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We consider the fundamental quantum information processing task consisting in estimating the phase 
of a qubit. Following quantum measurement, the estimation performance is evaluated by the classical 
Fisher information which determines the best performance limiting any estimator and achievable by 
the maximum likelihood estimator. Estimation is analyzed in the presence of decoherence represented 
by a quantum thermal noise at arbitrary temperature. As the noise temperature is increased, we show 
the possibility of nontrivial behaviors of decoherence, with an estimation performance which does not 
necessarily degrade uniformly, but can experience nonmonotonic evolutions. Regimes are found where 
higher noise temperatures turn more favorable to estimation. Such behaviors are related to stochastic 
resonance or antiresonance effects, where noise reveals beneficial to information processing.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The development of quantum information, quantum computa-
tion and quantum technologies critically depends on the capability 
of mastering quantum noise or decoherence. Noise commonly acts 
as a nuisance impairing information processing. However, in spe-
cific circumstances, it has been realized that noise can reveal bene-
ficial to information processing. Such possibility has been explored 
and analyzed in relation to the phenomenon of stochastic reso-
nance and useful-noise effects [1–4]. For information processing, 
stochastic resonance can be described as a phenomenon by which 
a nonzero optimal amount of noise maximizes the performance. 
Over the recent years, stochastic resonance has been reported in a 
large variety of processes, often nonlinear processes coupling sig-
nal and noise [1–4]. Most studies on stochastic resonance have 
essentially been accomplished in the classical (non-quantum) do-
main. Fewer and more recent studies have investigated stochastic 
resonance in the quantum domain. For instance, quantum forms 
of stochastic resonance have been reported for noise-assisted tran-
sitions in bistable systems [5–7], or for transmission of informa-
tion over noisy quantum channels, binary [8–11] or of other types 
[12–16]. Quantum useful-noise effects comparable to stochastic 
resonance have been shown capable of assisting transport phe-
nomena and energy harvesting in photosynthetic complexes, or 
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capable of enhancing magneto-reception occurring in plant growth 
or in animal orientation and navigation [17,18].

In the present article, we specifically concentrate on a funda-
mental information processing task which is parameter estima-
tion, which deals with efficient exploitation of measurement to 
infer values for physical quantities of interest. For classical esti-
mation, stochastic resonance as useful-noise effects was addressed 
for instance in [19–23]. Comparatively, few studies have addressed 
stochastic resonance for quantum estimation. Very recently, [24]
reported the possibility of useful-noise effect in the estimation of 
the norm of the Bloch vector of a qubit state. We extend here such 
analyses of stochastic resonance for quantum estimation, applied 
here to a fundamental task in quantum metrology which is the es-
timation of the phase of a qubit. The effect of an uncontrolled en-
vironment inducing decoherence is represented by a thermal bath, 
as in [24], with a temperature T assessing the level of noise. Sev-
eral regimes are shown to exist where enhancement of the level 
of noise reveals beneficial to the performance in phase estimation. 
In particular, a regime exists where the action of noise takes the 
form of an antiresonance, with a minimum of the estimation per-
formance occurring at a finite noise level, with smaller noise levels 
(which is natural) but also larger noise levels (which is counterin-
tuitive) being more favorable to estimation. A comparable type of 
quantum stochastic antiresonance was recently reported in [25,26], 
with a performance metric constituted by entanglement preserva-
tion, which is shown minimized for a definite noise level specially 
harmful to entanglement. Comparable stochastic antiresonance has 
on some occasions been observed with classical systems [27–30], 
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but very rarely with quantum systems. It is the first time here to 
our knowledge that it is reported in the context of quantum phase 
estimation assisted by noise, as we investigate, to contribute to a 
broader appreciation of the action of quantum decoherence.

2. Phase estimation on a noisy qubit

We consider the fundamental problem of quantum metrology 
which is the estimation of the phase ξ of a qubit, with relevance 
for instance to atomic clocks, interferometry, magnetometry [31]. 
A qubit with two-dimensional Hilbert space H2 is prepared in an 
initial quantum state represented by the density operator ρ0 and it 
experiences the transformation ρ0 → Uξ ρ0U†

ξ defined by the uni-

tary operator Uξ = exp(−iξ �n · �σ/2), where �n = [nx, ny, nz]� is a 
unit vector of R3. In Bloch representation [32], the qubit is pre-
pared in the initial state ρ0 = (I2 + �r0 · �σ)/2, with I2 the identity 
on H2, and �σ a formal vector assembling the three Pauli operators 
[σx, σy, σz] = �σ . The coordinates of ρ0 are specified by the Bloch 
vector �r0 ∈ R

3, with norm ‖�r0‖ = 1 for a pure state and ‖�r0‖ < 1
for a mixed state. The transformed state Uξ ρ0U†

ξ = ρ1(ξ) is spec-
ified by a Bloch vector �r1(ξ) formed by �r0 rotated by the angle 
ξ around the axis �n in R3. The rotated state ρ1(ξ), before it be-
comes accessible to measurement for estimating ξ , is affected by 
a quantum noise. The action of a quantum noise [32,33] is gen-
erally representable by a completely positive trace-preserving su-
peroperator N (·) producing the ξ -dependent noisy quantum state 
ρξ = N (ρ1). This is equivalent to a Bloch vector �rξ specifying ρξ

supplied by the affine transformation [32,34]

�rξ = A�r1(ξ) + �c , (1)

with A a 3 × 3 real matrix and �c a real vector of R3 characterizing 
the quantum noise.

A quantum measurement is then implemented on the noisy 
qubit in state ρξ in order to estimate the unknown value of the 
phase ξ . From the outcomes of the measurement, having the sta-
tus of realizations of a classical random variable, an estimator ξ̂
is devised for the phase ξ . After classical estimation theory [35,
36], any estimator ξ̂ for ξ is endowed with a mean-squared error 
〈(̂ξ − ξ)2〉 lower bounded by the Cramér–Rao bound involving the 
reciprocal of the classical Fisher information Fc(ξ). The larger the 
Fisher information Fc(ξ), the more efficient the estimation can be. 
The maximum likelihood estimator [36] is known to achieve the 
best performance dictated by the Cramér–Rao bound and Fisher 
information Fc(ξ), at least in the asymptotic regime of a large 
number of independent measurements. The classical Fisher infor-
mation Fc(ξ) stands in this way as a fundamental metric quanti-
fying the best achievable performance in estimation. It is therefore 
relevant to identify the conditions of optimality maximizing the 
Fisher information Fc(ξ). In this respect, there exists a general 
upper bound [37,38] formed by the quantum Fisher information 
Fq(ξ) which limits the classical Fisher information Fc(ξ) by impos-
ing Fc(ξ) ≤ Fq(ξ). For estimation of the phase ξ of a noisy qubit in 
a state ρξ specified by the Bloch vector �rξ of Eq. (1), the quantum 
Fisher information Fq(ξ) is expressible as [39]

Fq(ξ) =
[
(A�r1 + �c )A(�n ×�r1)

]2

1 − (A�r1 + �c )2
+ [

A(�n ×�r1)
]2

. (2)

The quantum Fisher information Fq(ξ) of Eq. (2) is intrinsic 
to the quantum state ρξ and its relation to the parameter ξ , 
and does not refer to any specific measurement protocol. By con-
trast, the classical Fisher information Fc(ξ) characterizes an ex-
plicit measurement protocol which is required for effective estima-
tion. A general quantum measurement on a qubit is represented by 
a generalized measurement [32] defined by K measurement oper-
ators Mk = bkI2 + �ak · �σ which are positive operators on H2 with 
(�ak, bk) real satisfying 
∑K

k=1 �ak = �0 and 
∑K

k=1 bk = 1, so as to re-
alize 

∑K
k=1 Mk = I2. Especially, ‖�ak‖ ≤ bk ≤ 1 − ‖�ak‖ is required for 

all k to ensure 0 ≤ Mk ≤ I2. For estimating the phase ξ , when such 
a generalized measurement is applied to the qubit in the state ρξ

from Eq. (1), the classical Fisher information Fc(ξ) results as [39]

Fc(ξ) =
K∑

k=1

[�ak A(�n ×�r1)
]2

bk + �ak(A�r1 + �c )
. (3)

For a qubit, the most accessible measurement consists in mea-
suring a spin observable � = �ω · �σ with eigenvalues ±‖ �ω ‖ = ±1. 
This is equivalent to implementing a von Neumann projective mea-
surement defined by the K = 2 measurement operators M± =
(I2 ± �ω · �σ)/2, with ‖ �ω ‖ = 1, forming two projectors on two or-
thogonal directions in H2. In this circumstance, the classical Fisher 
information Fc(ξ) of Eq. (3) reduces to

Fc(ξ) =
[ �ωA

(�n ×�r1
)]2

1 − [ �ω(
A�r1 + �c )]2

. (4)

Due to the great practical importance of measuring a spin observ-
able, in the sequel we will essentially concentrate on estimation 
by means of such type of von Neumann measurements.

An important quantum noise relevant to the qubit we specifi-
cally examine here, is the generalized amplitude damping noise or 
quantum thermal noise [32,40], which describes the interaction of 
the qubit with an uncontrolled environment represented as a ther-
mal bath at temperature T . It is characterized in Eq. (1), in the 
orthonormal basis {�ex, �e y, �ez} of R3, by the 3 × 3 diagonal matrix 
A = diag[√1 − γ , 

√
1 − γ , 1 −γ ] and vector �c = [0, 0, (2p −1)γ ]� . 

The damping factor γ ∈ [0, 1] characterizes the coupling of the 
qubit with the thermal bath. At long interaction times, γ → 1, 
and the noisy qubit relaxes to the equilibrium mixed state ρ∞ =
p|0〉〈0| + (1 − p)|1〉〈1| of Bloch vector �r∞ = �c. At equilibrium, the 
qubit has probabilities p of being measured in the ground state |0〉
and 1 − p of being measured in the excited state |1〉. With the en-
ergies E0 and E1 > E0 respectively for the states |0〉 and |1〉, the 
equilibrium probabilities are governed by the Boltzmann distribu-
tion

p = 1

1 + exp[−(E1 − E0)/(kB T )] . (5)

In this way, in the quantum thermal noise, the probability p is 
determined by the temperature T of the bath via Eq. (5). From 
Eq. (5), the probability p is a decreasing function of the temper-
ature T . At T = 0 the probability is p = 1 for the ground state 
|0〉, while at T → ∞ there is equiprobability with p → 1/2 for the 
ground state |0〉 and the excited state |1〉. Therefore, from Eq. (5), 
when the temperature T monotonically increases from 0 to ∞, 
then the probability p monotonically decreases from 1 to 1/2. 
This variational behavior is preserved for any energy difference 
E1 − E0 > 0 in Eq. (5). For the sake of definiteness, in figures where 
illustrations are presented we shall take E1 − E0 = 1 in units where 
kB = 1. These are illustrative conditions for display, but which do 
not affect the significance of the analysis.

With the quantum thermal noise, from [40] the quantum Fisher 
information Fq(ξ) of Eq. (2) is maximized by a pure initial state ρ0
specified by a unit Bloch vector �r0 orthogonal to the rotation 
axis �n, with a maximum achievable Fisher information F max

q =
1 − γ . The quantum thermal noise, in addition to its important 
practical relevance, is interesting because it has recently been 
shown [24] to lend itself to useful-noise effect or stochastic reso-
nance, where an increase in the level of noise can induce improve-
ment in some information processing tasks. In [24] some possi-
bility of improvement by noise was reported with the quantum 
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Fisher information for assessing the performance in estimating the 
norm of a qubit Bloch vector affected by quantum thermal noise. 
To extend the result of [24], we will investigate here the possibil-
ity of comparable improvement by noise for the important task of 
qubit phase estimation. To assess an effective estimation scenario, 
we will analyze the evolution of the classical Fisher information 
Fc(ξ) of Eq. (4) with the level of the thermal noise, and look for 
the possibility of beneficial noise conditions.

3. Performance evolution with noise

For analysis of the classical Fisher information Fc(ξ) of Eq. (4), 
due to the rotational symmetry around �ez of the thermal noise, 
with no loss of generality it is always possible to choose in R3

the basis vector �ex orthogonal to the rotation axis �n. As a result 
�n is in the plane (�e y, �ez), with coordinates �n = [0, ny, nz]� satis-
fying n2

y + n2
z = 1, and it is enough to consider ny ∈ [0, 1] due to 

the symmetry of the situation. For the orthonormal basis {�n, �n⊥ ≡
�ex, �n ′⊥ = �n×�n⊥} of R3 tied to the rotation axis �n, one therefore has 
�n ′⊥ = �n × �ex = [0, nz, −ny]� . From [40] it is known that optimizing 
the measurement requires an initial Bloch vector �r0 orthogonal to 
the rotation axis �n, and also a vector �ω in Eq. (4) orthogonal to �n, 
which we choose to parametrize as �ω = cos(φ)�n⊥ + sin(φ)�n ′⊥ =
[cos(φ), sin(φ)nz, − sin(φ)ny]� . Since measurement of the observ-
able � = �ω · �σ implements two projectors defined by the two unit 
vectors ± �ω of R3, it is enough to consider φ ∈ [0, π [. An initial 
Bloch vector �r0 orthogonal to the rotation axis �n is in the plane 
(�n⊥, �n ′⊥). It is always possible to place it as �r0 = �n⊥ = �ex in order 
to estimate the rotation angle ξ around �n, since any other initial 
angle of �r0 in the plane (�n⊥, �n ′⊥) would amount to an unimportant 
known shift of the origin for defining ξ . The rotated state ρ1(ξ)

results with a unit Bloch vector �r1(ξ) which is �r0 rotated by ξ in 
the plane (�n⊥, �n ′⊥) orthogonal to the rotation axis �n, leading to 
�r1(ξ) = cos(ξ)�n⊥ + sin(ξ)�n ′⊥ = [cos(ξ), sin(ξ)nz, − sin(ξ)ny]� . The 
configuration of the vectors in R

3 is depicted in Fig. 1.
For the purpose of computing the Fisher information Fc(ξ) of 

Eq. (4), we thus have the generic parametrization �n = [0, ny, nz]� , 
also �ω = [cos(φ), sin(φ)nz, − sin(φ)ny]� and �r1(ξ) = [cos(ξ),

sin(ξ)nz, − sin(ξ)ny]� with the vector coordinates referring to the 
orthonormal basis {�ex, �e y, �ez} of R3 where the noise is character-
ized by (A, �c ). For Fc(ξ) of Eq. (4), it then follows that

�ωA
(�n ×�r1

) = √
1 − γ

(
sin(φ − ξ)

− (
1 − √

1 − γ
)

sin(φ) cos(ξ)n2
y

)
, (6)

and

�ωA�r1 = √
1 − γ

(
cos(φ − ξ) − (

1 − √
1 − γ

)
sin(φ) sin(ξ)n2

y

)
,

(7)

while

�ω �c = ωzcz = − sin(φ)ny(2p − 1)γ . (8)

By replacing Eqs. (6)–(8) in Eq. (4), we obtain the Fisher infor-
mation Fc(ξ) as a function of all the relevant variables of the 
estimation problem in generic conditions.

We are specially interested by studying the influence of the 
temperature T on the Fisher information Fc(ξ). Increasing the 
temperature T of the bath acting as a thermal noise intuitively 
amounts to increasing the detrimental level of the noise; we want 
to examine if this always translates into a degradation of the Fisher 
information Fc(ξ). The temperature T acts on the probability p via 
Eq. (5); in turn p acts on Fc(ξ) via the inner product �ω �c of Eq. (8). 
Right away Eq. (8) identifies two special configurations where the 
Fig. 1. The unit vectors in R3 controlling the quantum estimation. Vectors �ez , �n and 
�n ′⊥ = �n × �n⊥ are in the same plane orthogonal to �n⊥ , while �ω rotates in the plane 
(�n⊥, �n ′⊥) according to the angle φ.

Fisher information Fc(ξ) is found independent of the tempera-
ture T . When sin(φ) = 0, i.e. for a measurement vector �ω = �ex , 
then it results in Eq. (4) that

Fc(ξ) = (1 − γ ) sin2(ξ)

1 − (1 − γ ) cos2(ξ)
, (9)

which is maximized at 1 −γ for ξ = ±π/2 and minimized at 0 for 
ξ = 0 or π . Similarly, when ny = 0, i.e. for a rotation axis �n = �ez , 
then it results in Eq. (4) that

Fc(ξ) = (1 − γ ) sin2(φ − ξ)

1 − (1 − γ ) cos2(φ − ξ)
, (10)

which is maximized at 1 − γ for φ − ξ = ±π/2 and minimized 
at 0 for φ − ξ = 0 or π .

In the general case when sin(φ)ny �= 0, the temperature T
influences the Fisher information Fc(ξ) only through the term 
( �ωA�r1 + �ω �c )2 in the denominator of Eq. (4) via �ω �c of Eq. (8). 
Moreover, when T is varied, Fc(ξ) and ( �ωA�r1 + �ω �c )2 both vary 
in the same direction as a function of T . In particular, the min-
imum of Fc(ξ) occurs at the minimum of ( �ωA�r1 + �ω �c )2. Based 
on Eq. (8), the term ( �ωA�r1 + �ω �c )2 is a ∪-shaped parabola in p. 
Therefore Fc(ξ) is also expected to display a ∪-shaped evolution 
with p, however limited to the allowed interval p ∈ [1/2, 1] attain-
able when T ∈ [0, ∞[ in Eq. (5). The minimum value possible for 
( �ωA�r1 + �ω �c )2 is zero, produced by �ω �c = − �ωA�r1, and this would 
occur at a critical value pc for the probability p which from Eq. (8)
follows as

pc = 1

2
+ 1

2
αc , (11)

with the scalar parameter αc = �ωA�r1/[sin(φ)nyγ ] which is known 
from Eq. (7) as

αc =
√

1 − γ

γ

[
cos(φ − ξ)

ny sin(φ)
− (

1 − √
1 − γ

)
ny sin(ξ)

]
. (12)

It is therefore critical, for the evolution of Fc(ξ) with p (and subse-
quently with T ), to locate the position of pc of Eq. (11) in relation 
to the allowed interval [1/2, 1] � p ; this is equivalent to locat-
ing αc of Eq. (12) in relation to the interval [0, 1]. It results that 
there exist three accessible regimes, which lead to three qualita-
tively distinct evolutions of the Fisher information Fc(ξ) with the 
temperature T ∈ [0, ∞[ of the thermal bath, and that we will ana-
lyze in the sequel.

At first, it is useful to identify the two extreme values of the 
Fisher information Fc(ξ) at the two extreme temperatures T = 0
and T = ∞. From Eqs. (4) and (8), since at T = 0 one has p = 1, it 
follows

Fc(ξ ; T = 0) =
[ �ωA

(�n ×�r1
)]2

1 − [ �ωA�r1 − sin(φ)nyγ
]2

, (13)

while at T = ∞ since p = 1/2 it follows
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Fig. 2. Fisher information Fc from Eq. (4) as a function of the noise temperature T at ny = 1 and φ = π/2. The circles (◦) are the asymptotic values Fc(ξ ; T = ∞) of Eq. (14). 
(A) Decreasing Fc with γ = 0.4, at ξ = 0 (dotted line), ξ = −0.25π (dashed line), ξ = −0.45π (solid line). (B) Antiresonant Fc with γ = 0.5, at ξ = 0.1π (dotted line), 
ξ = 0.15π (dashed line), ξ = 0.2π (solid line). (C) Increasing Fc with γ = 0.4, at ξ = 0.25π (dotted line), ξ = 0.35π (dashed line), ξ = 0.45π (solid line).
Fc(ξ ; T = ∞) =
[ �ωA

(�n ×�r1
)]2

1 − [ �ωA�r1
]2

. (14)

The two extreme values for Fc in Eqs. (13)–(14) differ by the term 
− sin(φ)nyγ in the denominator; therefore in general the further 
away is − sin(φ)nyγ from zero the larger will be the difference be-
tween Fc(ξ ; T = 0) and Fc(ξ ; T = ∞). In particular, for γ fixed by 
the thermal noise, sin(φ)ny = ±1 maximizes this difference; such 
configuration may not be reachable in practice since ny is imposed 
by the rotation axis �n, yet it forms a useful reference expressing 
the maximal excursion of Fc . The excursion between the extreme 
values Fc(ξ ; T = 0) and Fc(ξ ; T = ∞) as the temperature T in-
creases from 0 to ∞ can however take place according to three 
distinct regimes, as anticipated above.

3.1. Fc decreasing with T

In Eq. (11) for pc ≤ 1/2 (i.e. for αc ≤ 0) then the zero of 
( �ωA�r1 + �ω �c )2 at pc occurs before the interval [1/2, 1] � p, so that 
for any p ∈ [1/2, 1] the parabola ( �ωA�r1 + �ω �c )2, or equivalently the 
Fisher information Fc(ξ) of Eq. (4), increases with an increasing 
p ∈ [1/2, 1]. This is equivalent to a decreasing Fisher information 
Fc(ξ) as the temperature T grows from 0 to ∞. This is somehow 
the expected natural behavior: as the temperature T of the ther-
mal noise increases, the performance in estimation quantified by 
Fc(ξ) steadily degrades.

Such a regime of decreasing Fc is obtained by any set of con-
ditions ensuring αc ≤ 0 in Eq. (12). This can be realized in various 
configurations of the rotation axis via ny , of the measurement 
observable via φ, of the thermal noise via the damping γ , for es-
timating the phase ξ . Some illustrative conditions of this type are 
shown in Fig. 2(A).

3.2. Fc antiresonant with T

In Eq. (11) for pc ∈ ]1/2, 1[ (i.e. for αc ∈ ]0, 1[) then the zero of 
( �ωA�r1 + �ω �c )2 at pc occurs inside the interval [1/2, 1] � p, so that 
for any p ∈ [1/2, 1] the parabola ( �ωA�r1 + �ω �c )2, or equivalently the 
Fisher information Fc(ξ) of Eq. (4), undergoes a ∪-shaped evolu-
tion with an increasing p ∈ [1/2, 1] passing through a minimum 
at p = pc . This is equivalent to also a ∪-shaped evolution of the 
Fisher information Fc(ξ) as the temperature T increases from 0
to ∞, with Fc(ξ) passing through a minimum at the critical tem-
perature Tc related to pc via Eq. (5). Such a regime of antireso-
nant ∪-shaped Fc is obtained by any set of conditions ensuring 
αc ∈ ]0, 1[ in Eq. (12). Some illustrative conditions of this type are 
shown in Fig. 2(B).

Such antiresonant evolutions of Fc as in Fig. 2(B) are reminis-
cent of a stochastic resonance effect, where a relevant measure 
of performance for some definite information processing task un-
dergoes a nonmonotonic evolution as the level of noise increases, 
instead of a monotonic degradation [2–4]. Most often, the non-
monotonic evolution observed in stochastic resonance occurs as 
a peak where the performance culminates at a maximum for a 
nonzero optimal amount of noise. By contrast, here as in some 
other studies, the nonmonotonic evolution occurs as a dip where 
the performance is minimized by a nonzero amount of noise spe-
cially harmful to the process. This manifests a nontrivial action 
of the noise, capable of occurring in classical [27–30] as well as 
in quantum [25,26] processes, although it is the first time here 
that such a stochastic antiresonance is reported in the Fisher in-
formation Fc(ξ) assessing the performance in quantum phase es-
timation. This reveals some sophisticated aspects in the action of 
quantum noise or decoherence, which is not necessarily uniformly 
more detrimental as its amount increases. Antiresonant ∪-shaped 
evolutions of Fc as in Fig. 2(B) indicate that configurations exist 
where the conditions at T = 0 and at T → ∞ are more favor-
able for estimation than at intermediate temperatures T . According 
to the analysis above of such antiresonant ∪-shaped evolutions, 
at large temperatures T → ∞ in Fig. 2(B), the Fisher informa-
tion Fc(ξ) follows the same increasing trend up to the asymptotic 
limit Fc(ξ ; T = ∞) of Eq. (14) materialized by the circles (◦) in 
Fig. 2(B). In particular, as visible in Fig. 2(B), configurations exist 
where Fc(ξ ; T = ∞) is larger than Fc(ξ ; T = 0). This is achieved, 
based on Eqs. (13)–(14), when | �ωA�r1 − sin(φ)nyγ | < | �ωA�r1| which 
occurs when sin(φ)nyγ lies between 0 and 2 �ωA�r1. In such config-
urations, in principle, large temperatures T → ∞ come out as the 
most favorable for estimation; however, in practice, this has to be 
mitigated by the necessity to limit the temperature T before it can 
cause damage to the quantum system.

3.3. Fc increasing with T

Finally, in Eq. (11) for pc ≥ 1 (i.e. for αc ≥ 1) then the zero of 
( �ωA�r1 + �ω �c )2 at pc occurs after the interval [1/2, 1] � p, so that 
for any p ∈ [1/2, 1] the parabola ( �ωA�r1 + �ω �c )2, or equivalently the 
Fisher information Fc(ξ) of Eq. (4), decreases with an increasing 
p ∈ [1/2, 1]. This is equivalent to an increasing Fisher information 
Fc(ξ) as the temperature T rises from 0 to ∞.

Such a regime of increasing Fc is obtained by any set of con-
ditions ensuring αc ≥ 1 in Eq. (12). Some illustrative conditions 
of this type are shown in Fig. 2(C). For such increasing evolu-
tions, the asymptotic value Fc(ξ ; T = ∞) materialized by the cir-
cles (◦) in Fig. 2(C) is always larger than Fc(ξ ; T = 0), and the 
performance in estimation steadily improves as the temperature T
increases. This is another counterintuitive behavior obtainable in 
definite conditions with quantum noise or decoherence, where the 
largest amount thereof turns out to be most favorable to the in-
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Fig. 3. For (ξ, ny) ∈ [−π, π ] × [0, 1], the three domains of evolution of the Fisher information Fc(ξ ; φ = π/2) of Eq. (15) with the temperature T , as controlled by αc of 
Eq. (16). Domain (1) is a decreasing Fc(ξ) when αc ≤ 0; domain (2) in gray is an antiresonant Fc(ξ) when αc ∈ ]0, 1[; domain (3) is an increasing Fc(ξ) when αc ≥ 1. Two 
panels show the damping γ = 0.4 and γ = 0.6.

Fig. 4. As a function of the phase angle ξ , for damping γ = 0.4, at three different temperatures T , the dotted curves are at T = 0 with p = 1, the solid curves at T = 0.6 with 
p ≈ 0.841 deduced from Eq. (5), the dashed curves at T = ∞ with p = 1/2. The vertical lines separate the three regimes of evolution for Fc(ξ) with T (see text). (A) Fisher 
information Fc(ξ ; φ = π/2, ny = 1) from Eq. (17). (B) Fisher information Fc(ξ) = [Fc(ξ ; φ = 0) + Fc(ξ ; φ = π/2)]/2 from Eqs. (9) and (17) at ny = 1, for the generalized 
measurement with K = 4 operators.
formation processing task. In practice here also the temperature 
will have to be limited before it can cause damage to the quantum 
system being estimated.

4. Parameter-independent characterization

A significant aspect in the estimation task is that the value of 
the Fisher information Fc(ξ) and the occurrence of its three acces-
sible regimes are usually dependent on the value or at least the 
range of the unknown phase ξ to be estimated. This is a com-
mon property for parameter estimation, where the performance 
and its conditions of optimality may depend on the value or range 
of the parameter to be estimated, and this is true also for quan-
tum estimation [41,40,39]. It is in general helpful to have some 
prior appreciation of this dependence with ξ , in order to gain bet-
ter control on the estimation process operating in the presence 
of an unknown ξ . Below, we demonstrate that the nonmonotonic 
regimes of evolution of the Fisher information with the temper-
ature T are robustly preserved in relevant conditions concerning 
the parameter ξ . Here we have a dependence in ξ of Fc(ξ) from 
Eqs. (6)–(8) placed in Eq. (4), and a dependence in ξ of αc in 
Eq. (12) to control the three regimes. This dependence in ξ can 
be illustrated with a measurement vector �ω placed at φ = π/2, so 
as to yield with Eqs. (6)–(8) in Eq. (4),

Fc(ξ ;φ = π/2)

= (1 − γ ) cos2(ξ)
[
1 − (

1 − √
1 − γ

)
n2

y

]2

1 −
(√

1 − γ sin(ξ)
[
1 − (

1 − √
1 − γ

)
n2

y
] − γ ny(2p − 1)

)2
,

(15)
to be contrasted with Eq. (9) valid at φ = 0. And in this case φ =
π/2, the three regimes are controlled in Eqs. (11)–(12) by

αc =
√

1 − γ

γ
sin(ξ)

[
1

ny
− (

1 − √
1 − γ

)
ny

]
, (16)

relative to the interval [0, 1]. Both Eqs. (15) and (16) explicitly 
manifest the dependence in ξ . This can be visualized in Fig. 3
which displays in the plane (ξ, ny) the three domains of evolu-
tion of the Fisher information Fc(ξ) with the temperature T , as 
controlled by αc of Eq. (16), this at two values of the damping γ .

Fig. 3 demonstrates how the three regimes of evolution of the 
Fisher information Fc(ξ) with the temperature T are preserved 
over broad conditions, especially involving the unknown phase ξ , 
and how they are crossed by varying the conditions. In addition, 
Fig. 4(A) represents the Fisher information Fc(ξ) as a function of 
the phase angle ξ ∈ [−π, π ] in the rotation around an axis �n at 
ny = 1, when Eq. (15) reduces to

Fc(ξ ;φ = π/2,ny = 1) = (1 − γ )2 cos2(ξ)

1 − [
(1 − γ ) sin(ξ) − γ (2p − 1)

]2
.

(17)

The thermal noise in Fig. 4(A) has a damping γ = 0.4 and three 
temperatures T are tested. In these conditions of Fig. 4(A), the 
three regimes are governed from Eq. (16) by αc =
(γ −1 − 1) sin(ξ) = 1.5 sin(ξ). For ξ a critical value results as 
ξc = arcsin(1/1.5) ≈ 0.23π realizing αc = 1. For ξ ∈ [−π, 0], then 
αc ≤ 0 sets the regime of a decreasing Fc(ξ) with increasing T , 
marked as the region (1) in Fig. 4(A). For ξ ∈ [αc, π − αc], then 
αc ≥ 1 sets the regime of an increasing Fc(ξ) with increasing T , 
marked as the region (3) in Fig. 4(A). For ξ elsewhere, then 
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Fig. 5. Fisher information Fc(ξ ; φ = π/2) from Eq. (15) after averaging over the phase ξ , as a function of the noise temperature T ; with ny = 1 (solid lines), ny = 0.95
(dashed lines), ny = 0.9 (dotted lines). The circles (◦) are the asymptotic values at T = ∞. Two panels show the damping γ = 0.4 and γ = 0.5.
αc ∈ ]0, 1[ sets the regime of an antiresonant Fc(ξ) with T , marked 
as the region (2) in Fig. 4(A).

Fig. 4(A) as well as Fig. 3 manifest the dependence with ξ of 
the values of the Fisher information Fc(ξ) and of its three regimes 
of evolution. In general, Eq. (6) is also

�ωA
(�n ×�r1

) = √
1 − γ

(
− cos(φ) sin(ξ)

+ [
1 − (

1 − √
1 − γ

)
n2

y

]
sin(φ) cos(ξ)

)
, (18)

so that for any ny , i.e. any rotation axis �n, and any orientation φ of 
the measurement vector �ω, there always exists a phase ξ realizing 
�ωA

(�n ×�r1
) = 0 and in this way achieving a vanishing Fisher infor-

mation Fc(ξ) in Eq. (4). This is accomplished from Eq. (18) by ξ

solution to tan(ξ) = [
1 − (

1 − √
1 − γ

)
n2

y

]
tan(φ) which always 

exists; moreover for ξ ∈ ]−π, π ] there always exist two such solu-
tions separated by π . These two solutions generally form two ze-
ros of Fc(ξ), except in the special configuration (φ = π/2, ny = 1,

p = 1) where the two solutions are ξ = ±π/2 but since the de-
nominator of Fc(ξ) reduced to Eq. (17) also vanishes at ξ = −π/2, 
only ξ = π/2 forms a zero of Fc(ξ) here. Such a vanishing Fisher 
information means that, for any rotation axis �n and any measure-
ment vector �ω, there always exist generally two (seldom, one) 
values of ξ ∈ ]−π, π ] where the measurement is completely inop-
erative for estimating such ξ . For instance, at φ = π/2, the Fisher 
information Fc(ξ) of Eq. (15) generally goes to zero at ξ = ±π/2, 
except ξ = −π/2 in the special configuration (ny = 1, p = 1) from 
Eq. (17) where it goes to 1 − γ , as visible in Fig. 4(A). Yet, as we 
next explain, there is a possibility of avoiding such inoperative con-
ditions where the Fisher information Fc(ξ) vanishes.

As understandable from Fig. 1, in the plane orthogonal to the 
rotation axis �n, the measurement vector �ω with orientation φ

somehow has to track the unknown rotation angle ξ for estima-
tion. As illustrated in Fig. 4(A), it is usually better for efficient 
estimation to have φ and ξ separated by ±π/2 rather than by 0
or π ; but since ξ is unknown, any fixed φ will usually lead 
to an estimation performance Fc(ξ) varying with ξ ; and as ex-
plained above, for any φ there always exist values of ξ where 
Fc(ξ) vanishes. For better tracking of ξ , instead of using a sin-
gle unit vector �ω defining a von Neumann measurement, we have 
the faculty to use two such unit vectors �ω1 and �ω2 to define 
a generalized measurement with K = 4 measurement operators (
I2 ± �ω1 · �σ )

/4 and 
(
I2 ± �ω2 · �σ )

/4. Based on Eq. (3), the over-
all Fisher information of such a generalized measurement is sim-
ply the average Fc(ξ) = [Fc(ξ ; �ω1) + Fc(ξ ; �ω2)]/2, where Fc(ξ ; �ω1)

and Fc(ξ ; �ω2) are the two individual Fisher informations given by 
Eq. (4) at �ω1 and �ω2. Moreover, for efficient tracking of ξ it is 
interesting to take �ω1 and �ω2 at right angle in the plane orthogo-
nal to the rotation axis �n, ensuring that Fc(ξ ; �ω1) and Fc(ξ ; �ω2), 
and thus the overall Fc(ξ), do not vanish at the same ξ so as 
to keep the estimation operative for any ξ . Placing �ω1 at φ = 0
and �ω2 at φ = π/2 yields in Eq. (3) the overall Fisher information 
Fc(ξ) = [Fc(ξ ; φ = 0) + Fc(ξ ; φ = π/2)]/2 issued from Eq. (9) and 
Eq. (15), and this Fc(ξ) is depicted in Fig. 4(B) in some illustrative 
conditions.

As expected, the Fisher information Fc(ξ) of Fig. 4(B) achieved 
by the generalized measurement with K = 4 operators, never van-
ishes (as opposed to that of Fig. 4(A)), and in this way maintains 
operative efficiency for estimation for any phase ξ . Also, since 
Fc(ξ ; φ = 0) from Eq. (9) is independent of the noise tempera-
ture T , this Fisher information Fc(ξ) of Fig. 4(B) inherits from 
Fc(ξ ; φ = π/2) of Fig. 4(A) the same dependence with the noise 
temperature T . In this respect, Fc(ξ) of Fig. 4(B) has access to the 
three regimes of dependence with T , as shown in Fig. 4(B).

It is even possible to completely eliminate the dependence in 
ξ of the characterization of the performance in estimation. This 
can be obtained by performing an averaging of the Fisher infor-
mation Fc(ξ) over the phase angle ξ considered uniform over 
] −π, π ]. This characterizes an average performance, over repeated 
estimation experiments involving values of ξ uniformly covering 
] − π, π ]. Fig. 5 shows such a ξ -averaged Fisher information re-
sulting from Fc(ξ) of Eq. (15). In general, depending on the ro-
tation axis �n, on the damping γ and on the measurement vector 
�ω, the three regimes of evolution with the noise temperature T
are still accessible for such a ξ -averaged Fisher information. Fig. 5
specifically shows conditions of an antiresonant regime, with the 
ξ -averaged Fisher information which becomes minimal at a crit-
ical noise temperature Tc , with Tc occurring around 1 in Fig. 5, 
although the precise value of Tc is usually dependent on �n and 
on γ as visible in Fig. 5. Around such a critical temperature Tc , 
the thermal noise is maximally detrimental with an estimation ef-
ficacy which is at a minimum. It is therefore preferable, when such 
Tc is identified, to operate the process at lower or at higher tem-
peratures, whenever possible.

In definite conditions fixing the rotation axis �n, the damping γ
and the measurement vector �ω, based on such a ξ -averaged Fisher 
information as in Fig. 5 providing a meaningful performance met-
ric independent of the phase ξ to be estimated, we are provided 
with an intrinsic appreciation of the effect of the noise temper-
ature T , bearing no dependence on the unknown phase ξ . This 
may serve to devise an optimized setting for the estimation pro-
cess, having a general usefulness not tied to some specific value or 
range of the phase ξ , possibly by increasing the noise temperature 
if appropriate. For instance, the setting of Fig. 5 incites to avoid 
operating around the critical temperature Tc ≈ 1 and to adjust to 
a higher (or lower) temperature if accessible.

The nonmonotonic evolution of the ξ -averaged performance is 
also preserved with the generalized measurement of K = 4 op-
erators examined in Fig. 4(B). This is illustrated in Fig. 6 which 
represents the result of averaging over ξ the Fisher information 



N. Gillard et al. / Physics Letters A 381 (2017) 2621–2628 2627
Fig. 6. Fisher information Fc(ξ) = [Fc(ξ ; φ = 0) + Fc(ξ ; φ = π/2)]/2 from Eqs. (9), 
(15) and Fig. 4(B) after averaging over the phase ξ , as a function of the noise tem-
perature T ; with damping γ = 0.4 and rotation axis ny = 1 (solid line), ny = 0.95
(dashed line), ny = 0.9 (dotted line). The circles (◦) are the asymptotic values at 
T = ∞.

Fc(ξ) = [Fc(ξ ; φ = 0) + Fc(ξ ; φ = π/2)]/2 from Eq. (9) and Eq. (15)
also displayed in Fig. 4(B) at ny = 1. The conditions of Fig. 6, for 
the rotation axis �n and noise damping γ , specifically illustrate the 
antiresonant regime where high noise temperatures are generally 
preferable.

The conditions of Fig. 6, as well as those of Fig. 5, demonstrate 
that the performance assessed by the ξ -averaged Fisher informa-
tion, which is made independent of the unknown parameter ξ , 
still has access to the nonmonotonic regimes of evolution with 
the noise temperature T . This illustrates the possibility of nontriv-
ial behavior of the quantum noise or decoherence, which is not 
uniformly more detrimental as its amount increases. And based 
on this recognition, one may have the option to avoid detrimental 
temperatures and enhance the performance by adjusting to higher 
(or lower) temperatures.

5. Discussion

We have considered the fundamental information processing 
task consisting in estimating the phase ξ of a qubit state. After 
implementation of a quantum measurement, the estimation per-
formance is evaluated by the classical Fisher information Fc(ξ)

which determines the best performance limiting any estimator and 
achievable by the maximum likelihood estimator. The estimation 
process was analyzed in the presence of decoherence represented 
by a quantum thermal noise at an arbitrary temperature T . We 
have shown the possibility of nontrivial behaviors of decoher-
ence, manifested by an estimation performance Fc(ξ) which does 
not necessarily degrade uniformly as the noise temperature T in-
creases. Especially, two unusual regimes of evolution of the perfor-
mance have been shown possible. In definite conditions, there ex-
ists a finite noise temperature specially detrimental to estimation 
where the performance antiresonates at a minimum, with smaller 
or larger noise which is always preferable. Such regime of antireso-
nant evolution points out the existence of finite temperature values 
or ranges that should be avoided for efficient estimation. In other 
conditions, it is found that increasing the noise temperature always 
improves the performance for estimation. Uncovering such coun-
terintuitive possibilities demonstrates some sophisticated role of 
decoherence, which can turn beneficial to information processing, 
leading to unusual means of enhancing performance by increasing 
decoherence.

To summarize the conditions enabling such nonmonotonic evo-
lutions of the performance, these can be grounded in the form 
of the Fisher information Fc(ξ) of Eq. (4) with its built-in de-
pendence with the noise parameter �c carrying the influence of 
the temperature T . From Eq. (4), the evolution of the Fisher in-
formation Fc(ξ) with T is controlled by the scalar [ �ω(A�r1 + �c )]2
occurring in the denominator. If this scalar can increase with the 
temperature T then so will the Fisher information Fc(ξ). When T
increases from 0 to ∞, then p monotonically decreases from 1 to 
1/2 and ‖�c ‖ monotonically decreases from γ to 0. When �ωA�r1(ξ)

and �ω �c have the same sign, then a decrease of ‖�c ‖ decreases 
[ �ω(A�r1 + �c )]2 and therefore decreases Fc(ξ). This is the common 
regime where the performance Fc(ξ) decreases as the noise tem-
perature T is raised. On the contrary, when �ωA�r1(ξ) and �ω �c have 
opposite signs, then a decrease of ‖�c ‖ increases [ �ω(A�r1 +�c )]2 and 
therefore increases Fc(ξ). This is the unusual regime where the 
performance Fc(ξ) increases as the noise temperature T is raised. 
Geometrically, �ωA�r1(ξ) and �ω �c have opposite signs when one of 
the two vectors A�r1(ξ) or �c makes an acute angle with �ω and 
the other an obtuse angle. This geometric configuration depends in 
conjunction on the phase angle ξ and rotation axis �n via �r1(ξ), on 
the quantum measurement via �ω, on the noise damping γ via A, 
and it can be controlled by the temperature via �c. A detailed anal-
ysis of such conditions has been worked out here, showing the 
possibility of favorable outcome of raising the temperature.

In the general noise model of Eq. (1), the matrix A is always 
contractive, ensuring ‖A�r1 ‖ ≤ ‖�r1 ‖ for any �r1, otherwise for pure 
states with ‖�r1 ‖ = 1 there could exist some �r1 yielding ‖A�r1 ‖ > 1
which is not allowed. A quantum noise with �c ≡ �0 in Eq. (1) is 
a unital noise, such as the depolarizing noise or Pauli noises [32,
34]. As the level of a unital noise increases, the contraction gets 
more pronounced, and in such a process the Fisher information 
Fc(ξ) of Eq. (4) never increases. Only a nonunital noise with �c �≡ �0
as the thermal noise, can lead to an increase of Fc(ξ) of Eq. (4)
by increasing the noise, as it occurs by raising the temperature T
here. Therefore, when measuring a spin observable � = �ω · �σ as 
in Eq. (4), a unital noise cannot lead to a nonmonotonic evolution 
of the Fisher information Fc(ξ) in Eq. (4), but Fc(ξ) will mono-
tonically decrease as the noise level increases. A nonunital noise 
is required, as the thermal noise, for nonmonotonic evolutions 
of Fc(ξ) in Eq. (4) and stochastic resonance or antiresonance ef-
fects. In essence the effect of increasing Fisher information can be 
described in geometric terms. The rotated Bloch vector �r1(ξ) con-
veying the unknown phase ξ , after the geometric transformation 
�r1(ξ) → A�r1(ξ) +�c = �rξ by the noise, ends up in a position relative 
to the spin-measurement vector �ω more favorable to estimation.

Beyond spin observables, with generalized measurements as in 
Eq. (3), the geometric situation gets more involved, with possibly 
broader noise conditions to entail stochastic resonance or antires-
onance effects. In this way, further exploration of information pro-
cessing with beneficial action of quantum noise or decoherence 
can be extended in several directions. For instance, extensions can 
be made to other quantum noise models, or for other information 
processing tasks. This can be accomplished on quantum systems 
of larger dimension, although the geometric analysis tractable here 
in Bloch representation, may be more difficult to handle in dimen-
sion higher than that of the two-dimensional qubit, which remains 
a fundamental reference for quantum information.
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