produce increased information-rich responses. The SSI measure, in contrast to the global measure 
of average mutual information, can characterize the noise benefits in finer detail for describing the 
enhancement of neuronal encoding efficiency of a particular stimulus, which may be of general utility 
in the design and implementation of a SSR coding scheme.

© 2015 Elsevier B.V. All rights reserved.
It is now a well-known fact that noise can sometimes improve, 
without degrading, the responses of certain nonlinear systems. This 
viewpoint is primarily motivated by the phenomenon of stochas-
tic resonance (SR) [1–3], where a suitable amount of noise brings 
an optimized system response characterized by various measures, 
such as spectral amplification [4], correlation coefficient [5], signal-
to-noise ratio [6,7], and mutual information [8]. In its original 
form, SR often applies to a noise-enhanced subthreshold signal 
[1–5]. However, in a parallel summing network, a new form of 
SR termed suprathreshold stochastic resonance (SSR) results in the 
maximum input-output mutual information at a non-zero level of 
noise intensity, even if the input signal is predominantly above the 
threshold [8]. The information content in each individual subsys-
tem is monotonically decreased by the addition of noise, but the 
summed outputs from all subsystems yield a net gain in informa-
tion [8–17].

The case of SSR is now well established as an important 
paradigm that suggests neuronal noise can possibly have a ben-
eficial role in sensory systems [9–11]. This paradigm is based on 
the facts that there are large numbers of interconnected neurons 
in the nervous system of animals and humans with variations in 
structure, function and size, and noise permeates every level of 
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the nervous system, from the perception of sensory signals to the 
generation of motor responses [18,19]. The foregoing nervous sys-
tem features indicate that the potential exploitation of SSR in a 
neuronal population stands as an interesting question in neuro-
science, relevant for instance to sensory neurons [13,20], cochlear 
implants [10,11,14], motion detection [15], and stochastic pooling 
sensor networks [21–23]. These research results show that SSR 
does appear to serve as an efficient coding strategy of informa-
tion transformation—providing a possible explanation of the role 
of noise in human sensory processes [8,10,11,13,16].

Mutual information is often used to calculate the information 
gain or the reduction of uncertainty of the neuronal responses 
[24]. However, it cannot address which particular stimuli or re-
sponses are significant in information transmission [25,26]. There-
fore, based on the specific information [25], Butts proposes a new 
measure of stimulus-specific information (SSI) defined as the aver-
age reduction in the uncertainty of one observation given a partic-
ular stimulus [26]. This information bearing measure of SSI can be 
calculated without prior knowledge about the coding scheme, and 
is also robust to nonlinearities in the system [26]. Recent studies of 
SSI give rise to a number of interesting results: The effect of vari-
ability on SSI illustrates that the best encoded stimulus with the 
maximum SSI can change systematically from the high-slope re-
gion of tuning curve for low noise to the peak of the tuning curve 
for high noise [27]. The neuronal encoding of sound frequency in 
the auditory cortex shows that the maximum SSI is always at the 

http://dx.doi.org/10.1016/j.physleta.2015.09.043
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:fabing.duan@gmail.com
mailto:chapeau@univ-angers.fr
mailto:derek.abbott@adelaide.edu.au
http://dx.doi.org/10.1016/j.physleta.2015.09.043
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2015.09.043&domain=pdf


34 F. Duan et al. / Physics Letters A 380 (2016) 33–39
best frequency and never in the tuning curve tails [28]. In finite 
neural populations, the shape of the marginal SSI can converge 
toward that of the Fisher information as the population size in-
creases, and predict the best encoded stimulus precisely [29]. In 
this paper, we are particularly interested in the noise benefits in 
enhancing the encoding efficiency of the stimulus in a population 
of neurons. The obtained theoretical and numerical results show 
that the SSIs not only straightforwardly explicate how much infor-
mation a neuronal population provides about a particular stimulus, 
but also illustrate how effectively each stimulus is enhanced by the 
optimal noise level to transmit more information via the mecha-
nism of SSR. The SSI measure is particularly useful in making an 
analytical observation of the positive role of noise, and offers an 
interesting insight into the application of SSR to neuronal coding 
schemes.

1. Information measures

Consider a neural system with an ensemble of stimuli X and 
whose behavior can be classified in a set of responses Y , the mu-
tual information between the ensemble of stimuli X and the set of 
responses Y is given by

I(X, Y ) = H(X) − H(X |Y ), (1)

where the information entropy of the stimulus ensemble [24]

H(X) = −
∑
x∈X

P x(x) log2 P x(x), (2)

and the average conditional entropy [24]

H(X |Y ) =
∑
y∈Y

P y(y)H(X |y)

=
∑
y∈Y

P y(y)
[
−

∑
x∈X

P (x|y) log2 P (x|y)
]
. (3)

The conditional entropy associated with a particular response y is 
defined as H(X |y) [24], and lowercase characters x and y repre-
sent an individual observation within ensembles.

The mutual information can be used to quantify the informa-
tion provided by an entire response ensemble about an entire 
stimulus ensemble, but it is often of interest to know which par-
ticular stimuli are effectively encoded by the system, and which 
particular responses communicate information about the stimuli 
[25–29]. Then, DeWeese and Meister [25] propose the specific in-
formation measure

Isp(y) = H(X) − H(X |y), (4)

which is an appropriate representation of the degree to which a 
given response y contributes to the overall mutual information in 
Eq. (1) [25,26]. However, due to the asymmetry of stimulus and re-
sponse with respect to causality, the specific information of a par-
ticular stimulus Isp(x) = H(Y ) − H(Y |x) fails to select the effective 
encoded stimuli [26,27]. The largest value of Isp(x) corresponds to 
those stimuli that have few responses associated with them, with-
out regard to whether these responses are informative or not [26]. 
Therefore, Butts defines a new information theoretic measure of 
SSI as

Issi(x) =
∑
y∈Y

P (y|x)Isp(y), (5)

which explicitly represents the average specific information of the 
response ensemble Y that occurs when a particular stimulus x is 
present [26]. It is also noted that the average SSI over the entire 
ensemble of stimulus yields the mutual information, as follows
I(X, Y ) =
∑
x∈X

P x(x)Issi(x). (6)

In Eq. (6), it is interesting to note that the term P x(x)Issi(x) rep-
resents the average informative contribution of each stimulus to 
the mutual information. Therefore, we can define the encoding ef-
ficiency of each stimulus as

Essi(x) = P x(x)Issi(x), (7)

which can be considered as a useful metric to characterize the pos-
itive role of noise in the enhancement of the encoding efficiency 
of neuronal information transmission.

2. Binary threshold SSR model

Consider a typical SSR model consisting of N binary threshold 
neurons, and each neuron is subject to the same continuous stim-
ulus signal x(t) but independent noise components ηi(t) [8]. The 
output yi is given by the neuronal response function

yi =
{

1 if x + ηi ≥ θ,

0 otherwise,
(8)

where θ is the threshold level of the neuronal population. The 
overall response is y = ∑N

i=1 yi with probability mass function 
P y(n) as y being equal to n for n = 0, 1, · · · , N [8,9]. Furthermore, 
we assume that the noise distribution is fη and the cumulative 
distribution function is Fη , then the transition probability

P (1|x) = P (x + η > θ |x) = 1 − Fη(θ − x) (9)

is the conditional probability of neuron responses being in state 1. 
Consequently, the conditional probability of neuron responses be-
ing in state 0 can be written as P (0|x) = 1 − P (1|x) [8,9]. Noting 
that, for any given stimulus value x, each device acts independently 
under the influence of its own noise ηi , thus the probability that n
neurons are triggered accords with the binomial distribution

P (n|x) = C N
n Pn(1|x)P N−n(0|x) (10)

with the binomial coefficient C N
n [8]. Therefore, the probability 

mass function P y(n) can be calculated as

P y(n) =
∫

P (n|x)P x(x)dx = C N
n B(n), (11)

B(n) =
∫

Pn(1|x)P N−n(0|x)P x(x)dx. (12)

Using Bayes’ theorem, the conditional probability for a particular 
stimulus x knowing the response y = n is given by

P (x|n) = P (n|x)P x(x)

P y(n)
. (13)

Then, the specific information Isp(n) in Eq. (4) can be written as

Isp(n) = H(X) − H(X |n)

= −
∫

P x(x) log P x(x)dx +
∫

P (x|n) log2 P (x|n)dx, (14)

with the differential entropy of stimulus signal H(X) and the con-
ditional entropy H(X |n). Based on Eqs. (10) and (14), the SSI of a 
particular stimulus value x can be expressed as

Issi(x) =
N∑

n=0

P (n|x)Isp(n). (15)

Next, we specifically consider the generalized Gaussian stimulus 
signal x(t) with its distribution
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P x(x) = c1

σx
exp

(
−c2

∣∣∣∣ x − μ

σx

∣∣∣∣
2

1+β

)
, (16)

with the mean μ, the signal standard deviation σx and the ex-

ponent β ≥ −1 [30]. Here, c1 = 1
1+β

�
1
2 (

3(1+β)
2 )/�

3
2 (

1+β
2 ), c2 =

[�(
3(1+β)

2 )/�(
1+β

2 )] 1
1+β and Gamma function �(x) = ∫ ∞

0 tx−1e−tdt . 
As the exponent β varies, we can conveniently consider differ-
ent stimulus distributions, including Laplacian (β = 1), Gaussian 
(β = 0) and uniform (β = −1) densities [30]. For the stimulus den-
sity of Eq. (16), the differential entropy

H(X) = log2
σx

c1
+ 1 + β

2
log2 e. (17)

We assume the Gaussian noise density fη(η) = exp[−η2/(2σ 2
η )]/√

2πσ 2
η with the noise level ση , and Eq. (9) becomes

P (1|x) = 1

2
erfc[−(x − θ)/

√
2σ 2

η ], (18)

with the complementary error function

erfc(x) = 2

∞∫
x

exp(−z2)dz/
√

π.

Making the change of variables of τ = (x − θ)/
√

2σ 2
η and σ =

ση/σx and taking the threshold θ = μ, Eq. (12) can be rewritten as

B(n) =
∫ √

2c1σ exp
(
−c2

∣∣∣√2τσ
∣∣∣ 2

1+β
)(1

2
erfc(−τ )

)n

×
(

1 − 1

2
erfc(−τ )

)N−n
dτ , (19)

and the conditional entropy is given by

H(X |n) = −
∫

P (x|n) log2 P (x|n)dx

= log2 B(n) + log2
σx

c1
− D(n)

B(n)
, (20)

with

D(n) =
∫ √

2c1σ exp(−c2|
√

2τσ | 2
1+β )

(1

2
erfc(−τ )

)n

×
(

1 − 1

2
erfc(−τ )

)N−n
log2

[
exp(−c2|

√
2τσ | 2

1+β )

×
(1

2
erfc(−τ )

)n(
1 − 1

2
erfc(−τ )

)N−n]
dτ . (21)

Using Eqs. (17) and (20), the specific information Isp(n) can be 
computed as

Isp(n) = H(X) − H(X |n)

= 1 + β

2
log2 e − log2 B(n) + D(n)

B(n)
. (22)

Substituting Eqs. (18) and (22) into Eq. (15) and noting the stan-
dardized random variable of xn = (x − μ)/σx , the SSI can be calcu-
lated as

Issi(xn) =
N∑

n=0

C N
n

(
1

2
erfc

( −xn√
2σ

))n (
1 − 1

2

× erfc
( −xn√

))N−n

Isp(n), (23)

2σ
which is a single variable function of the ratio of σ for a given 
value of xn . We note that the random variable xn has the stan-
dardized density

P xn(xn) = σx P x(σxxn + μ) = c1 exp
(
−c2|xn|

2
1+β

)
, (24)

with zero mean and unity variance. Then, the mutual information 
can be computed as

I(X, Y ) =
∫

P xn(xn)Issi(xn)dxn, (25)

which depends only on the parameter σ . In the considered case of 
θ = μ, then 1/σ 2 = σ 2

x /σ 2
η can be interpreted as the input signal-

to-noise ratio [9].
For instance, we choose the stimulus density in Eq. (16) with 

the exponent β = 1 and the threshold θ = μ. An illustrative SSR ef-
fect is shown in Fig. 1(A) that, for a single neuron with N = 1, the 
mutual information I monotonically decreases as the parameter 
σ increases. However, as the population size N ≥ 2, the noise-
enhanced behavior of mutual information appears [8,9]. For a given 
noise level of σ = 0.34, the effect of population size N on the 
SSI Issi is shown in Fig. 1(B). When N = 1, the injection of inter-
nal noise η1(t) makes each value of xn trigger the neuron with 
response states 1 possible, but with a lower constant value of 
Issi(xn) = 0.56 bits. When the population size N increases, the 
maximum SSI Issi appears at xn = 0 (i.e. x = θ ), and the collec-
tive actions of ηi(t) are concentrated in the regions on both sides 
of xn = 0 with more informative contents of Issi , as indicated by 
the curves in Fig. 1(B) for N = 5 and N = 31. Furthermore, form 
Fig. 1(A) and for N = 31, we select four values of σ = 0, 0.1, 0.34
and 1.0 with the corresponding mutual information I(X, Y ) = 1
bits (up triangle), 1.94 bits (circle), 2.33 bits (square) and 1.85 bits 
(down triangle), respectively. Without noise (σ = 0), signal trans-
missions in all neurons can only be achieved through deterministic 
threshold crossing and leads to a transfer of 1-bit of informa-
tion. Correspondingly, only Issi(0) = 1 bits exists (see the black 
point in Fig. 1(C)), and the mutual information I(X, Y ) = 1 bits 
at xn = 0 (x = θ ). At the other three values of σ , the obtained 
SSIs are also shown in Fig. 1(C). Although the Issi(0) = 5.34 bits at 
σ = 0.1, the area under the corresponding Issi terms are multiplied 
by P xn (xn) to obtain the mutual information I(X, Y ) = 1.94 bits in 
Eq. (25). While, at the optimal σ = 0.34, the largest Issi(0) is re-
duced to 3.63 bits, but many values of Issi(xn) in the neighborhood 
of xn = 0 are enlarged. Based on Eq. (25), the corresponding Issi
terms are multiplied by the weighted probabilities P xn (xn) to yield 
the largest mutual information I(X, Y ) = 2.33 bits. Of course, as 
σ increases to 1.0, too much noise leads to a flatter distribution 
of Issi in an extended region around xn = 0, as shown in Fig. 1(C). 
Therefore, the corresponding mutual information I(X, Y ) degrades 
to 1.85 bits.

More interestingly, from Eq. (25), the encoding efficiency in 
Eq. (7) can be reexpressed as

Essi(xn) = P xn(xn)Issi(xn), (26)

which is actually the encoding efficiency density with the units 
of bits per stimulus amplitude (bits/volt) for a continuous stim-
ulus. For instance, Essi is shown in Fig. 1(D) as a function of σ
for different stimulus amplitude |xn| and N = 31. At σ = 0, only 
Issi(0) bits exists and Essi(0) in Eq. (26) tends to infinity, then the 
addition of more noise leads to a monotonic decrease of the en-
coding efficiency. However, for |xn| �= 0, it is illustrated in Fig. 1(D)
that there is an optimal noise level of σ that corresponds to the 
best encoding efficiency, which is a new form of SR based on the 
measure of encoding efficiency Essi . It is seen in Fig. 1(D) that the 
positive role of noise in the enhancement of encoding efficiency 
over almost the entire region of stimulus (except for xn = 0) can 
be observed explicitly.
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Fig. 1. (A) Mutual information I(X, Y ) in Eq. (25) versus σ = ση/σx for N = 1, 2, 5, 15 and 31; (B) Issi in Eq. (23) for N = 1, 5, 31 at σ = 0.34; (C) Issi in Eq. (23) at 
σ = 0, 0.1, 0.34 and 1.0 for N = 31; (D) For N = 31, Essi(xn) in Eq. (26) versus σ at |xn| = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7 and 0.9. Here, the stimulus density in Eq. (16) is 
with the exponent β = 1 and the threshold θ = μ.
3. Leaky integrate-and-fire neuron population

We further consider a population of leaky integrate-and-fire 
neurons subjected to a common stimulus and mutually indepen-
dent internal noise. Despite its simplicity, the integrate-and-fire 
model is still an extremely useful description of neuronal activity 
[2,11,14,16,17,31,32]. The membrane voltage V i(t) of each neuron 
obeys

τm
dV i(t)

dt
= −[V i(t) − V r] + x(t) + ηi(t), (27)

until it exceeds the threshold θ , and τm is the membrane time 
constant. Then, at this moment, a spike is generated, and V i(t) is 
reset to a post-discharge hyperpolarization V r with an absolute re-
fractory period τabs. After the time duration τabs, the membrane 
voltage then steps into a relative refractory period τrel, which 
can be modeled by multiplying the noisy input by the factor of 
1 − exp(−t/τrel) [14]. The spike trains from all neurons are then 
summed as the collective action potential ys(t), and the final re-
sponse y(t) can be obtained by the convolution

y(t) =
∫

ys(τ ) f (t − τ )dτ , (28)

where the kernel function f (t) is given by

f (t) =
{

1 − exp(−t/τm), t < Tp,(
1 − exp(−Tp/τm)

)
exp

(−(t − Tp)/τm
)
, t ≥ Tp,

(29)

with the time width Tp [14]. This convolution operation is equiv-
alent to a low-pass filter that provides an estimate of the input 
stimulus, and the response y(t) can be viewed as the membrane 
voltage of the neuronal population [14].

This considered neuron model in Eq. (27) with the membrane 
voltage y(t) of a neuronal population is a continuous channel, then 
Issi in Eq. (5) can be rewritten as
Issi(x) =
∫

P (y|x)

×
∫ [

P (x|y) log2 P (x|y) − P x(x) log2 P x(x)
]
dxdy, (30)

and the mutual information can be computed as

I(X, Y ) =
∫

Issi(x)P x(x)dx. (31)

Here, we extend the information measure of Issi to the continu-
ous random variables, and Issi remains finite if the distribution of 
random variable exists and the integral is Riemann integrable.

In practical simulation, we divide the ranges of variation of x(t)
and y(t) with intervals 	x and 	y, respectively. For the ith in-
terval of x(t) and the jth interval of y(t), the statistical number 
of pairs (xi, y j) is kij , and then the joint probability density is ap-
proximated as P (xi, y j) ≈ kij/(K	x	y) with K = ∑

i

∑
j ki j . Sim-

ilarly, the probability density of xi is P x(xi) ≈ ∑
j ki j/(K	x), the 

conditional probabilities P (y j |xi) ≈ kij/(
∑

j ki j	y) and P (xi |y j) ≈
kij/(

∑
i ki j	x) [33,34]. In this way, Eqs. (30) and (31) can be nu-

merically calculated as

Issi(xi) ≈
∑

j

ki j∑
j ki j

[∑
i

( kij∑
i ki j

log2
kij∑
i ki j

)

−
∑

i

(∑
j ki j

K
log2

∑
j ki j

K

)]
, (32)

I(X, Y ) ≈
∑

i

Issi(xi)P x(xi)	x =
∑

i

Issi(xi)

∑
j ki j

K
. (33)

This estimation method of the informative quantities is based 
on two-dimension histogram of the observations of X and Y . In 
Refs. [33,34], it is proved that, as the total number K of division 
intervals is large enough, the bias and the variance of I(X, Y ) are 
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Fig. 2. (A) Gaussian distributed stimulus x(t) with a correlation time of 20 ms, the mean μ = 15 mV and the duration of 1000 ms; (B) Empirical probability distribution Pxn

of the scaled stimulus xn(t) = x(t)/σx .
with the orders of K −1 and K −2, respectively. In the following nu-
merical experiments and for the observation sampling length L, 
the total number K of division intervals is selected as the adja-
cent integer to 3

√
L + 10, which is large enough for the estimation 

accuracy of the mutual information [33,34]. We note that, for a 
finite number of observations and a very large number of K , kij
might be zero. In this case, log2 kij in Eq. (32) is assumed to be 
zero for proceeding numerical calculation, otherwise Issi will be 
infinite. Moreover, the direct calculations of the SSI will produce 
a biased estimate, due to the limited number of trials and under-
sampling of the probability distributions [28,31,32]. We can simply 
compute the SSI as above, but with all stimulus-response combi-
nations randomly shuffled. In this case, the true SSI is zero the-
oretically, but the calculation will produce the biased value Ishuf

ssi . 
In this way, the calculation of Ishuf

ssi will carried out M times, and 
the average value is 〈Ishuf

ssi 〉 = Ishuf
ssi /M [28,31,32]. Subtracting 〈Ishuf

ssi 〉
from the raw SSI calculated above, the unbiased SSI is obtained as 
[28,31,32]

Iun
ssi = Issi − 〈Ishuf

ssi 〉. (34)

The trial results presented in the following were obtained using 
stimuli that are Gaussian distributed and exponentially correlated 
with a correlation time of 20 ms, the mean μ = 15 mV and the 
duration of 1000 ms [5]. In experiments, the sampling time is 
	t = 0.1 ms, the membrane time τm = 3 ms, the resetting poten-
tial V r = −65 mV, the firing threshold θ = −50 mV, the absolute 
refractory period τabs = 1.5 ms and the relative refractory period 
τrel = 2 ms. In order to sum the population spikes, the convolu-
tion function f (t) in Eq. (29) is with the time width Tp = 2 ms. 
In absence of noise, the standard deviation σx = 60 mV of V i(t)
is assumed to be the signal strength of the output of one neuron. 
Furthermore, the internal Gaussian noise components ηi in each 
neuron are with the common standard deviation ση . A represen-
tative stimulus is shown in Fig. 2(A), and the empirical probability 
distribution P xn of the scaled stimulus xn(t) = x(t)/σx is plotted in 
Fig. 2(B).

Upon increasing the scaled ratio σ = ση/σx , the evolutions of 
the mutual information I(X, Y ) are shown in Fig. 3(A) for dif-
ferent population sizes N . It is seen that the typical SSR effect 
appears, and the enhancement of I(X, Y ) is manifested by an op-
timal nonzero level of internal noise, not in a single neuron, but 
in more than two neurons. The SSIs Iun

ssi are shown in Fig. 3(B) for 
N = 1, 4 and 256 at σ = 5.8. It is obviously shown in Fig. 3(B) that, 
for the population size N = 256, almost all regions of the stimu-
lus are well encoded, and the SSIs marked by green circles are 
higher than that corresponding to population sizes N = 1 (blue 
triangles) and 4 (magenta squares). For a given population size 
N = 256, we illustrate the SSIs Iun

ssi for three levels of σ = 0, 5.8
and 30 in Fig. 3(C). It is visible that, in comparison to Iun (blue 
ssi
stars) of no noise (σ = 0), the stimulus, especially the parts be-
low the mean value μ = 15 mV (xn ≤ μ/σs = 0.25), is effectively 
encoded with larger Iun

ssi (green circles) with the help of the opti-
mal noise intensity of σ = 5.8. While, for a very large noise level 
σ = 30, Iun

ssi (red pluses) decrease over entire regions, as shown 
in Fig. 3(C). Finally, for different values of the scaled stimulus xn , 
Fig. 3(D) shows the non-monotonic behavior of the encoding ef-
ficiency Essi(xn) = P xn (xn)Iun

ssi(xn) versus the noise level σ . It is 
interesting to note that the noise-enhanced effects also appear, and 
the positive role of noise is clearly demonstrated with improved 
encoding efficiency of the considered region of xn in the integrate-
and-fire neuron population.

Next, we note that neurons have adaptive capabilities, and for 
instance, the response threshold might be tuned for maximiz-
ing the mutual information by a neuron itself. In Fig. 4(A), the 
mutual information I(X, Y ) versus the threshold θ is plotted for 
the absence of noise (σ = 0) and a single neuron (N = 1). It 
is seen in Fig. 4(A) that, as θ decreases, the mutual informa-
tion I(X, Y ) becomes larger. While, according to electrophysio-
logical results, a neuron typically fires an action potential when 
its membrane potential reaches a threshold value that is larger 
than the resetting potential [31]. Since the resetting potential takes 
V r = −65 mV, we here just assume that the threshold θ can be 
reduced to −60 mV. Then, for σ = 0 and θ = −60 mV, Iun

ssi of 
a single neuron are illustrated in Fig. 4(B) by red squares. For 
comparison, at σ = 5.8, the corresponding Iun

ssi are also plotted 
by green circles for the population size N = 256 neurons and the 
given threshold θ = −50 mV. It is shown in Fig. 4(B) that, with 
a non-zero noise level σ and a larger population size N , Iun

ssi are 
effectively enhanced for the region of xn < 0.5. Meanwhile, we 
also observe that, at the largest value of xn = 2.15, the corre-
sponding Iun

ssi of a single neuron is remarkably large. Considering 
the distribution P xn in Fig. 2(B), the average mutual information 
I(X, Y ) = 1.80 bits that is obtained for an optimal non-zero noise 
level and a larger population size is superior to I(X, Y ) = 1.39 bits
of a non-noisy neuron by adjusting its threshold. This result shows 
that a number of neurons with the same fixed threshold can ben-
efit from the mechanism of SSR, and has a better encoding effi-
ciency than a single non-noise neuron with a tunable threshold. 
However, a population of neurons might optimize the threshold 
θn of the nth neuron as the noise level σ varies, and the av-
erage mutual information will be maximized by the optimally 
distributed thresholds. Moreover, realistic models of neurodynam-
ics must ultimately encompass multiple interacting modules, and 
neural information processing is the integration of excitatory and 
inhibitory synaptic contributions [31]. Therefore, the resetting po-
tential V r is also a tunable parameter. All of these forms of plas-
ticity, and many others, are important elements of the adaptabil-
ity of neural systems. It is interesting to further investigate the 
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Fig. 3. (A) Mutual information I(X, Y ) versus the noise level σ for population sizes N = 1, 2, 4, 8, 16, 32, 64, 128 and 256; (B) Iun
ssi in Eq. (34) for N = 1, 4 and 256 at σ = 5.8; 

(C) Iun
ssi at three noise levels of σ = 0, 5.8 and 30 for N = 256; (D) Essi(xn) versus σ for different values of xn = −0.98, −0.66, −0.11, 0, 0.11, 0.22, 0.66, 0.98, 1.10 and 1.65. 

The leaky integrate-and-fire neuron is with parameters τm = 3 ms, V r = −65 mV, θ = −50 mV, Tp = 2 ms, τabs = 1.5 ms and τrel = 2 ms. The total number of trials is 100
and the sampling time 	t = 0.1 ms. The calculation of Ishuf

ssi is carried out M = 20 times.

Fig. 4. (A) In the absence of noise (σ = 0), the mutual information I(X, Y ) versus the threshold θ for a single neuron (N = 1); (B) Iun
ssi versus xn (red squares) for σ = 0, 

N = 1 and θ = −60 mV. For comparison, for σ = 5.8, N = 256 and the given θ = −50 mV, Iun
ssi (green circles) versus xn are also illustrated.
encoding efficiency of a number of neurons with tunable neu-
ral parameters, and clarify whether the neuronal noise can still 
play a positive beneficial role for adaptive capability of neurons 
or not.

4. Conclusion

In this paper, we utilize a local information-theoretic measure, 
namely SSI, as a stimulus-specific decomposition of the mutual in-
formation, to evaluate the noise-enhanced encoding efficiency of a 
population of neurons within the context of SSR. For the analytical 
SSR model of binary threshold neurons, the theoretical expression 
of SSI is deduced, and a clear picture of noise benefits in neu-
ral encoding efficiency is illustrated. Furthermore, the SSR effect in 
the integrate-and-fire neuron population is investigated using the 
SSI measure, and the numerical calculation method for differential 
SSI is given. The obtained results of SSIs and encoding efficiency 
fully show the positive role of noise components for coding within 
a neuronal population. A maximal number of input stimuli are ef-
ficiently encoded at the output due to the assistance of an optimal 
nonzero amount of added noise. We argue that this local SSI infor-
mation measure may be generally applicable in analyzing neural 
encoding strategies via the mechanism of SSR. However, we as-
sume a bundle of homogeneous neurons with a fixed response 
threshold, and then our results may be only applicable to these 
small populations with the identical characteristics. An open ques-
tion is to further demonstrate the positive role of neuronal noise 
in improving the encoding efficiency of real neuronal populations, 
in view of the fact that neurons have the adaptive capability to 
optimize their threshold or employ the inhibitory connections.
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