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Threshold neural networks are highly useful in engineering applications due to their ease of hardware 
implementation and low computational complexity. However, such threshold networks have non-
differentiable activation functions and therefore cannot be trained by standard gradient-based algorithms. 
To circumvent this limitation, here we propose a hybrid training algorithm for threshold neural networks. 
The proposed hybrid training algorithm has two distinguishing features: the structural transformation of 
the hidden layer enables threshold networks to benefit from a noise-boosted learning capability via 
adaptive stochastic resonance (ASR), and by using the fast learning algorithm of the extreme learning 
machine (ELM) suitable generalization performance ensues for the threshold networks. Experimental 
results on regression and on multiclass classification demonstrate the realizability and practical efficiency 
of the proposed hybrid training algorithm, thereby demonstrating the beneficial role of artificial noise 
injection in threshold neural networks.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Due to low-consumption and the ease of hardware implemen-
tation, the neural network with threshold activation functions, 
referred to as a threshold network, is highly useful in practical 
engineering problems [1–10]. For instance, a number of multi-
threshold quantizers are usually deployed over a sensing field to 
compose a wireless sensor network in distributed estimation prob-
lems, whereby the analog observation is compressed into low-
precision bit information in the sense of the occupied bandwidth 
[11–14]. However, for training threshold networks, the commonly 
used backpropagation algorithm of artificial neural networks is 
not directly applicable as the threshold activation functions are 
non-differentiable or with zero gradients [1–10]. Thus, alternative 
methods to train threshold networks have attracted the attention 
of researchers.

In order to train a threshold network using the gradient-descent 
based backpropagation algorithm, a series of studies have been 
carried out by approximating the threshold neuron to a smoothed 
activation function [1,3,4], randomizing network weights with a 
smooth distribution [2], computing gradients of real-valued neu-
rons in backpropagation but performing forward propagation with 
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binary neurons [6,7], etc. Recently, it is interesting to note that 
noise injection has become a useful alternative strategy in up-
dating the weights of such threshold networks [6,8–11,15–17]. By 
injecting artificial noise into the saturated regime of the activation 
function [6] or smoothing the input-output characteristic of hard-
limiting neurons with an ensemble of mutually independent noise 
components [8–11,15], enabled a proper definition of the gradients 
in non-differentiable threshold networks. Then, the gradient-based 
backpropagation algorithm can successfully perform in finely opti-
mizing threshold networks in the training phase. Of special interest 
is the noise-modulated threshold network proposed by Ikemoto 
et al. [8] as an application of the suprathreshold stochastic res-
onance mechanism [18–21,27,34], wherein an optimal amount of 
deliberately added noise that facilitates threshold network learning 
is demonstrated to be non-zero and the beneficial role of injected 
noise to the generalization of the threshold network is manifested.

Beyond exploring the gradient-descent based learning algo-
rithm for training threshold networks [1–4,6–10,15], another inter-
esting learning method for single hidden layer feedforward neural 
networks named the extreme learning machine (ELM) [5,8,22,23]
can be directly applied to train threshold networks with good 
generalization performance [5]. Due to the binary output of the 
threshold neuron, the hidden layer output matrix is very likely 
non-full column rank. This unstable shortcoming of the ELM al-
gorithm can be resettled by introducing a regularization term of 
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the norm of weights [22,23]. However, it is noted that the thresh-
old network trained by the ELM algorithm requires a large num-
ber of threshold activation functions for attaining improved gen-
eralization performance [5]. Moreover, the required large num-
ber of threshold activation functions brings an equivalent order 
of the number of weight coefficients, and the overfitting of the 
threshold network may occur. Especially, both the gradient-descent 
based learning algorithms and the ELM approach have been imple-
mented in the noise-modulated threshold network, and the latter 
is demonstrated to provide improved generalization performance 
at an extremely fast learning speed [8]. However, the determi-
nation of the optimal noise level is manually but not adaptively 
searched, the adaptive learning ability of the noise-boosted neuron 
is not fully appreciated.

In this paper, we propose a hybrid method for training thresh-
old networks by combining the fast learning feature of the ELM 
[22,23] and the noise-boosted learning capability of adaptive 
stochastic resonance (ASR) [24,25]. More specifically, by injecting 
an ensemble of noise components into threshold activation func-
tions, the noise-modulated threshold network is endowed with a 
non-zero gradient for the gradient-descent updating rule in the 
training phase. Interestingly, the noise level treated as a network 
parameter can be adaptively searched, and the converged non-zero 
noise level that results clearly confirms the learning capability of 
ASR for training and testing threshold networks in practical appli-
cations. In particular, in the training phase, the input weights of 
the noise-modulated threshold network are randomly chosen and 
the output weights are determined as the least-squares solution by 
the ELM algorithm. Thus, this novel hybrid method not only finely 
optimizes weights in an extremely fast way, but also can adaptively 
search the optimal non-zero noise level that achieves the beneficial 
role of noise injection in the designed threshold networks. Com-
pared with implementations of straight substituting the sigmoid 
function with a large gain parameter for the threshold function [3]
and directly training the threshold networks by the ELM algorithm 
[5], the regression and classification results demonstrate improved 
generalization performance of the threshold network achieved by 
the proposed hybrid method. These comparison results also sug-
gest an interesting strategy for training neural networks with a 
much wider family of non-differentiable or discrete-valued activa-
tion functions in real-world applications.

2. Results of the hybrid training algorithm for threshold 
networks

Let us consider a feedforward neural network with its size N ×
K × M , where a N × 1 dimensional data vector x received in the 
input layer is applied to K neurons in the hidden layer, and then 
mapped into a M × 1 dimensional output vector y in the output 
layer. The K × N weight matrix W connects the hidden neurons 
to the input vector x, the K × 1 bias vector b contains K biases bk
for hidden neurons, and the K × M weight matrix U connects the 
output layer to the hidden one.

2.1. Motivated example

We here focus on the k-th hidden neuron in the hidden layer as 
the threshold activation function [8–10,15,18,19] or the McCulloch-
Pitts neuron [26] given by

φk(u) =
{

1, u ≥ θk,

0, u < θk,
(1)

with the threshold parameter θk for k = 1, 2, · · · , K . For P ex-
amples of the training set {x(p), t(p)}P and the linear activation 
p=1

2

functions in the output layer, the threshold network yields P out-
put vectors

y(p) = h(p)U , (2)

for p = 1, 2, · · · , P . For the p-th example of {x(p), t(p)}P
p=1, the cor-

responding 1 × K dimensional output vector of the hidden layer 
can be written as

h(p) = [φ1(v1),φ2(v2), · · · , φK (v K )], (3)

where vk = [W ](k)x(p) + bk is the local field of k-th neuron and 
[W ](k) denotes the k-th row of the input weight matrix W . The 
ELM algorithm [5] can be directly applied to the threshold network 
by assigning an arbitrary input weight matrix W and an arbitrary 
bias vector b to calculate the hidden layer output matrix

H = [h(1)�,h(2)�, · · · ,h(P )�]�. (4)

Since the bias bk plays an equivalent role of the threshold pa-
rameter θk for the k-th threshold neuron, here θk can be set 
to zero for simplicity. Letting the network output matrix Y =
[y(1)�, y(2)�, · · · , y(P )�]� = H U and the matrix T = [t(1)�, t(2)�,

· · · , t(P )�]� , the ELM algorithm finds a least-squares solution of 
the output weight matrix as

U = H †T (5)

to minimize the cost function of the error energy

J = ‖Y −T ‖2 = ‖H U−T ‖2, (6)

where ‖ · ‖ denotes the Euclidean norm [5,8,22,23]. Here, aiming to 
avoid a singular matrix H� H , the generalized inverse matrix H † =
(H� H + λI)−1 H� (N > K ) or H † = H�(H H� + λI)−1 (N < K ) 
with a small positive constant 0 < λ � 1 and the identity matrix I
[5,22,23].

For instance, the approximation capability of the threshold 
network is evaluated on a benchmark unidimensional function 
[5,22,23]

f (x) =
{

sin(x)
x , x �= 0,

1, x = 0.
(7)

The training set {x(p), t(p)}P
p=1 is generated equally spaced in the 

interval [−10, 10] with the length of data P = 41. Here, for refer-
ence, the maximum difference of the target function in the interval 
[a, b] is defined as � = max f (x) − min f (x), ∀x ∈ [a, b]. For the 
unidimensional target function of Eq. (7) in the interval [−10, 10], 
the maximum difference is given by � = 1.2172.

It is shown in Fig. 1 (a) that, upon increasing the hidden neu-
ron number K , the root-mean-square (RMS) of the error energy √
J /� decreases monotonically, and each point denotes a statisti-

cal averaged value for 100 trials of the randomly selected W and 
b. However, it is noted in Fig. 1 (a) that 

√
J /� is sensitive to the 

distributed intervals of the weight matrix W and the bias vector b. 
For instance, when W and b are both uniformly distributed in the 
range of [0, 1], the positive input x(p) ∈ [0, 10] will lead to the pos-
itive local field W x(p) +b > 0. Then the hidden layer output vector 
h(p) = φ[W x(p) + b] becomes the 1 × K dimensional constant row 
vector 1 = [1, 1, · · · , 1]. Thus, all network outputs y(p) = h(p)U in 
Eq. (2) are equal to the sum of the K × 1 weight vector of U , as 
shown in Fig. 1 (b) (�). Therefore, the generalized performance of 
the threshold network trained by the ELM algorithm heavily de-
pends on the “appropriately” selected W and b. Moreover, even 
for the “appropriately” selected W and b that uniformly distribute 
in the range of [−1, 1], √J /� has an unsatisfactory statistical av-
eraged value 0.1160 for a very large number K = 500 of threshold 
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Fig. 1. (a) Statistical averaged values of √J /� obtained by the ELM algorithm and the proposed hybrid Algorithm 1 versus the hidden neuron number K for different 
distributed intervals of the weight matrix W and the bias vector b. (b) Approximation (blue dashed line) of the target function of Eq. (7) obtained by the ELM algorithm for 
the threshold networks with the size 1 × 500 × 1. The L = 41 training data (∗) sampled from the target function of Eq. (7) are also plotted. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)
neurons. An example of the approximation (◦) of the target func-
tion of Eq. (7) obtained by the trained threshold neural network is 
shown in Fig. 1 (b). It is seen in Fig. 1 (b) that, for the 1 × 500 × 1
trained threshold network, the difference between the approxima-
tion (◦) and the training data (∗) of Eq. (7) is clearly distinct in 
the bounded ranges delineated by the two dashed circles. Although 
the ELM algorithm can learn much faster than the traditional back-
propagation method for training threshold networks, the improved 
approximation capability of threshold network does need a large 
network size and the finely selected random weight matrix W and 
bias vector b.

2.2. Hybrid training method of the noise-modulated threshold network

In order to further improve the generalization performance of 
the threshold network, we here propose a novel hybrid training 
method that combines the efficiency of ELM and the benefit of 
injecting noise for smoothing threshold neurons. In the training 
phase, each neuron in the hidden layer of the threshold network is 
calculated as a smooth activation function

ψk = Eη[φk(vk + η)] =
∞∫

−∞
φ(vk + η) fη(η)dη

=
∞∫

θk−vk
σ

1√
2π

e− x2
2 dx, (8)

where the artificially injected Gaussian noise is considered and 
has the probability density function (PDF) fη(η) = exp(−η2/2σ 2)/√

2πσ 2 with the learnable noise level σ > 0.
It is seen from Eq. (8) that the noise-smoothed activation func-

tion ψk is differentiable and varies from zero to unity. Then, 
for P training examples, we have P hidden layer output vectors 
h̃

(p) = [ψ(p)
1 , ψ(p)

2 , · · · , ψ(p)
K ] and the hidden layer output matrix 

H̃ = [(̃h
(1)

)�, (̃h
(2)

)�, · · · , (̃h
(P )

)�]� . Furthermore, we regard the 
noise level σ as a learnable network parameter as well as the 
threshold parameter θk . Then, we propose a novel hybrid train-
ing algorithm that combines the fast ELM algorithm for solving 
the output weight matrix U and the powerful learning ability of 
the noise-smoothed activation function ψk . For clarity, a detailed 
description of the proposed training method is presented in Algo-
rithm 1. It is noted in Algorithm 1 that, for each training epoch 

 = 1, 2, · · · , L, the partial derivative of the error energy J (
) with 
respect to the noise level σ can be expressed as
3

Algorithm 1: Hybrid training algorithm for threshold net-
works.

Input: Training set {x(p), t(p)}P
p=1, initial Gaussian noise level σ(0), 

initial threshold parameter vector θ(0), learning rates α and 
β , epoch number L, uniform random matrix W and bias 
vector b.

Output: weight matrix U , noise level σ .
1 for training epoch 
 = 1 → L do
2 ELM learning:

3 H̃(
) = {[̃h(1)
(
)]�, [̃h(2)

(
)]�, · · · , [̃h(P )
(
)]�};

4 U (
) ← H̃
†
(
)T ;

5 ASR learning:
6 J (
) ← ‖H̃(
)U (
) − T ‖2;

7 σ(
) ← σ(
 − 1) − α
∂J (
)

∂σ

∣∣∣
σ=σ(
−1)

;

8 θ(
) ← θ(
 − 1) − β
∂J (
)

∂θ

∣∣∣
θ=θ(
−1)

;

9 end

∂J (
)

∂σ
=

K∑
k=1

M∑
m=1

√
2

π

[
ym(
) − tm

] [U ]km
(θk − vk)

σ 2
e
− (θk−vk)2

2σ2 ,

(9)

where [U ]km denotes the weight connecting the neuron m in the 
output layer with the k-th neuron ψk in the hidden layer. Simi-
larly, the partial derivative of J (
) with respect to the threshold 
parameter θk is given by

∂J (
)

∂θk
=

M∑
m=1

−
√

2

π

[
ym(
) − tm

] [U ]km

σ
e
− (θk−vk)2

2σ2 . (10)

Using Eqs. (9) and (10), the hybrid training Algorithm 1 can be 
implemented for training the noise-modulated threshold network 
with the smoothed function ψk defined in Eq. (8).

2.3. Function approximation

For comparison, using the proposed hybrid training Algo-
rithm 1, 

√
J /� versus the hidden neuron number K is also 

plotted in Fig. 1 (a) (�). It is seen in Fig. 1 (a) that the threshold 
network with a small size of 1 × 25 × 1 can attain the statisti-
cal averaged value of 

√
J /� ≈ 0.1095, which is improved over √

J /� ≈ 0.1160 achieved by the threshold network (1 × 500 × 1) 
directly trained by the ELM algorithm. An example of the approx-
imation of the target function of Eq. (7) obtained by the trained 
1 × 25 × 1 threshold neural network is illustrated in Fig. 2 (a). It 
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Fig. 2. (a) Approximation (blue dashed line) of the target function in Eq. (7) obtained by the trained threshold neural network via the hybrid Algorithm 1. The L = 41 training 
data (∗) sampled from the target function of Eq. (7) are also plotted. (b) The √J /� and (c) the noise level σ/� versus the epoch number of training. Here, the learning 
rates α = β = 1, W and b are uniformly distributed in the interval [−1, 1]. Two initial values of the noise level σ(0)/� = 0.8215 (�) and 0.4108 (�) are considered. (d) 
Outputs (blue solid line) of the trained threshold network for approximating the target function of Eq. (7). The testing data (◦) of Eq. (7) are also plotted.
is seen in Fig. 2 (a) that the trained threshold neural network as-
sisted by the addition of noise performs well for approximating 
the training set sampled from the target unidimensional function 
of Eq. (7).

In Figs. 2 (b) and (c), upon increasing the training epoch num-
ber, both 

√
J /� and the noise level σ/� first greatly decrease 

and then reach convergence effectively. Interestingly, two initial 
values of the noise level σ(0)/� = 0.8215 (�) and 0.4108 (�) are 
considered, and the corresponding converged noise levels σ/� =
0.1832 and 0.2163 are adaptively found by the proposed hybrid 
Algorithm 1, respectively. Correspondingly, the local convergence 
of 

√
J /� also approaches different small values, as shown in 

Fig. 2 (b). This result indicates the error energy J is a noncon-
vex function of the network parameters containing the noise level 
σ and weights and exhibiting several local minima.

After 300 training epochs illustrated in Figs. 2 (b) and (c), the 
randomly assigned weight matrix W and the bias vector b, the 
converged weight matrix U , threshold parameters θk and the (lo-
cal) optimal noise level σ define the trained threshold network. 
However, in the testing phase, the noise-smoothed activation func-
tion ψk is a limiting expression with respect to the injected noise 
PDF and needs to be asymptotically implemented by injecting a 
sufficiently large number of mutually independent noise compo-
nents into the threshold neuron of Eq. (1). In practice, since the 
injected noise is stationary, then we can artificially manufacture a 
sufficiently large number T of mutually independent noise com-
ponents and numerically simulate the trained threshold network 
for T trials. The size of the threshold network is the same as 
in the training phase. In line with this, we can treat the average 
value 

∑T
t=1 y(p)

t /T = (
∑T

t=1 h(p)
t /T )U ≈ h(p)U of the T experimen-

tal outputs of the network as the approximation of the target func-
tion in Eq. (7). Here, the subscript t denotes the t-th trial of the 
network output.
4

An illustrative example of the approximation (blue solid line) of 
the 1 × 25 × 1 threshold network is plotted in Fig. 2 (d) by averag-
ing T = 104 times of experimental results of the network outputs. 
For comparison, the testing points (◦) are also shown in Fig. 2 (d), 
and the corresponding 

√
J /� = 0.1115 for the converged Gaus-

sian noise level σ/� = 0.1832 in testing phase. It is noted that, 
as the length of testing data is N = 81, 

√
J /� = 0.1115 is larger 

than the result of 
√
J /� ≈ 0.1095 obtained by N = 41 train-

ing data. By dividing the data length N into the error energy J , √
J /N/� ∼ 0.01 in both training and testing phases represents 

the RMS of mean square error. It is seen in Fig. 2 (d) that the 
trained threshold neural network assisted by the addition of noise 
performs well on the test for approximating the target unidimen-
sional function of Eq. (7). The injection of noise into the threshold 
activation function does improve the learning capacity of threshold 
networks.

Furthermore, using the proposed hybrid training Algorithm 1, 
the non-zero value of the converged σ shows the general useful-
ness of injecting noise in the threshold network, and the occur-
rence of the ASR effect is evidently demonstrated. For visualizing 
the ASR effect, Figs. 3 (a) and (b) illustratively show the learning 
curve of 

√
J /� as a function of the noise level σ and the thresh-

old parameter θ16 of the 16-th hidden neuron. It is clearly seen 
in Figs. 3 (a) and (b) that the local optima of the noise level σ
obtained by the adaptive learning Algorithm 1 in the “resonance” 
domain of the landscape of 

√
J /� is really not zero. This also in-

dicates that noise injection becomes an essential composition of 
the designed threshold neural network.

Furthermore, we also test a two-dimensional function

f (x1, x2) = 3(1 − x1)
2e−x2

1−(x2+1)2 − 10
( x1

5
− x3

1 − x5
2

)
e−x2

1−x2
2

− 1
e−(x1+1)2−x2

2 . (11)

3
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Fig. 3. (a) Landscape surface of √J /� and (b) its contour in the parameter space of the noise level σ and the threshold parameter θ16 of the 16-th hidden neuron. The 
learning curve of √J /� (�) versus σ and θ16 is also plotted. Other parameters are in accordance with Fig. 2.

Fig. 4. (a) Network outputs y of the trained neural network via the hybrid Algorithm 1 as the approximation (patched surface) to the 32 × 32 testing data (�) of the 
two-dimensional function f (x1, x2) in Eq. (11) in the range [−3, 3] × [−3, 3]. (b) The corresponding relative error |y − f (x1, x2)|/� between the threshold network output 
and the testing data.
The 16 × 16 training set is equally spaced in the range [−3, 3] ×
[−3, 3], and the maximum difference is � = 13.4628 for the tar-
get function in Eq. (11). Using the proposed learning Algorithm 1
for training a 2 × 100 × 1 threshold network, 

√
J /� = 0.1082

and the converged noise level ση/� = 0.0858 after 500 training 
epochs. Then, for 32 ×32 testing set of Eq. (11), Fig. 4 (a) illustrates 
the outputs of the trained threshold network as the approxima-
tion (patched surface) of the two-dimensional function f (x1, x2) in 
Eq. (11) in the range [−3, 3] ×[−3, 3]. √J /� = 0.1614 is obtained 
by T = 104 times of experimental results of the threshold network 
with its size 2 ×100 ×1. By dividing the data length N into the er-
ror energy J , the RMS of mean square error 

√
J /N/� is roughly 

equal to 0.005 in both training and testing phases. The relative 
errors |y − f (x1, x2)|/� between the threshold network output y
and the testing data are also plotted in Fig. 4 (b). The maximum 
relative error max |y − f (x1, x2)|/� = 0.0170 is obtained. For com-
parison, the threshold network with the same size 2 × 100 × 1
trained by the ELM algorithm has 

√
J /� = 0.9096 for 16 × 16

training set of Eq. (11). For 32 ×32 testing set of Eq. (11), 
√
J /� =

1.9523 for the trained threshold network by the ELM algorithm, 
and a large relative error max |y − f (x1, x2)|/� = 0.2492 between 
the network output and the testing data is obtained. Aiming to 
reach the same level of 

√
J /� = 0.1082 in the testing phase, the 

threshold network with a relatively large size 2 × 1200 × 1 trained 
by the ELM algorithm is required. Therefore, the proposed learn-
ing Algorithm 1 can greatly improve the threshold network with a 
small size to fulfill the accuracy requirement for function approxi-
mation.

2.4. Real world data set of the function regression

We further validate the noise-modulated threshold network 
trained by the proposed Algorithm 1 in five real world data sets. 
5

The N × 50 × 1 threshold network is employed for the real-world 
N-dimensional data sets of Auto MPG (N = 7) [28], Housing (N =
13) [29], Airfoil noise (N = 5) [28], Wine quality (N = 11) [30] and 
QSAR fish toxicity (N = 6) [31] in a computer equipped with CPU 
of Intel Core i7-6700@3.40 Ghz and 16G RAM DDR4@2133 Mhz. 
Here, the data sets contain 198, 253, 300, 980 and 908 examples, 
respectively. Note that 50% of data is used for training, while 50%
of data is employed to test the trained threshold neural network. 
For comparison, besides directly applying the ELM to the thresh-
old network and the proposed hybrid Algorithm 1, replacing the 
threshold activation function by the sigmoid one 1/(1 + e−λx) with 
a large parameter λ = 10 in the training phase is also considered.

Table 1 lists the 
√
J /� obtained by three learning algorithms 

in training and testing phases. It is seen in Table 1 that, for 
training the threshold network by three considered algorithms, 
the proposed hybrid algorithm can achieve a smaller 

√
J /� in 

both training and testing phases. Moreover, for randomly chosen 
input weight matrix W and bias vector b (not learning in the 
training phase), the proposed hybrid Algorithm 1 is also able to 
harness the constructive role of injected noise to improve the 
learning ability of the threshold network, and the generalization 
performance of threshold network is unaffected by the randomly 
assigned W and b. Meanwhile, for inappropriately selected W
and b, the threshold network trained by the ELM algorithm will 
yield a degraded 

√
J /�. For instance, when W and b are both 

uniformly distributed in the range of [−1, 0], the threshold net-
work has a degraded training with 

√
J /� = 16.2022 and a worse 

testing with 
√
J /� = 16.6513 for the “Airfoil noise” data set. 

Under the same condition of W and b, the proposed hybrid Al-
gorithm 1 can still train the threshold network to achieve an 
improved 

√
J /� = 2.9585, and also perform well in the testing 

phase with 
√
J /� = 2.9913. Of course, the ELM algorithm runs 

extremely fast, and the proposed hybrid Algorithm 1 needs more 
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Table 1
Comparison of results of √J /� of three training algorithms for threshold networks.

Data set

√
J /� Sigmoid (λ = 10) ELM Hybrid ELM

Training Testing Training Testing Training Testing

Airfoil noise 9.9582 19.3847 3.7551 4.1532 2.6479 2.9899
Auto MPG 9.5361 16.9982 1.179 1.3984 0.9121 1.0164
Boston house prices 11.1299 18.6579 1.7283 2.3261 1.309 1.7265
Wine quality 8.8003 10.9927 6.2301 6.3571 5.8825 6.0615
QSAR fish toxicity 9.1754 14.062 2.1438 2.3669 1.8652 2.0604
Table 2
Comparison of training time of three training algorithms for threshold networks.

Data set
Time (s)

Sigmoid (λ = 10) ELM Hybrid ELM

Airfoil noise 0.2801 0.0019 0.1648
Auto MPG 0.0732 0.0015 0.0656
Boston house prices 0.1235 0.0018 0.0780
Wine quality 0.8780 0.0269 0.4286
QSAR fish toxicity 0.1545 0.0023 0.1109

time to finely optimize the noise-modulated threshold network. It 
is seen in Table 2 that the training time of the proposed hybrid al-
gorithm is found between the computing times taken by the ELM 
algorithm and the conventional backpropagation approach.

2.5. Multiclass classification

We also compare the performances of threshold networks 
trained by the three considered algorithms for multiclass classi-
fication problems. Seven real world multiclass data sets of Balance 
scale, Haberman, Wine, Iris, Data user modeling and Hayes-Roth 
are taken from UCI Machine Learning Repository [28]. The cor-
responding class features are 3, 2, 3, 3, 4, 2 and 3, respectively. 
Here, 80% of data are used for training, while 20% of data are 
employed to test the trained threshold neural network. The num-
ber of hidden neurons is K = 100. Table 3 shows the classification 
success rates of the threshold network trained by the three con-
sidered algorithms in training and testing phases, respectively. It 
is shown in Table 3 that the proposed hybrid learning algorithm, 
compared with the two other algorithms, can train the thresh-
old network with higher success rates in the training stage, and 
achieve higher testing success rates for each real world multiclass 
data set. Similarly, Table 4 indicates that the proposed hybrid al-
gorithm takes more training time than the ELM method, but less 
than the approach of replacing the threshold activation function by 
the sigmoid one in threshold networks.

3. Conclusion

Although the ELM algorithm can be directly applied to train the 
threshold network, this fast learning method suffers two limita-
tions when dealing with threshold networks with a very large size 
and the “appropriately” randomized input weight matrix and bias 
vector not learning in the training phase. By means of a beneficial 
role of noise for smoothing the threshold activation function, noise 
injection can transform the threshold network into a conventional 
neural network with differentiable activation functions. Then, the 
present paper proposes a hybrid learning algorithm that combines 
both characteristics of the fast learning rate of the ELM algorithm 
and the noise boosted capability of the ASR phenomenon. More-
over, for absolutely randomized weight matrix and bias vector, 
the proposed hybrid learning algorithm can adaptively search for 
the optimal value of noise to implement a smooth input-output 
nonlinearity of neurons, and train the noise-modulated threshold 
network to be relatively insensitive to randomized input network 
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parameters. Experimental results on regression and multiclass clas-
sification in real world data sets demonstrate that the proposed 
algorithm can optimize the threshold network with better general-
ization performance than the ELM algorithm and the conventional 
backpropagation algorithm.

This proposed hybrid learning algorithm, benefiting from the 
noise injected into the threshold activation function, can train the 
threshold network with a much better generalization performance. 
As a follow-up, some open questions remain to be further investi-
gated. For example, the search of the optimal noise level occupies 
the main training time of the threshold network via the proposed 
hybrid learning method. Thus, how to shorten the training time 
and find the optimal noise level faster are crucial problems for 
the implementation of the noise-modulated threshold network. It 
is also noted that the shallow threshold network with only one 
hidden layer is considered in this paper, and then whether the 
proposed learning algorithm can potentially be applied to more 
deeper threshold networks [7,10] remains to be examined. As the 
threshold network becomes deep, the hidden layers increase and 
the injected noise level in each hidden layer to be searched also 
increases. Improved generalization performance of deep threshold 
network with multiple injected noise sources is expected by imple-
menting the proposed hybrid learning method. In addition, when 
the trained threshold network is applied in the testing phase, a 
sufficiently large number of trials needs to be carried out and 
the same number of mutually independent noise components is 
required. Addressing the issue of heavy computation in the test-
ing phase will be a key problem to pursue. As another exten-
sion to this study, it may be of interest to further investigate the 
possibility and application of the proposed algorithm based on 
the ASR mechanism when the activation functions in neural net-
works employ a much wider family of activation functions that 
are non-differentiable or with zero gradients. The stochastic reso-
nance effect has been extensively explored in dynamical systems 
[21,24,27,32,33,35–37] and complex networks [38–42] under vari-
ous complex environments, and then the noise injection in these 
complex systems deserves to be further investigated on its adap-
tive learning capability.
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Table 3
Comparison of classification success rates of three training algorithms for threshold networks.

Data set
Rate(%) Sigmoid (λ = 10) ELM Hybrid ELM

Training Testing Training Testing Training Testing

Balance scale [28] 89.20 66.40 90.4 87.20 91.80 87.20
Haberman [28] 74.28 74.28 79.59 73.77 77.14 78.68

Wine [29] 100 68.57 99.30 91.43 100 94.28
Iris [30] 85.83 63.33 95.83 93.33 96.66 100

Data user modeling [31] 70.09 35.00 82.55 67.50 90.03 72.50
Banknote [31] 97.81 53.28 95.08 94.89 99.36 100

Hayes-Roth [31] 60.37 23.07 98.11 61.53 92.45 88.46
Table 4
Comparison of training time of three training algorithms for threshold networks.

Data set
Time (s)

Sigmoid (λ = 10) ELM Hybrid ELM

Balance scale [28] 0.3416 0.0022 0.2248
Haberman [28] 0.1645 0.0026 0.1275
Wine [29] 0.1645 0.0020 0.0969
Iris [30] 0.0790 0.0018 0.0796
Data user modeling [31] 0.2286 0.0023 0.1668
Banknote [31] 0.7390 0.0044 0.4276
Hayes-Roth [31] 0.0855 0.0014 0.0785
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