
Physics Letters A 381 (2017) 1369–1378
Contents lists available at ScienceDirect

Physics Letters A

www.elsevier.com/locate/pla

Entanglement-assisted quantum parameter estimation from a noisy 

qubit pair: A Fisher information analysis

François Chapeau-Blondeau

Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d’Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 January 2017
Received in revised form 21 February 2017
Accepted 21 February 2017
Available online 28 February 2017
Communicated by A. Eisfeld

Keywords:
Quantum estimation
Quantum Fisher information
Entanglement
Quantum noise
Quantum information

Benefit from entanglement in quantum parameter estimation in the presence of noise or decoherence 
is investigated, with the quantum Fisher information to asses the performance. When an input probe 
experiences any (noisy) transformation introducing the parameter dependence, the performance is always 
maximized by a pure probe. As a generic estimation task, for estimating the phase of a unitary 
transformation on a qubit affected by depolarizing noise, the optimal separable probe and its performance 
are characterized as a function of the level of noise. By entangling qubits in pairs, enhancements of 
performance over that of the optimal separable probe are quantified, in various settings of the entangled 
pair. In particular, in the presence of the noise, enhancement over the performance of the one-qubit 
optimal probe can always be obtained with a second entangled qubit although never interacting with 
the process to be estimated. Also, enhancement over the performance of the two-qubit optimal separable 
probe can always be achieved by a two-qubit entangled probe, either partially or maximally entangled 
depending on the level of the depolarizing noise.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

For extracting information from measurement at a quantum 
level, an important task is quantum parameter estimation. For 
quantum parameter estimation, typically one has access to a quan-
tum system in a state ρξ dependent on the unknown parameter 
ξ to be estimated. One chooses a measurement protocol applied 
to the quantum system in state ρξ , and the measurement out-
comes are processed by means of an estimator ξ̂ in order to infer 
a value for the parameter ξ . From classical estimation theory [1] it 
is known that any conceivable estimator ξ̂ for ξ is endowed with 
a mean-squared error 〈(̂ξ − ξ)2〉 which is lower bounded by the 
Cramér–Rao bound involving the reciprocal of the classical Fisher 
information Fc(ξ). Estimators are known, such as the maximum 
likelihood estimator, that reach the Cramér–Rao bound in definite 
(usually asymptotic) conditions. Higher Fisher information Fc(ξ)

generally entails higher performance in estimation, and one has 
then the faculty to select the quantum measurement protocol so 
as to maximize Fc(ξ). In this respect, there is a fundamental upper 
bound [2–4] provided by the quantum Fisher information Fq(ρξ ; ξ)

which sets a limit to the classical Fisher information Fc(ξ), impos-
ing Fc(ξ) ≤ Fq(ρξ ; ξ). In turn, constructive methodologies (usually 
adaptive) exist [5–10] yielding a measurement protocol reaching 
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Fc(ξ) = Fq(ρξ ; ξ). The quantum Fisher information Fq(ρξ ; ξ) has 
thus the status of a relevant metric characterizing the ultimate best 
performance achievable in quantum parameter estimation based 
on a quantum state ρξ , and we shall use it as such in this paper.

A definite measurement operating on a single copy of the quan-
tum system in state ρξ can be repeated N times on N independent 
copies of the quantum system prepared in the same state ρξ . In 
this situation of independent state preparation and independent 
measurement, the quantum Fisher information, alike the classical 
Fisher information, is additive [11] and amounts to N Fq(ρξ ; ξ). 
This is associated with a mean-squared error 〈(̂ξ − ξ)2〉 decreas-
ing as 1/N , forming the standard limit or shot-noise limit of the 
error [12,13]. This 1/N scaling of the mean-squared error remains 
true when a joint measurement is performed collectively on the N
copies of the quantum system when prepared independently [12,
13]. Such preparation corresponds for the N-fold quantum system 
to a joint state ρ(N)

ξ = ρ⊗N
ξ which is separable. Quantum physics 

through the unique property of entanglement offers an alterna-
tive for improved estimation. When the N-fold quantum system 
is prepared in a joint state ρ(N)

ξ which is not separable but en-
tangled, then through collective, or even separable, measurement 
a mean-squared error scaling as 1/N2 may be accessible, forming 
the quantum enhancement or Heisenberg limit of the error [14,
15,12]. This is a specifically quantum benefit, since classically, in-
troducing correlation among N measurements is generally unable 
to yield an estimation performance better than the 1/N scaling; 
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by contrast, quantum correlation under the form of entanglement 
is able to improve the estimation performance from 1/N to 1/N2

scaling of the mean-squared error.
Such quantum enhancement however is not accessible for any 

parametric dependence [11]. It is also fragile to quantum noise 
or decoherence. Quantum estimation, initiated in noise-free con-
ditions, has more recently been addressed in the presence of noise 
or decoherence [16,13,17,18]. Especially, in the asymptotic limit of 
large N , it has been shown that any small amount of depolariz-
ing noise is sufficient to ruin the 1/N2 performance and return it 
to 1/N [11,13,19]. In addition, the asymptotic condition of large 
N , although it stands as an important theoretical reference, may 
be difficult to handle in practice since it involves preparing, con-
trolling and measuring very large entangled states which remain, 
with the current quantum technologies, very uneasy tasks. By con-
trast, the simplest form of quantum entanglement, most robust 
to decoherence and easiest to handle analytically and practically, 
starts to become accessible with a qubit pair. It is therefore realis-
tic and practically relevant to seek to make the most of quantum 
entanglement at the level of qubit pairs. This is the direction we 
follow in the sequel, where we concentrate on analyzing benefit 
for estimation that can arise from entanglement in a qubit pair 
in the presence of quantum noise. We address the generic situa-
tion of estimation of the phase angle of a unitary transformation 
acting on a qubit in the presence of quantum depolarizing noise, 
with the quantum Fisher information to assess the performance. 
We investigate the benefit for estimation of exploiting a qubit pair 
in various entanglement settings. Several specific situations have 
been analyzed of entanglement-assisted schemes for estimation 
and metrology, with overviews provided in [15] with no noise, and 
more recently in [13] with noise. However, relatively few studies 
derived explicit expressions for the quantum Fisher information 
Fq(ρξ ; ξ) in meaningful situations in the presence of noise, be-
cause this is usually recognized as a difficult task. Here, we identify 
and work out meaningful situations where such derivations are 
feasible, and provide in this way additional quantitative charac-
terizations for entanglement-assisted estimation in the presence of 
quantum noise.

2. Quantum Fisher information

In this section, we recall an expression accessible for the quan-
tum Fisher information of a general quantum state and that will 
be useful to us in the sequel. In addition, we establish a convexity 
property over a class of transformed quantum states and relevant 
to our study.

To proceed with the estimation task introduced in Section 1, we 
consider a quantum system in a D-dimensional Hilbert space HD

having its state represented by the density operator ρξ dependent 
upon an unknown parameter ξ . For estimating ξ by measuring ρξ , 
the ultimate best performance is controlled by the quantum Fisher 
information Fq(ρξ ; ξ) contained in the density operator ρξ about 
the parameter ξ . By referring to the spectral decomposition of ρξ

in its orthonormal eigenbasis ρξ = ∑D
n=1 λn|λn〉〈λn|, one has access 

to the expression [20–22]

Fq(ρξ ; ξ) = 2
∑
m,n

|〈λm|∂ξρξ |λn〉|2
λm + λn

, (1)

where the sums as in Eq. (1) include all terms corresponding 
to eigenvalues λm + λn �= 0. For the special case of a pure state 
ρξ = |λ〉〈λ| then the derivative ∂ξρξ = |∂ξλ〉〈λ| + |λ〉〈∂ξλ|, and the 
expression of Eq. (1) should be replaced [21,22] by

Fq(ρξ ; ξ) = 4
(
〈∂ξλ|∂ξλ〉 + 〈∂ξλ|λ〉2

)
. (2)
In general, the quantum Fisher information Fq(ρξ ; ξ) when 
seen as a functional of the density operator ρξ is a convex (∪)

functional of ρξ [23,24], in the sense that if ρξ is a convex com-
bination of density operators, such as ρξ = p′ρ ′

ξ + p′′ρ ′′
ξ , then 

Fq(ρξ ; ξ) ≤ p′ Fq(ρ
′
ξ ; ξ) + p′′ Fq(ρ

′′
ξ ; ξ). As a consequence, when 

there is no constraint on ρξ , then Fq(ρξ ; ξ) is maximized by a den-
sity operator ρξ which is not convexly decomposable into some 
other density operators, i.e. a rank-one density operator or pure 
state of the form ρξ = |ψ〉〈ψ |.

In many circumstances, comprising the ones we investigate 
here, the ξ -dependent quantum state ρξ is constrained to be of 
a form realized from a ξ -independent quantum state ρ0 (an input 
probe) which experiences transformation by a ξ -dependent quan-
tum process denoted Tξ (·) to yield ρξ = Tξ (ρ0). As an arbitrary 
transformation of a quantum state, quantum theory [25] imposes 
that Tξ (·) is a completely positive trace-preserving linear map. The 
map Tξ (·) can represent a unitary evolution of a quantum state, 
or also a nonunitary evolution involving decoherence. As a con-
sequence of the linearity of the map ρξ = Tξ (ρ0), the quantum 
Fisher information Fq

(
ρξ = Tξ (ρ0); ξ

)
when seen as a functional of 

the input density operator ρ0, is also a convex (∪) functional of ρ0. 
When ρ0 is a convex combination of density operators, such as 
ρ0 = p′

0ρ
′
0 + p′′

0ρ
′′
0 , then by linearity Tξ (ρ0) = p′

0Tξ (ρ
′
0) + p′′

0Tξ (ρ
′′
0 ), 

and by the convexity in ρξ therefore

Fq
(
Tξ (ρ0); ξ

) ≤ p′
0 Fq

(
Tξ (ρ

′
0); ξ

) + p′′
0 Fq

(
Tξ (ρ

′′
0 ); ξ)

, (3)

expressing convexity in ρ0.
Equation (3) implies that if the input probe ρ0 can be con-

vexly decomposed under a form ρ0 = p′
0ρ

′
0 + p′′

0ρ
′′
0 , then Fq

(
ρξ =

Tξ (ρ0); ξ
)

is not maximal at this ρ0. Conversely, Fq
(
ρξ = Tξ (ρ0); ξ

)
is at a maximum necessarily for a ρ0 that is not convexly de-
composable. The states ρ0 that are not convexly decomposable 
are rank-one density operators of the form ρ0 = |ψ0〉〈ψ0|. This 
establishes the important property that the quantum Fisher infor-
mation Fq

(
ρξ = Tξ (ρ0); ξ

)
accessible from the transformed state 

ρξ = Tξ (ρ0) is maximized by a pure input probe ρ0 = |ψ0〉〈ψ0|.

3. Single qubit with noise

When ρξ is a qubit state in the two-dimensional Hilbert space 
H2, a convenient parametrization is offered by the Bloch represen-
tation [25]

ρξ = 1

2

(
I2 +	rξ · 	σ

)
, (4)

with I2 the identity of H2, and 	σ a formal vector assem-
bling the three 2 × 2 (traceless Hermitian unitary) Pauli matrices 
[σx, σy, σz] = 	σ . The coordinates of ρξ are specified by the Bloch 
vector 	rξ in R3, with norm ‖	rξ‖ = 1 for a pure state and ‖	rξ‖ < 1
for a mixed state. For the qubit in Bloch representation, the quan-
tum Fisher information of Eq. (1) follows [22] as

Fq(ρξ ; ξ) =
(	rξ · ∂ξ	rξ

)2

1 −	r 2
ξ

+ (
∂ξ	rξ

)2
(5)

for a mixed state, and for the pure state of Eq. (2) as

Fq(ρξ ; ξ) = (
∂ξ	rξ

)2
. (6)

An important family of parametric qubit states ρξ arises [21,
22] when an initial qubit, forming the input probe, is prepared in 
an initial state ρ0 and then subjected to a ξ -dependent unitary 
transformation Uξ of general form

Uξ = exp

(
−i

ξ

2
	n · 	σ

)
, (7)
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where 	n = [nx, ny, nz]� is a real unit vector of R3, so as to de-

liver the transformed state ρξ = Uξ ρ0U†
ξ . In Bloch representation, 

the unitary transformation of Eq. (7) implements in R3 a rotation 
by the angle ξ around the axis 	n of the initial Bloch vector 	r0 of 
the input probe ρ0 into the transformed Bloch vector 	rξ . In such 
circumstance, the quantum Fisher information of both Eqs. (5) and 
(6) evaluates [26] to Fq(ρξ ; ξ) = (	n × 	r0)

2, uniformly for any ξ . 
Maximization of this Fq(ρξ ; ξ) is therefore achieved by an optimal 
input probe ρ0 in a pure state (as already known from Section 2) 
characterized by a unit Bloch vector 	r0 orthogonal to the rotation 
axis 	n, this to reach the overall maximum Fq(ρξ ; ξ) = F max

q = 1. 
This defines the conditions for the ultimate best performance in 
estimating the phase shift ξ inflicted to a qubit by a unitary trans-
formation.

The above situation stands as the important reference of a 
noise-free or decoherence-free qubit. An arguably more realistic 
situation would be when the transformed qubit state Uξ ρ0U†

ξ , be-
fore it becomes accessible to measurement for estimating ξ , is af-
fected by a quantum noise or by decoherence, as we now consider. 
On the transformed qubit state now denoted ρ1(ξ) = Uξ ρ0U†

ξ , the 
action of a quantum noise or of decoherence can always be ex-
pressed as a completely positive trace-preserving linear map under 
the operator-sum representation [25]

ρ1(ξ) −→ N (ρ1) =
∑

�

	�ρ1(ξ)	
†
� = ρξ , (8)

with the Kraus operators 	� satisfying 
∑

� 	
†
�	� = I2.

When estimation of the phase angle ξ has to be performed 
from the noisy qubit state ρξ resulting from Eq. (8), then the opti-
mization of the input probe ρ0 and the maximum it affords for the 
Fisher information Fq(ρξ ; ξ) of Eqs. (5)–(6), are usually critically 
dependent on the noise N (·) in Eq. (8) and also on the parameter 
ξ itself. Such optimal conditions have been explicitly worked out 
in [22] for different quantum noise models relevant to the qubit. 
This dependence of the optimal probe ρ0 on the unknown param-
eter ξ usually entails the practical complication of the necessity of 
resorting to adaptive iterative estimation protocols in order to ap-
proach maximal performance, as for instance performed in [5–10]. 
There is however an important situation where such complication 
can be avoided. This is the situation of a noise of great relevance 
to the qubit, which is the depolarizing noise.

The depolarizing noise [25,27] implements a quantum opera-
tion N (·) in Eq. (8) taking the form

N (ρ1) = (1 − p)ρ1 + p

3

(
σxρ1σ

†
x + σyρ1σ

†
y + σzρ1σ

†
z
)

(9)

where the action of the noise is to leave the qubit state ρ1(ξ) un-
changed with the probability 1 − p or to apply any one of the 
three Pauli operators with equal probability p/3. Alternatively, the 
transformation of Eq. (9) can be put [25] under the equivalent (but 
non-Kraus) form N (ρ1) = αρ1 + (1 − α)I2/2 with α = 1 − 4p/3, 
manifesting an isotropic geometrical character of the depolarizing 
noise, which in a probabilistic way either leaves the qubit state 
ρ1(ξ) unchanged or replaces it by the maximally mixed state I2/2. 
This isotropic character is also manifested in Bloch representa-
tion [25], where the action of the depolarizing noise of Eq. (9) is 
to apply to the qubit Bloch vector 	r1(ξ) a uniform compression 
	r1 → α	r1 = 	rξ by the factor α = 1 − 4p/3 satisfying 0 ≤ |α| ≤ 1. 
This isotropic or highly symmetric character of the depolarizing 
noise makes it more tractable analytically; and also the depolar-
izing noise is somehow a worse-case scenario for quantum infor-
mation [28], and in this respect it enables a conservative picture 
accessible as a tractable reference.
This isotropy of the depolarizing noise entails that the Fisher 
information of both Eqs. (5) and (6) evaluates [26] to Fq(ρξ ; ξ) =
α2(	n × 	r0)

2 uniformly for any ξ , and that Fq(ρξ ; ξ) is therefore 
maximized by a pure input probe ρ0 (as already known from Sec-
tion 2) characterized by a unit Bloch vector 	r0 orthogonal to the 
rotation axis 	n as in the noise-free case, this to achieve the maxi-
mum

Fq(ρξ ; ξ) = F max
q = α2 , (10)

matching the noise free-case F max
q = 1 when p = 0 and α = 1.

When the above estimation scenario is repeated on N indepen-
dent qubits prepared in the same state ρ0 with the noise acting 
independently on each qubit, then the quantum Fisher informa-
tion is additive [11] and amounts to N Fq(ρξ ; ξ) experiencing a 
gain by N . By contrast, with N entangled qubits, the gain in the 
quantum Fisher information may be raised at most to N2 [12,11]. 
However, not all types of dependence on ξ can benefit from such 
quantum enhancement, and with large increasing N the gain in 
Fisher information returns to N instead of N2 as soon as a small 
amount of depolarizing noise is present [11]. Moreover, as argued 
in the Introduction section, since large populations of entangled 
qubits are difficult to produce and control, it is therefore realistic 
to concentrate on small populations of entangled qubits, and ex-
amine the best benefit they afford for estimation in the presence 
of noise. In this direction, we study how the estimation scenario 
on one noisy qubit considered in this section and optimized to 
achieve the maximal quantum Fisher information of Eq. (10), can 
benefit from entanglement when it is worked out on a qubit pair.

4. Pair of qubits with noise

We now consider a qubit pair in H⊗2
2 which is prepared in the 

joint state denoted as before by ρ0 and forming the input probe 
for our estimation task. The density operator ρ0 is now a general 
two-qubit state, possibly entangled or separable, allowing to exam-
ine the impact thereof on the estimation performance.

For the sake of definiteness, we consider the unitary transfor-
mation

Uξ =
[

1 0
0 eiξ

]
. (11)

Such Uξ can be factored as Uξ = eiξ/2 exp(−iξσz/2) which is 
equivalent to the unitary exp(−iξσz/2) falling in the family of 
Eq. (7), since the prefactor eiξ/2 cancels out and has no impact 
in the transformation ρ → Uξ ρU†

ξ of quantum states. As argued in 
[11], Eq. (11) is a generic unitary transformation, also considered 
in many other studies, which retains the essential features of a 
general transformation as in Eq. (7), where an arbitrary orientation 
like 	n in Eq. (7) is assimilated to the O z axis1 with Eq. (11).

A unitary transformation Uξ on a qubit density operator 
can be fully characterized by its action on the canonical ba-
sis 

{| j〉〈k|; j, k = 0, 1
}

of operators on H2 onto H2, denoted 
| j〉〈k| → Uξ | j〉〈k|U†

ξ = Uξ

(| j〉〈k|). With Uξ from Eq. (11), this yields 
the characterization

Uξ

(|0〉〈0|) = |0〉〈0| , (12)

Uξ

(|0〉〈1|) = e−iξ |0〉〈1| , (13)

Uξ

(|1〉〈0|) = eiξ |1〉〈0| , (14)

Uξ

(|1〉〈1|) = |1〉〈1| . (15)

1 The O z axis is the axis of R3 carrying the two (antipodal) Bloch vectors defin-
ing the two orthogonal eigenstates |0〉 and |1〉 of the Pauli operator σz . In this way 
exp(−iξσz/2) represents a rotation in R3 of angle ξ around 	n = [0, 0, 1]� .
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In a similar way, the action of the depolarizing noise of Eq. (9)
on a qubit density operator is fully characterized by the four trans-
formations

N
(|0〉〈0|) = 1 + α

2
|0〉〈0| + 1 − α

2
|1〉〈1| , (16)

N
(|0〉〈1|) = α|0〉〈1| , (17)

N
(|1〉〈0|) = α|1〉〈0| , (18)

N
(|1〉〈1|) = 1 − α

2
|0〉〈0| + 1 + α

2
|1〉〈1| , (19)

with the noise factor α = 1 − 4p/3 ∈ [−1/3, 1].
Cascading the two above quantum operations N ◦ Uξ (·) =

N [Uξ (·)] = Tξ (·) yields

Tξ

(|0〉〈0|) = 1 + α

2
|0〉〈0| + 1 − α

2
|1〉〈1| , (20)

Tξ

(|0〉〈1|) = αe−iξ |0〉〈1| , (21)

Tξ

(|1〉〈0|) = αeiξ |1〉〈0| , (22)

Tξ

(|1〉〈1|) = 1 − α

2
|0〉〈0| + 1 + α

2
|1〉〈1| . (23)

It can especially be verified that N (·) and Uξ (·) commute on the 
basis states 

{| j〉〈k|; j, k = 0, 1
}

, so that everywhere N ◦ Uξ (·) =
Uξ ◦ N (·) = Tξ (·); therefore the unitary and the noise applied ei-
ther way to a qubit have the same effect.

The probe state ρ0 is a general two-qubit state that we refer to 
the canonical basis 

{| j j′〉〈kk′| = | j〉〈k| ⊗ | j′〉〈k′|; j, j′, k, k′ = 0, 1
}

of 
operators on H⊗2

2 onto H⊗2
2 , with a matrix representation of row 

index bin( j j′) and column index bin(kk′), as ρ0 = [ρbin( j j′)bin(kk′)] =
ρ00|00〉〈00| + ρ01|00〉〈01| + ρ02|00〉〈10| + . . . + ρ33|11〉〈11|, where 
bin( j j′) represents the integer value between 0 and 3 of the binary 
sequence j j′ .

4.1. One qubit transformed

We first examine the setting, depicted in Fig. 1, where only the 
first qubit of the pair experiences the unitary plus noise trans-
formation, while the second qubit is left untouched. Comparable 
settings associating an active qubit entangled with an inactive 
qubit have already been considered for instance in [23,14,29–32,
13,33]. The characterization we develop here is novel of the quan-
tum Fisher information with depolarizing noise for such a qubit 
pair. For the setting of Fig. 1, the resulting two-qubit noisy trans-
formed state is ρξ = Tξ ⊗ I(ρ0), with I(·) the one-qubit identity 
operation defined by I

(| j〉〈k|) = | j〉〈k| over the canonical basis.
Using the characterization of Eqs. (20)–(23) for the one-qubit 

quantum operation Tξ (·) and performing the tensor product, one 
deduces for any input probe ρ0, the two-qubit noisy transformed 
state ρξ = Tξ ⊗ I(ρ0) under the matrix representation in the 
canonical basis,

ρξ =

⎡⎢⎢⎣
bρ00 + cρ22 bρ01 + cρ23 αe−iξ ρ02 αe−iξρ03

bρ10 + cρ32 bρ11 + cρ33 αe−iξρ12 αe−iξρ13

αeiξρ20 αeiξ ρ21 cρ00 + bρ22 cρ01 + bρ23

αeiξρ30 αeiξ ρ31 cρ10 + bρ32 cρ11 + bρ33

⎤⎥⎥⎦ ,

(24)

with the shorthand notation b = (1 + α)/2 and c = (1 − α)/2. Its 
derivative readily follows as
Fig. 1. A pair of qubits in a generally entangled state where only the first qubit of 
the pair experiences the unitary plus noise transformation, while the second qubit 
is left untouched.

∂ξρξ =

⎡⎢⎢⎣
0 0 −iαe−iξ ρ02 −iαe−iξ ρ03

0 0 −iαe−iξ ρ12 −iαe−iξ ρ13

iαeiξ ρ20 iαeiξ ρ21 0 0
iαeiξ ρ30 iαeiξ ρ31 0 0

⎤⎥⎥⎦ .

(25)

It is now feasible from Eqs. (24) and (25), to compute the 
quantum Fisher information Fq(ρξ ; ξ) of Eq. (1). This requires to 
perform the eigendecomposition 

{
λn, |λn〉} of the 4 × 4 density 

matrix ρξ of Eq. (24), and then use the derivative ∂ξρξ of Eq. (25)
to evaluate its matrix elements 〈λm|∂ξρξ |λn〉 and deduce Fq(ρξ ; ξ)

of Eq. (1). For an arbitrary input probe ρ0, with no special struc-
ture or symmetry (other than the built-in Hermiticity), this com-
putation of Fq(ρξ ; ξ), although in principle analytically feasible, is 
however practically very cumbersome and can alternatively be ac-
complished numerically. There is nevertheless an interesting class 
of input states ρ0 where this computation can be handled analyt-
ically to provide useful insight on benefit from entanglement for 
estimation.

This class is formed by the 2-qubit pure states in H⊗2
2 under 

the form

|ψ0〉 = √
1 − q|0〉 ⊗ |0〉 + √

q|1〉 ⊗ |1〉 = √
1 − q|00〉 + √

q|11〉 .

(26)

By varying the Schmidt coefficient q between 0 and 1, it is possi-
ble to span between a maximally entangled state at q = 1/2 and 
two separable states at q = 0 and q = 1. Such a flexible class of 
entangled states has previously been exploited to explore the im-
pact of entanglement in estimation. It is exploited for instance in 
[23], where the quantum Fisher information is also used so as 
to assess the estimation of a one-parameter non-unitary quantum 
channel, yet with no extra noise affecting the measured quantum 
state as we consider here. The characterization we develop here of 
the quantum Fisher information for estimating the phase of a uni-
tary transformation with depolarizing noise is novel. From Eq. (26), 
the input probe follows with the density operator ρ0 = |ψ0〉〈ψ0| as

ρ0 = (1 − q)|00〉〈00| + √
(1 − q)q

(
|00〉〈11| + |11〉〈00|

)
+ q|11〉〈11| , (27)

having the matrix form

ρ0 =

⎡⎢⎢⎣
1 − q 0 0

√
(1 − q)q

0 0 0 0
0 0 0 0√

(1 − q)q 0 0 q

⎤⎥⎥⎦ . (28)

The resulting two-qubit noisy transformed state ρξ = Tξ ⊗
I(ρ0) from Eq. (24) is derived in Appendix A together with the en-
suing quantum Fisher information Fq(ρξ ; ξ) of Eq. (1). The deriva-
tion of Appendix A shows a quantum Fisher information Fq(ρξ ; ξ)

in Eq. (A.6) which is independent of the unknown parameter ξ , 
and which is maximized by the Schmidt coefficient q = 1/2, i.e. 
for a maximally entangled pure state for the input probe ρ0 from 
Eq. (26). The corresponding maximal Fisher information achieved 
in Eq. (A.6) follows as



F. Chapeau-Blondeau / Physics Letters A 381 (2017) 1369–1378 1373
Fig. 2. Quantum Fisher information Fq(ρξ ; ξ) as a function of the depolarizing noise 
factor α ∈ [−1/3, 1]. Solid line: Fq(ρξ ; ξ) is from Eq. (29) with a noisy entangled 
qubit pair at q = 1/2 where only one qubit in the pair experiences the unitary plus 
noise transformation via the setting of Fig. 1. Dashed line: Fq(ρξ ; ξ) is from Eq. (10), 
the maximal Fisher information accessible from a single independent noisy qubit.

Fq(ρξ ; ξ) = 2α2

1 + α
. (29)

Fig. 2 compares the quantum Fisher information Fq(ρξ ; ξ) from the 
qubit pair of Eq. (29) to the maximal Fisher information accessible 
from a single qubit of Eq. (10).

It is visible in Fig. 2 that when there is no noise, at α = 1, the 
two-qubit setting of Fig. 1 and Eq. (29) performs no better than the 
single qubit of Eq. (10), with which it shares the quantum Fisher 
information Fq(ρξ ; ξ) = α2 = 1. However, as soon as some noise 
comes into play, with α < 1, then the two-qubit setting of Fig. 1
and Eq. (29) becomes superior, with a larger quantum Fisher in-
formation in Eq. (29) compared to the maximal quantum Fisher 
information of the single qubit in Eq. (10). The gain or ratio of the 
two Fisher informations 2/(1 + α) in Fig. 2 goes to 2 for a noise 
factor |α| → 0, and it goes to 3 as α → −1/3. Such superiority is 
specially remarkable, because, as expressed by Fig. 1, the second 
qubit of the pair never interacts with the ξ -dependent process to 
be estimated. Nevertheless, when it is entangled to the first qubit 
experiencing the ξ -dependent interaction, the qubit pair enables a 
net enhancement of the performance in estimation. This enhance-
ment can be seen as a specifically quantum property, afforded by 
entanglement, with no classical analog, because classically when 
a probe does not interact with a process it cannot improve its 
estimation. Comparable benefit from entanglement with an inac-
tive ancillary quantum system as in Fig. 1 has previously been 
observed for metrology, for instance in [23,14,29–32,13,33], yet in 
situations differing from the present one, either with no noise or 
with a performance metric differing from the quantum Fisher in-
formation employed here or another estimation task. The present 
study confirms and extends the situations where a specific bene-
fit is accessible from quantum entanglement, especially for noisy 
quantum metrology.

4.2. Two qubits transformed

For comparison, it is also interesting to analyze the setting, de-
picted in Fig. 3, where the two qubits of the pair experience the 
unitary plus noise transformation, acting separately on each qubit. 
Such settings associating active entangled qubits uniformly in par-
allel are common for estimation and considered for instance in [11,
13,19,14,12,33]. Here also, the characterization we develop is novel 
of the quantum Fisher information with depolarizing noise for such 
Fig. 3. A pair of qubits in a generally entangled state where the two qubits experi-
ence the unitary plus noise transformation.

a qubit pair. For the setting of Fig. 3, the resulting two-qubit noisy 
transformed state is now ρξ = Tξ ⊗ Tξ (ρ0).

When the input probe is in the general two-qubit state ρ0 =
[ρbin( j j′)bin(kk′)], then from Eqs. (20)–(23) engaged in the tensor 
product, the two-qubit noisy transformed state ρξ = Tξ ⊗ Tξ (ρ0)

in the canonical basis receives the matrix representation

ρξ =
⎡⎣ d00 αe−iξ (bρ01 + cρ23) αe−iξ (bρ02 + cρ13) α2e−i2ξ ρ03

αeiξ (bρ10 + cρ32) d11 α2ρ12 αe−iξ (cρ02 + bρ13)

αeiξ (bρ20 + cρ31) α2ρ21 d22 αe−iξ (cρ01 + bρ23)

α2ei2ξ ρ30 αeiξ (cρ20 + bρ31) αeiξ (cρ10 + bρ32) d33

⎤⎦ ,

(30)

with the four diagonal terms

d00 = b2ρ00 + bc(ρ11 + ρ22) + c2ρ33 , (31)

d11 = b2ρ11 + bc(ρ00 + ρ33) + c2ρ22 , (32)

d22 = b2ρ22 + bc(ρ00 + ρ33) + c2ρ11 , (33)

d33 = b2ρ33 + bc(ρ11 + ρ22) + c2ρ00 , (34)

and the derivative

∂ξρξ =⎡⎣ 0 −iαe−iξ (bρ01 + cρ23) −iαe−iξ (bρ02 + cρ13) −i2α2e−i2ξ ρ03

iαeiξ (bρ10 + cρ32) 0 0 −iαe−iξ (cρ02 + bρ13)

iαeiξ (bρ20 + cρ31) 0 0 −iαe−iξ (cρ01 + bρ23)

i2α2ei2ξ ρ30 iαeiξ (cρ20 + bρ31) iαeiξ (cρ10 + bρ32) 0

⎤⎦ .

(35)

With the input probe state ρ0 taken under the form of 
Eqs. (27)–(28), the resulting two-qubit noisy transformed state 
ρξ = Tξ ⊗ Tξ (ρ0) from Eq. (30) is derived in Appendix B together 
with the ensuing quantum Fisher information Fq(ρξ ; ξ) of Eq. (1). 
The derivation of Appendix B shows a quantum Fisher informa-
tion Fq(ρξ ; ξ) in Eq. (B.5) which is independent of the unknown 
parameter ξ , and which is again maximized by the Schmidt coef-
ficient q = 1/2, i.e. for a maximally entangled pure state for the 
input probe ρ0 from Eq. (26). The corresponding maximal Fisher 
information achieved in Eq. (B.5) follows as

Fq(ρξ ; ξ) = 8α4

1 + α2
. (36)

Fig. 4 compares the quantum Fisher information Fq(ρξ ; ξ) from the 
entangled qubit pair of Eq. (36) to the maximal Fisher information 
accessible from two separable qubits which is 2α2 after Eq. (10).

It is observed in Fig. 4 that when there is no noise, at α = 1, 
the two maximally entangled qubits of Fig. 3 are much more 
efficient for estimation since they lead to a Fisher information 
Fq(ρξ ; ξ) = 4 in Eq. (36) which is twice the maximal Fisher in-
formation Fq(ρξ ; ξ) = 2α2 = 2 of two separable qubits. This is the 
quantum enhancement announced at the end of Section 3: with 
an N-qubit separable state the quantum Fisher information scales 
as N , while there is a possibility of scaling as N2 with an N-qubit 
entangled state, as observed in Fig. 4 for N = 2. However, as also 
announced at the end of Section 3, this quantum enhancement is 
significantly impaired by the presence of noise. In Fig. 4, when the 
level of noise increases as α decreases below 1, the superiority of 
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Fig. 4. Quantum Fisher information Fq(ρξ ; ξ) as a function of the depolarizing noise 
factor α ∈ [−1/3, 1]. Solid line: Fq(ρξ ; ξ) is from Eq. (36) with a noisy entangled 
qubit pair at q = 1/2 where the two qubits in the pair experience the unitary 
plus noise transformation via the setting of Fig. 3. Dashed line: Fq(ρξ ; ξ) = 2α2, 
the maximal Fisher information accessible from two separable noisy qubits after 
Eq. (10). A crossover occurs at α = α1 = 1/

√
3 ≈ 0.577.

the Fisher information Fq(ρξ ; ξ) of the entangled pair gradually di-
minishes. There is a crossover level, at α = α1 = 1/

√
3 ≈ 0.577 in 

Fig. 4. At higher noise levels, when α < α1, the separable qubit pair 
shows a Fisher information Fq(ρξ ; ξ) = 2α2 which becomes supe-
rior to that of the entangled pair in Eq. (36). This is a significant 
property. In the presence of noise, depending on the noise level, 
an entangled qubit pair may or may not be superior to a sepa-
rable pair, in terms of quantum Fisher information for estimation. 
This provides further insight into the behavior of entanglement for 
estimation from noisy quantum systems. Entanglement as a quan-
tum correlation makes the entangled pair in Fig. 3 react as a whole 
to the ξ -dependent unitary and to the noise, and in a way differ-
ing from the reaction of two independent separable qubits. Based 
on the quantitative behavior in Fig. 4, the qualitative interpretation 
is that, compared to the separable pair, at low noise, the entan-
gled pair appears more responsive to the ξ -dependent unitary than 
to the noise, translating into a superior Fisher information. Con-
versely, at high noise, the entangled pair appears more sensitive 
to the noise than to the ξ -dependent unitary, translating into a 
poorer Fisher information. It is therefore important to realize the 
possibility of this crossover in the performance for estimation, and 
to be able, as accomplished here for a depolarizing noise on the 
qubit pair, to evaluate the level of noise where the crossover takes 
place, indicating when an entangled or a separable pair is prefer-
able.

When the entangled qubit pair of Fig. 3 is strongly sensitive 
to the noise, at still higher noise level, its performance gets even 
poorer than that of the setting of Fig. 1 where only one qubit of 
the pair experiences the ξ -dependent unitary plus noise. This is 
made visible by Fig. 5, comparing the quantum Fisher information 
Fq(ρξ ; ξ) of Eq. (36) for the setting of Fig. 3 to that of Eq. (29) for 
the setting of Fig. 1. It is observed in Fig. 5 that another crossover 
occurs at α = α2 ≈ 0.455, and for high noise levels where α < α2
the setting of Fig. 3 with two active qubits has a poorer Fisher 
information than the setting of Fig. 1 with one active qubit.

In the setting of Fig. 3, each qubit undergoes a dual interac-
tion including both a useful exposition to the ξ -dependent process 
under estimation and a harmful exposition to the noise. The net 
effect of such dual interaction is favorable at low noise, and detri-
mental at high noise. In this way, at high noise, it is preferable to 
limit such dual interaction and select the setting of Fig. 1 with only 
one qubit exposed to the unitary plus noise transformation, which 
turns out to be more efficient for estimation, as quantified here.
Fig. 5. Quantum Fisher information Fq(ρξ ; ξ) as a function of the depolarizing noise 
factor α. Solid line: Fq(ρξ ; ξ) is from Eq. (36) with a noisy entangled qubit pair 
at q = 1/2 where the two qubits in the pair experience the unitary plus noise 
transformation via the setting of Fig. 3. Dashed line: Fq(ρξ ; ξ) is from Eq. (29)
with a noisy entangled qubit pair at q = 1/2 where only one qubit in the pair ex-
periences the unitary plus noise transformation via the setting of Fig. 1. Dotted 
line: Fq(ρξ ; ξ) = 2α2, the maximal Fisher information accessible from two separa-
ble noisy qubits after Eq. (10).

5. Optimized entanglement

In terms of performance assessed by the quantum Fisher in-
formation Fq(ρξ ; ξ), the setting of Fig. 1 with only one qubit of 
the pair actively exposed to the unitary plus noise transforma-
tion and achieving Fq(ρξ ; ξ) of Eq. (29), is always superior to a 
single independent qubit exposed in the same way to the unitary 
plus noise transformation and achieving Fq(ρξ ; ξ) = α2 of Eq. (10), 
as visible in Fig. 2. In addition, two independent qubits achieving 
Fq(ρξ ; ξ) = 2α2 are always superior to the setting with one active 
qubit of Fig. 1 achieving Fq(ρξ ; ξ) of Eq. (29). Meanwhile, two ac-
tive entangled qubits as in Fig. 3 achieving Fq(ρξ ; ξ) of Eq. (36)
are superior to two independent qubits only at low noise, as visi-
ble in Fig. 4. As we are going to see, there is however some room 
for further improving the performance of the two entangled qubits 
of Fig. 3 over that of the two independent qubits. This is possi-
ble by entangling the input probe in a different way, as we now 
examine.

Based on Section 3, for estimation of the phase ξ in Eq. (11)
from one-qubit independent states, the maximal quantum Fisher 
information F max

q = α2 of Eq. (10) can be reached by a one-qubit 
input probe prepared in the pure state |+〉 = (|0〉 + |1〉)/√2. Con-
sequently, with a pair of two independent qubits, twice as much 
quantum Fisher information Fq(ρξ ; ξ) = 2α2 is obtained with the 
two-qubit separable input probe |+〉⊗2. These represent the condi-
tions of maximal Fisher information accessible from two indepen-
dent qubits, and this remains true for any level or factor α of the 
depolarizing noise.

With no noise at α = 1, when a single qubit enables to reach 
the maximal Fisher information F max

q = 1, it is known that N en-
tangled qubits can at most reach the maximal Fisher information 
N2 F max

q = N2 [12,11]. Therefore, with no noise at α = 1, the two-

qubit input probe 
(|00〉 + |11〉)/√2 at q = 1/2 in Eq. (26), effec-

tively achieves this maximal Fisher information Fq(ρξ ; ξ) = N2 = 4
as seen in Fig. 4, and no other two-qubit entangled probe can do 
better.

When some noise starts to appear, with the noise factor α de-
creasing below 1, one can expect that at low noise (α close to 1), 
the input probe 

(|00〉 + |11〉)/√2 will remain quasi-optimal to 
elicit the maximum of the quantum Fisher information Fq(ρξ ; ξ). 
Beyond, for an arbitrary noise factor α < 1, the determination of 
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Fig. 6. Optimal weight β of the entangled state (|00〉 +|11〉)/√2 in the combination 
of Eq. (37) to achieve the maximum of the quantum Fisher information Fq(ρξ ; ξ) of 
Eq. (1), as a function of the depolarizing noise factor α.

the optimal input probe maximizing the quantum Fisher infor-
mation Fq(ρξ ; ξ) is accomplished for a one-qubit probe in Sec-
tion 3, but it becomes a more complicated task for a two-qubit 
probe. From Section 2, it is generally known that the optimal input 
probe maximizing the quantum Fisher information is necessarily 
a pure quantum state |ψ0〉. For a two-qubit probe, a pure quan-
tum state |ψ0〉 is generally parametrized by 7 real numbers which, 
via ρ0 = |ψ0〉〈ψ0|, will control the transformed state ρξ . An eigen-
decomposition of this ρξ has then to be performed in order to 
characterize the quantum Fisher information Fq(ρξ ; ξ) of Eq. (1)
that need be maximized according to these 7 real variables. Such 
multidimensional constrained optimization is usually difficult to 
accomplish [17,19]. As an alternative, to obtain further insight on 
beneficial aspects of entanglement for estimation, one can address 
this optimization in a restricted class of two-qubit pure states. 
Since the probe |+〉⊗2 is optimal for two independent qubits at 
any noise level α, and the probe 

(|00〉 + |11〉)/√2 is optimal for 
two entangled qubits with no noise at α = 1, at an arbitrary noise 
level α one can look for an optimal (pure) probe as the weighted 
combination

|ψ0〉 = β
|00〉 + |11〉√

2
+ β ′|+〉⊗2 . (37)

For a valid (normalized) pure state |ψ0〉, the two weights in 
Eq. (37) have to satisfy β ′ = −β/

√
2 ± [

1 − (β/
√

2)2
]1/2

and are 
chosen real so that Eq. (37) realize a parametrization with one 
independent (real) parameter; in addition β ∈ [−√

2, 
√

2 ] is re-
quired. It is then interesting to look for the optimal weight β

providing an input probe |ψ0〉 in Eq. (37) achieving the maximum 
of the quantum Fisher information Fq(ρξ ; ξ) in Eq. (1). This can 
be accomplished numerically, by computing for any given β , via 
ρ0 = |ψ0〉〈ψ0|, the transformed state ρξ of Eq. (30), then the eigen-
decomposition of this 4 × 4 matrix ρξ , to be used with ∂ξρξ of 
Eq. (35) so as to evaluate Fq(ρξ ; ξ) of Eq. (1). The resulting op-
timal weight β is presented in Fig. 6, where from symmetry of 
Eq. (37), for any β optimal, −β offers an equivalent optimal solu-
tion.

The optimal value βopt of the weight β plotted in Fig. 6 shows 
a sharp transition at a critical value αc ≈ 0.601 of the depolariz-
ing noise factor α. At low noise, when α > αc , the optimal weight 
in Fig. 6 is uniformly βopt = 1 independent of α, indicating that in 
this range of noise, when the pure input probe is formed as the 
combination of Eq. (37), then it is the maximally entangled probe 
|ψ0〉 =

(|00〉 +|11〉)/√2 that always maximizes the quantum Fisher 
information Fq(ρξ ; ξ) at a level given by Eq. (36). On the contrary, 
Fig. 7. Solid line: maximum of the quantum Fisher information Fq(ρξ ; ξ) in Eq. (1)
achieved by the input probe |ψ0〉 of Eq. (37) with the optimal weight β of the 
entangled state (|00〉 + |11〉)/√2 given in Fig. 6. Dotted and dashed lines are the 
same quantum Fisher informations Fq(ρξ ; ξ) as in Fig. 4, with here in dotted line 
Fq(ρξ ; ξ) from Eq. (36) of the maximally entangled input probe (|00〉 + |11〉)/√2, 
and in dashed line Fq(ρξ ; ξ) = 2α2 of the separable input probe |+〉⊗2.

at high noise when α < αc , the optimal weight βopt in Fig. 6 be-
comes α-dependent and steadily decreases below 1. This indicates 
that the optimal input probe |ψ0〉 in Eq. (37) now combines a part 
of the maximally entangled state 

(|00〉 + |11〉)/√2 and a part of 
the separable state |+〉⊗2, matched to the noise level α. The op-
timal probe |ψ0〉 is in this respect a partially entangled state and 
no longer a maximally entangled state. Only asymptotically at very 
large noise when |α| → 0 does the optimal weight βopt → 0 in 
Fig. 6, identifying an optimal input probe |ψ0〉 in Eq. (37) that pro-
gressively ceases to be entangled to tend to the separable state 
|+〉⊗2, associated with the performance Fq(ρξ ; ξ) → 2α2 that also 
vanishes at α → 0, indicating a separable probe that although op-
timal becomes also inoperative for estimation. A comparable nu-
merical optimization of an input probe in a task of frequency esti-
mation was also performed in [16], yet with another performance 
metric, and an optimum was also found at a partially entangled 
probe but no sharp transition at a critical noise level as in Fig. 6.

The maximal quantum Fisher information Fq(ρξ ; ξ) achieved by 
the input probe |ψ0〉 of Eq. (37) at βopt is shown in Fig. 7, as a 
function of the depolarizing noise factor α. As explained above, 
at α > αc then βopt = 1 and the maximal Fisher information is 
Fq(ρξ ; ξ) of Eq. (36), meanwhile as |α| → 0 then βopt → 0 and the 
maximal Fq(ρξ ; ξ) tends to 2α2. In addition, at α < αc , the max-
imal Fq(ρξ ; ξ) of the partially entangled optimal probe at βopt, is 
always above, simultaneously, Fq(ρξ ; ξ) of Eq. (36) of the maxi-
mally entangled probe 

(|00〉 +|11〉)/√2 and Fq(ρξ ; ξ) = 2α2 of the 
separable probe |+〉⊗2. However, as revealed by Fig. 7, the maxi-
mal Fq(ρξ ; ξ) at any βopt never departs much from its two limiting 
values at βopt = 1 or at βopt → 0, whichever of the two is larger. 
The maximal departure is at the crossover α = α1 = 1/

√
3 ≈ 0.577

introduced while analyzing Fig. 4. At α = α1 in Fig. 7, with βopt ≈
0.228 the maximal Fq(ρξ ; ξ) is ≈ 0.698 while the common value 
of the two limiting Fisher informations is 2/3.

We know from Section 3 that for a separable qubit pair the 
maximum of the quantum Fisher information is Fq(ρξ ; ξ) = 2α2, 
achievable by the separable probe |+〉⊗2. The analysis of the per-
formance of Eq. (37) as in Fig. 7, shows that there always exists 
an entangled probe in Eq. (37), characterized by a nonzero optimal 
weight β in Fig. 6, achieving a higher quantum Fisher informa-
tion than the separable probe. And this superiority of a (possibly 
partially) entangled probe over a separable probe is true for any 
nonzero noise factor α. In this respect, for estimation with depo-
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larizing noise, entanglement is always capable of enhancing the 
performance over that of the optimal separable pair.

6. Conclusion

In this report, various benefits have been quantified that can 
be obtained from entanglement for quantum parameter estima-
tion especially in the presence of noise or decoherence. The per-
formance in estimation is assessed by the quantum Fisher infor-
mation, which is a fundamental metric fixing the ultimate best 
performance. In general, when an input probe state experiences 
a ξ -dependent transformation, then it was shown in Section 2 that 
the quantum Fisher information for estimating ξ is always maxi-
mized by a pure input probe. We then turned to a generic class of 
estimation task, consisting in estimating the phase ξ of a unitary 
transformation on a qubit, in the presence of depolarizing noise. As 
a reference, when one operates with independent qubits prepared 
in a separable state, the optimal input probe was characterized in 
Section 3 together with the maximal quantum Fisher information 
it achieves as a function of the level of noise. When only one qubit 
interacts with the ξ -dependent unitary plus noise, it was shown 
in Section 4.1 that a net enhancement over the one-qubit optimal 
probe for the quantum Fisher information Fq(ρξ ; ξ) can always be 
obtained by maximally entangling such an active qubit with an in-
active ancillary qubit that never interacts with the ξ -dependent 
process (i.e. the setting of Fig. 1). This is a purely quantum bene-
fit, with no classical analog, illustrating how the specific quantum 
correlation realized by entanglement can result in an improved 
performance in noisy conditions of estimation. With two active 
qubits as in Fig. 3, it was shown in Section 4.2 that a maximally 
entangled probe is more efficient than the optimal separable probe 
provided the noise is not too high. However, in Section 5 it was 
shown that, even at high noise, a partially entangled probe always 
exists that outperforms the optimal separable probe. Yet for prac-
tical purposes the margin of improvement may be small, and it 
is therefore useful to evaluate the crossover level α1 of the noise, 
as done in Fig. 4, indicating when, among these two practically 
simpler configurations, the maximally entangled or the separable 
two-qubit probe is preferable.

The present approach quantifying benefit from entanglement 
for estimation in the presence of noise can be extended in sev-
eral directions. It can be extended to other types of quantum noise 
relevant to the qubit. The depolarizing noise investigated here rep-
resents an important reference for the qubit, but the approach 
implemented here can in principle be reproduced for any other 
noise on the qubit. A specific noise process will be specified by its 
Kraus operators 	� in Eq. (8), and it is known that a maximum 
of four 	� are sufficient to represent any arbitrary noise on the 
qubit. From there the same steps followed here can be reproduced 
to obtain the noisy state ρξ of the qubit pair similar to Eqs. (A.1)
or (B.1), and perform the eigendecomposition of ρξ giving ac-
cess to the quantum Fisher information Fq(ρξ ; ξ) of Eq. (1) to be 
studied as a function of the noise properties in various configu-
rations of entanglement of the pair. The depolarizing noise with 
its isotropic action in Bloch representation enabled a rather thor-
ough analytic completion of the approach, as demonstrated here, 
to provide useful insight. There nevertheless exist more involved 
noises also relevant to the qubit, such as amplitude damping or 
generalized amplitude damping or squeezed amplitude damping 
noises [25,28,34]. Their mode of action is however more involved 
and controlled by a larger number of parameters, which may com-
plicate the analytical treatment. Extension of the approach to such 
noises is in principle feasible, and this represents an interesting 
perspective open for further exploration. For estimation on such 
noisy qubits, it may be expected that some benefit from entangle-
ment as reported here can persist, as essentially stemming from 
the very specific and unparalleled coupling formed by entangle-
ment, and not critically affected by varying the type of noise. This 
however remains to be investigated explicitly.

Extension of the present work can also be envisaged to multi-
parametric estimation, or to quantum systems of dimension larger 
than the dimension two of the qubit. However, here also the anal-
ysis is likely to be more difficult to handle analytically. It is there-
fore useful to identify as guidelines, situations as here that can 
be treated analytically so as to provide more insight meaningful 
to quantum information with entanglement and noise. Quantum 
noise or decoherence is an essential factor limiting the operation of 
quantum information technologies. It is therefore relevant to fur-
ther analyze and optimize quantum information processes in the 
presence of noise, with a base at the level of the qubit which is 
a fundamental system for quantum information. Also, as a specifi-
cally quantum and unparalleled property, entanglement could be 
further explored for its beneficial role for quantum information 
and quantum signal processing in the presence of noise, as for in-
stance for application to quantum state discrimination or detection 
[35,14,34] or for the exploitation of nonlocal quantum correlations 
[36–38] for noisy quantum information.

Appendix A. One qubit transformed

For the setting of Fig. 1, with the input probe state ρ0 taken 
under the form of Eqs. (27)–(28), the resulting two-qubit noisy 
transformed state ρξ = Tξ ⊗ I(ρ0) from Eq. (24) follows as

ρξ =

⎡⎢⎢⎣
(1 − q)b 0 0

√
(1 − q)q αe−iξ

0 qc 0 0
0 0 (1 − q)c 0√

(1 − q)q αeiξ 0 0 qb

⎤⎥⎥⎦ ,

(A.1)

and its derivative from Eq. (25),

∂ξρξ =

⎡⎢⎢⎣
0 0 0 −√

(1 − q)q iαe−iξ

0 0 0 0
0 0 0 0√

(1 − q)q iαeiξ 0 0 0

⎤⎥⎥⎦ . (A.2)

For the eigendecomposition of ρξ , the form of Eq. (A.1) shows 
that in H⊗2

2 the state vector |01〉 = [0, 1, 0, 0]� is eigenvector of 
ρξ with eigenvalue qc, while the state vector |10〉 = [0, 0, 1, 0]� is 
eigenvector of ρξ with eigenvalue (1 − q)c. Since ρξ is Hermitian 
with four mutually orthogonal eigenvectors, the two remaining 
eigenvectors of ρξ are to be found in the two-dimensional sub-
space spanned by 

(|00〉, |11〉), where they can be searched under 
the form

|λ〉 = a0|00〉 + a1|11〉 . (A.3)

From Eq. (A.1), the transformation by ρξ of such a |λ〉 occurs in the 
plane 

(|00〉, |11〉) and can be described by the matrix operation[
(1 − q)b

√
(1 − q)q αe−iξ√

(1 − q)q αeiξ qb

][
a0
a1

]
= ρ

(2)
ξ |λ〉 , (A.4)

with the 2 × 2 matrix ρ(2)
ξ defining the operation of the oper-

ator ρξ restricted to the plane 
(|00〉, |11〉). We are faced with 

an eigendecomposition restricted to the plane 
(|00〉, |11〉), with 

a characteristic equation det
(
ρ

(2)
ξ − λI2

) = 0 equivalent to λ2 −
bλ + (1 − q)q(b2 − α2) = 0. This second-degree equation in λ has 
the discriminant � = b2 − 4(1 − q)q(b2 − α2) ≥ 0, and generally 
two roots providing the two (real) eigenvalues that we seek as 
λ± = (b ± √

�)/2. Especially useful to us in the sequel is the sum 
λ+ + λ− = b = (1 + α)/2.



F. Chapeau-Blondeau / Physics Letters A 381 (2017) 1369–1378 1377
Now that the two eigenvalues λ± are expressed, the two corre-
sponding eigenvectors |λ±〉 readily follow by solving the two linear 
systems ρ(2)

ξ |λ±〉 = λ±|λ±〉. We do not write explicitly the result-
ing expressions, noting that for the sequel it is enough to use the 
characterization |λ+〉 = a0|00〉 + a1eiξ |11〉 and |λ−〉 = a1e−iξ |00〉 −
a0|11〉, with now a0 and a1 real, for two orthonormal eigenstates 
|λ±〉 lying in the plane 

(|00〉, |11〉).
For our objective of computing the quantum Fisher informa-

tion Fq(ρξ ; ξ) of Eq. (1), due to the form of ∂ξρξ in Eq. (A.2), 
it is clear that only the two eigenvectors |λ±〉 lying in the plane (|00〉, |11〉) can contribute a non-vanishing scalar 〈λm|∂ξρξ |λn〉
in Eq. (1). Moreover, with the above form determined for |λ±〉, 
it follows that each of the two rectangular terms 〈λ+|∂ξρξ |λ+〉
and 〈λ−|∂ξρξ |λ−〉 is identically zero. Only the two diagonal terms 
〈λ+|∂ξρξ |λ−〉 = 〈λ−|∂ξρξ |λ+〉∗ do not vanish, but yield

〈λ+|∂ξρξ |λ−〉 = √
(1 − q)q iαe−iξ . (A.5)

The quantum Fisher information Fq(ρξ ; ξ) of Eq. (1) finally 
evaluates to

Fq(ρξ ; ξ) = 4(1 − q)q
2α2

1 + α
. (A.6)

Appendix B. Two qubits transformed

For the setting of Fig. 3, with the input probe state ρ0 taken 
under the form of Eqs. (27)–(28), the resulting two-qubit noisy 
transformed state ρξ = Tξ ⊗ Tξ (ρ0) from Eq. (30) follows as

ρξ =

⎡⎢⎢⎣
(1 − q)b2 + qc2 0 0

√
(1 − q)q α2e−i2ξ

0 bc 0 0
0 0 bc 0√

(1 − q)q α2ei2ξ 0 0 (1 − q)c2 + qb2

⎤⎥⎥⎦ , (B.1)

and its derivative from Eq. (35),

∂ξρξ =

⎡⎢⎢⎣
0 0 0 −√

(1 − q)q i2αe−i2ξ

0 0 0 0
0 0 0 0√

(1 − q)q i2αei2ξ 0 0 0

⎤⎥⎥⎦ .

(B.2)

The eigendecomposition of ρξ from Eq. (B.1) follows the same 
steps as that of ρξ from Eq. (A.1). Both |01〉 = [0, 1, 0, 0]� and 
|10〉 = [0, 0, 1, 0]� are eigenvector of ρξ in Eq. (B.1) with same 
eigenvalue bc = (1 − α2)/4. The other two eigenvectors are in the 
plane 

(|00〉, |11〉), and solutions to the two-dimensional eigende-
composition of the matrix

ρ
(2)
ξ =

[
(1 − q)b2 + qc2 √

(1 − q)q α2e−i2ξ

√
(1 − q)q α2ei2ξ (1 − q)c2 + qb2

]
(B.3)

comparable to Eq. (A.4). Similarly, the resulting degree-two char-
acteristic equation det

(
ρ

(2)
ξ − λI2

) = 0 has two real roots λ± sum-

ming now to λ+ + λ− = b2 + c2 = (1 + α2)/2. Due to the form of 
Eq. (B.2) for ∂ξρξ , only the two associated eigenvectors |λ±〉 lying 
in the plane 

(|00〉, |11〉) contribute to the quantum Fisher informa-
tion Fq(ρξ ; ξ) of Eq. (1), moreover only through the two diagonal 
terms

〈λ+|∂ξρξ |λ−〉 = 〈λ−|∂ξρξ |λ+〉∗ = √
(1 − q)q i2α2e−i2ξ , (B.4)

while each of the two rectangular terms 〈λ+|∂ξρξ |λ+〉 and
〈λ−|∂ξρξ |λ−〉 vanishes.

Finally, the quantum Fisher information Fq(ρξ ; ξ) of Eq. (1)
evaluates to
Fq(ρξ ; ξ) = 4(1 − q)q
8α4

1 + α2
. (B.5)
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