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A switched quantum channel with indefinite causal order is studied for the fundamental metrological task 
of phase estimation on a qubit unitary operator affected by quantum thermal noise. Specific capabilities 
are reported in the switched channel with indefinite order, not accessible with conventional estimation 
approaches with definite order. Phase estimation can be performed by measuring the control qubit 
alone, although it does not actively interact with the unitary process – only the probe qubit doing 
so. Also, phase estimation becomes possible with a fully depolarized input probe or with an input 
probe aligned with the rotation axis of the unitary, while this is never possible with conventional 
approaches. The present study extends to thermal noise, investigations previously carried out with the 
more symmetric and isotropic qubit depolarizing noise, and it contributes to the timely exploration of 
properties of quantum channels with indefinite causal order relevant to quantum signal and information 
processing.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Quantum channels arranged in indefinite causal order represent novel architectures for combining quantum processes, which exhibit 
specific properties useful to quantum signal and information processing, and not accessible with conventional associations with definite 
causal order. The principle of quantum channels with indefinite causal order has been analyzed in [1,2], and their physical implementation 
is discussed for instance in [2–7]. Quantum channels with indefinite causal order have been shown profitable in various tasks of quan-
tum information processing, such as communication over noisy quantum channels [8–11], or quantum channel discrimination [12,13]. 
For quantum metrology, which will be the principal concern of the present study, channels with indefinite order have been studied in 
[14–17], to estimate the level of a qudit depolarizing noise in [14] or the temperature of a qubit thermal noise in [15], or to extract 
information about average displacements in a quantum system with continuous variables in [16]. The study of [17] addresses the ref-
erence task of quantum metrology consisting in quantum phase estimation in the presence of noise. Phase estimation is a fundamental 
task of quantum metrology, useful to many applications related to high-sensitivity and high-precision physical measurements [18–23]. For 
qubit phase estimation in the presence of a qubit depolarizing noise, Ref. [17] demonstrates various capabilities afforded by a switched 
quantum channel with indefinite causal order, and that are not accessible with standard estimation approaches with definite order. In 
the present study, we will address the same type of switched quantum channels with indefinite causal order involved in a task of phase 
estimation, as in [17]. While [17] considers phase estimation in the presence of a unital qubit depolarizing noise showing high symme-
try and isotropy, we will extend the analysis here to a less regular nonunital quantum noise under the form of a qubit thermal noise, 
which represents also a noise of high practical relevance [24–28]. The present report provides the first analysis of a switched quantum 
channel with indefinite causal order for quantum phase estimation in the presence of thermal noise. It contributes to the inventory and 
appreciation of specific properties of quantum channels with indefinite causal order bearing relevance to quantum signal and information 
processing.
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2. Controlled switch of two quantum channels

We consider here, as in Refs. [2,8,17], two quantum channels (1) and (2), respectively characterized by the Kraus operators 
{
K(1)

k

}
and {

K(2)

k

}
, and which are switched between the two causal orders (1)–(2) or (2)–(1) according to the state |0c〉 or |1c〉 or a control qubit, as 

represented in Fig. 1.

Fig. 1. According to the state ρc of a control qubit, the two quantum channels (1) and (2) can be cascaded in the causal order (1)–(2) (solid path) or (2)–(1) (dashed path) to 
affect the probe signal in state ρ .

A switched quantum channel results, which is characterized [2,8,17] by the Kraus operators

K jk = K(2)
j K(1)

k ⊗ |0c〉〈0c| + K(1)

k K(2)
j ⊗ |1c〉〈1c| . (1)

With a control qubit placed in the general state represented by the density operator ρc , the switched quantum channel of Fig. 1 realizes 
the bipartite transformation

S(ρ ⊗ ρc) =
∑

j

∑
k

K jk(ρ ⊗ ρc)K
†
jk . (2)

An interesting possibility is to place the control qubit in a coherent superposition of its two basis states, reading |ψc〉 = √
pc |0c〉 +√

1 − pc |1c〉, with pc ∈ [0, 1]. In this way, the switched channel of Fig. 1 realizes a coherent superposition of the two alternative causal 
orders (1)–(2) and (2)–(1), implementing a switched quantum channel with indefinite causal order. In the general case of a control qubit 
with density operator ρc , pure or mixed, the transformation of Eq. (2) can be developed [17] into

S(ρ ⊗ ρc) = S00(ρ) ⊗ 〈0c|ρc|0c〉|0c〉〈0c| + S01(ρ) ⊗ 〈0c|ρc|1c〉|0c〉〈1c|
+ S†

01(ρ) ⊗ 〈1c|ρc|0c〉|1c〉〈0c| + S11(ρ) ⊗ 〈1c|ρc|1c〉|1c〉〈1c| . (3)

In Eq. (3), the superoperators S00(ρ) and S11(ρ) respectively describe transmission by the standard cascades (1)–(2) and (2)–(1), defined 
by the two sets of Kraus operators 

{
K(2)

j K(1)

k

}
and 

{
K(1)

k K(2)
j

}
. With the pure state ρc = |ψc〉〈ψc |, at pc = 0 or pc = 1 there is no genuine 

superposition of causal orders, and the operation of the switched channel in Eq. (3) reduces to these standard cascades (1)–(2) or (2)–(1), 
via S00(ρ) or S11(ρ). By contrast in Eq. (3), the superoperator

S01(ρ) =
∑

j

∑
k

K(2)
j K(1)

k ρK(2)†
j K(1)†

k , (4)

specifically conveys the effect of the superposition of causal orders, especially acting with ρc = |ψc〉〈ψc | when pc �= 0 and pc �= 1.
We will now specifically investigate the situation where the two superposed channels (1) and (2) in Fig. 1 are formed by a unitary 

qubit channel affected by quantum noise, to be involved in the fundamental metrological task of phase estimation on the unitary. For such 
a scenario of phase estimation in a switched quantum channel with indefinite causal order, [17] studied the case of the unital isotropic 
depolarizing noise, while here we will investigate the case of a nonunital and less symmetric thermal noise, having also great practical 
relevance for the qubit [24–28].

3. A switched qubit unitary channel with thermal noise

We will examine a noisy quantum channel consisting in a qubit unitary operator Uξ affected by a qubit noise N (·) as represented in 
Fig. 2.

Fig. 2. Quantum channel formed by a qubit unitary operator Uξ affected by a qubit noise N (·), and as a whole providing a realization for channel (1) or (2) involved in 
Fig. 1.

The quantum channel of Fig. 2 acts on a probe qubit with input density operator

ρ =
[

ρ00 ρ01
ρ∗

01 1 − ρ00

]
= 1

2

(
I2 +	r · 	σ )

, (5)

with in particular ρ00 ∈ [0, 1]. In Eq. (5), I2 is the identity operator on the two-dimensional qubit space H2, and 	σ is the formal vector of 
the three Pauli operators [σx, σy, σz] = 	σ . The Bloch vector 	r ∈R3 is with norm ‖	r ‖ = 1 for a pure state, and ‖	r ‖ < 1 for a mixed state.
2
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The qubit unitary operator Uξ of Fig. 2 receives [29] the general parameterization

Uξ = exp
(
−i

ξ

2
	n · 	σ

)
, (6)

with 	n = [nx, ny, nz]� a unit vector of R3, and ξ a phase angle in [0, 2π) which is often a parameter of metrological interest. The unitary 
implements the transformation ρ �→ Uξ ρU†

ξ , equivalent to transforming the Bloch vector of the qubit by 	r �→ Uξ	r with Uξ (in italic) the 
3 × 3 rotation matrix of R3 of angle ξ around the axis 	n.

The quantum noise N (·) of Fig. 2 is taken here as a generalized amplitude damping noise or quantum thermal noise, defined [29] by 
the four Kraus operators

�1 = √
p

[
1 0
0

√
1 − γ

]
, (7)

�2 = √
p

[
0

√
γ

0 0

]
, (8)

�3 = √
1 − p

[ √
1 − γ 0

0 1

]
, (9)

�4 = √
1 − p

[
0 0√
γ 0

]
. (10)

On the qubit density operator ρ of Eq. (5), the noise implements the (nonunitary) transformation ρ �→N (ρ) = ∑4
j=1 � jρ�

†
j reading

N (ρ) =
[

(1 − γ )ρ00 + pγ
√

1 − γ ρ01√
1 − γ ρ∗

01 (1 − γ )(1 − ρ00) + (1 − p)γ

]
, (11)

equivalent to transforming the Bloch vector of the qubit by

	r �−→ A	r + 	c =
⎡
⎣

√
1 − γ 0 0

0
√

1 − γ 0
0 0 1 − γ

⎤
⎦	r +

⎡
⎣ 0

0
(2p − 1)γ

⎤
⎦ . (12)

Such noise offers a model [29,26] to describe the coupling of the qubit with an uncontrolled environment consisting in a thermal bath 
at temperature T . The damping factor γ ∈ [0, 1] can be related to the interaction time t of the qubit with the bath as γ = 1 − e−t/τ1 , with 
τ1 a relaxation time for the interaction. At long time t � τ1, one has γ → 1 and a qubit relaxing to the equilibrium or thermalized mixed 
state ρ∞ = p|0〉〈0| + (1 − p)|1〉〈1| having Bloch vector 	r∞ = [0, 0, 2p − 1]� . At equilibrium, the probability is p for measuring the qubit in 
the ground state |0〉 and 1 − p for measuring it in the excited state |1〉. With the energies E0 and E1 > E0 respectively for the states |0〉
and |1〉, the equilibrium probability p is given by the Boltzmann distribution as

p = 1

1 + exp[−(E1 − E0)/(kB T )] . (13)

By Eq. (13), the probability p characterizing the quantum thermal noise of Eqs. (7)–(12), is determined by the temperature T of the 
bath. From Eq. (13), the probability p decreases as the temperature T increases. A temperature T = 0 gives a probability p = 1 for the 
ground state |0〉, while at T → ∞ the ground state |0〉 and excited state |1〉 become equiprobable with p = 1/2. Therefore, from Eq. (13), 
when the temperature T monotonically increases from 0 to ∞, the probability p monotonically decreases from 1 to 1/2. For the sequel, 
as in [30], it will be convenient to refer to an effective or reduced noise temperature T p = 2(1 − p), which, according to Eq. (13), is a 
monotonically increasing function of the physical temperature T , for any value of the energy gap E1 − E0 > 0. When T = 0 then p = 1
and T p = 0, while when T = ∞ then p = 1/2 and T p = 1. So a physical temperature T increasing from 0 to ∞ is monotonically mapped 
into an effective temperature T p increasing from 0 to 1. This provides a convenient finite range of T p ∈ [0, 1] to convey the impact of 
the physical temperature T ∈ [0, ∞[, and also releases the quantitative analysis from the unimportant specific value of the energy gap 
E1 − E0 > 0.

The quantum channel resulting in Fig. 2 is therefore defined by the four Kraus operators K j = � jUξ , for j = 1 to 4. It implements 
the transformation ρ �→ ∑4

j=1 � jUξ ρU†
ξ�

†
j , equivalent to transforming the Bloch vector of the qubit by 	r �→ AUξ	r + 	c. Two such identical 

noisy unitary channels as in Fig. 2 are employed to realize channels (1) and (2) in the switched quantum channel of Fig. 1. Two identical 
channels (1) and (2) in Fig. 1 give S00(ρ) = S11(ρ) and S†

01(ρ) = S01(ρ) in Eq. (3). These superoperators are completely determined by 
the four Kraus operators K j = � jUξ . In particular, the superoperators S00(ρ) and S11(ρ) describe the (identical) action on the probe 
qubit ρ of the standard cascades (1)–(2) and (2)–(1), expressible as S00(ρ) = S11(ρ) = ∑4

j=1
∑4

k=1 � jUξ�kUξ ρU†
ξ�

†
kU†

ξ�
†
j , equivalently 

performing the Bloch vector transformation 	r �→ AUξ

(
AUξ	r + 	c ) + 	c. Meanwhile, the superoperator S01(ρ) following from Eq. (4) with 

K(1)
j = K(2)

j = � jUξ , is responsible for the distinctive properties stemming from the indefinite superposition of causal orders, as we are 
going to see in more detail.
3
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4. Measurement for estimation

We want to exploit the switched channel to perform parameter estimation, chiefly of the phase ξ of the unitary Uξ , but possibly also 
of the parameters p or γ of the qubit thermal noise. For this objective, it is possible to measure the two qubits – probe and control – 
delivered at the output of the switched channel in the joint state S(ρ ⊗ ρc) from Eq. (3). A simpler approach would be to measure only 
the probe qubit, since it is the qubit that interacts with the process Uξ and noise N (·). If at the same time the control qubit is discarded 
(unobserved), the measurement on the probe qubit is ruled by the reduced density operator obtained by partially tracing the joint state 
S(ρ ⊗ ρc) of Eq. (3) over the control qubit. It results as ρprob = trcontrol

[
S(ρ ⊗ ρc)

] = S00(ρ), which is nothing else than the density 
operator of a single probe qubit that would have traversed the standard cascade (1)–(2) or (2)–(1), with no effect from the superposition 
of causal orders. An interesting alternative, manifesting the specific and useful properties stemming from the superposition of causal 
orders, is to choose to measure the control qubit alone while discarding the probe qubit. In this circumstance, the measurement on the 
control qubit is ruled by the reduced density operator obtained by partially tracing the joint state S(ρ ⊗ ρc) of Eq. (3) over the probe 
qubit. It results as ρcon = trprobe

[
S(ρ ⊗ ρc)

]
, yielding when the control qubit is initialized in the pure state |ψc〉 = √

pc |0c〉 + √
1 − pc |1c〉,

ρcon = pc|0c〉〈0c| + (1 − pc)|1c〉〈1c| + Q c

√
(1 − pc)pc

(
|1c〉〈0c| + |0c〉〈1c|

)
, (14)

since S00(ρ) is a qubit density operator giving tr[S00(ρ)] = 1, and where we have defined the factor

Q c = tr
[
S01(ρ)

]
. (15)

A very interesting feature is that this factor Q c in Eq. (15) is in general dependent on the properties of both the unitary Uξ and the 
thermal noise N (·), as we are going see in more detail below. This means that the control qubit alone can be measured at the output of 
the switched channel, while discarding the probe qubit, and in this way extract information about the probed processes Uξ and N (·). This 
is remarkable since the control qubit does not interact with the probed processes Uξ and N (·), only the probe qubit does so. Nevertheless, 
the type of coupling induced by the switched channel with indefinite causal order, as conveyed by Eq. (3), transfers information from the 
probed processes Uξ and N (·) to the control qubit.

To quantify the performance of the control qubit, for a task of parameter estimation, a generally meaningful criterion is the quantum 
Fisher information, contained in the state ρcon, about some parameter of interest probed in the switched channel [31–34]. The quantum 
Fisher information stands as an upper bound to the classical Fisher information, which in turn determines the smallest mean-squared 
error that can be achieved in the estimation. In this way, the quantum Fisher information is a fundamental criterion characterizing the 
best performance that can be envisaged, applying equally to any estimation strategies, and in this respect dispensing to refer to an explicit 
quantum measurement and an explicit estimator. We will concentrate here on estimating the phase ξ of the noisy unitary process Uξ , 
which is often a parameter of prime interest in quantum metrology. Nevertheless, a comparable analysis would hold equally for estimating 
other parameters, such as the probability p or the damping factor γ of the thermal noise. Based on [17], when measuring the control 
qubit of the switched channel in the state ρcon of Eq. (14), the quantum Fisher information for estimating the phase ξ follows as

F con
q (ξ) = 4(1 − pc)pc

[
∂ξ Q c(ξ)

]2

1 − Q 2
c (ξ)

, (16)

involving the derivative ∂ξ Q c(ξ) ≡ ∂ Q c(ξ)/∂ξ of the factor Q c ≡ Q c(ξ) from Eq. (15) seen as a function of ξ and characterizing the 
measured state ρcon of Eq. (14). This quantum Fisher information in Eq. (16) is maximized for a control qubit prepared with the probability 
pc = 1/2, i.e. with a maximally indefinite order via an even superposition of the two orders (1)–(2) and (2)–(1) in Fig. 1, so as to give at 
pc = 1/2,

F con
q (ξ) =

[
∂ξ Q c(ξ)

]2

1 − Q 2
c (ξ)

. (17)

We essentially focus the analysis on this optimal configuration at pc = 1/2 in the sequel.
For a meaningful example that illustrates essential distinctive properties accessible with the control qubit of the switched channel, 

while remaining analytically tractable with closed-form expressions of moderate size to handle, we consider the situation of a unitary Uξ

in Eq. (6) with axis 	n = [0, 0, 1]� = 	ez . The four Kraus operators K j = � jUξ then follow to determine the two-qubit joint state S(ρ ⊗ ρc)

of Eq. (3), which is explicitly worked out in the Appendix. We also obtain in the Appendix the characterization of the operator S01(ρ)

whose trace is computed according to Eq. (15) to yield

Q c(ξ) = 2γ
√

1 − γ
[
(1 − 2p)ρ00 + p

]
cos(ξ) + (2 − γ )γ (2p − 1)ρ00 + (1 − γ p)2 . (18)

The term ρ00 ∈ [0, 1] in Eq. (18) conveys the influence from the initial preparation in Eq. (5) of the input probe qubit. Follows the 
derivative

∂ξ Q c(ξ) = −2γ
√

1 − γ
[
(1 − 2p)ρ00 + p

]
sin(ξ) , (19)

providing a complete determination of the quantum Fisher information F con
q (ξ) of Eq. (17).

For comparison, a meaningful reference is the quantum Fisher information Fq(ξ) accessible for estimating the phase ξ when directly 
measuring the output qubit of a single standard channel as in Fig. 2. For an input probe qubit with Bloch vector 	r as in Eq. (5), we have 
for instance from [35] the expression
4



F. Chapeau-Blondeau Physics Letters A 447 (2022) 128300
Fq(ξ) =
[
(AUξ	r + 	c )A(	n × Uξ	r )

]2

1 − (AUξ	r + 	c )2
+ [

A(	n × Uξ	r )
]2

. (20)

The conditions for maximizing the quantum Fisher information Fq(ξ) of Eq. (20) are analyzed for instance in [22,35]. With the thermal 
noise model of Eqs. (7)–(12), the quantum Fisher information Fq(ξ) of Eq. (20) for the standard channel of Fig. 2, can reach the overall 
maximum value F max

q (ξ) = 1 −γ when three conditions are satisfied [22,35]: (i) the input probe must be pure with ‖	r ‖ = 1; (ii) the Bloch 
vector 	r defining the input probe must be orthogonal to the rotation axis 	n of the unitary Uξ under estimation; (iii) the vector 	n × Uξ	r
in Eq. (20) must be orthogonal to the O z axis of R3 set by the thermal noise of Eq. (12). This usually implies a ξ -dependent condition 
on the rotated probe Uξ	r, that usually cannot be met by a fixed input probe 	r, but can be circumvented by adaptively adjusting the input 
probe in an iterative estimation protocol [36,37]. When gradually departing from these conditions, the Fisher information Fq(ξ) gradually 
decays below the maximum F max

q (ξ) = 1 − γ . Especially, when the input probe 	r tends to align with the axis 	n, or when it depolarizes 
as ‖	r ‖ → 0, then Fq(ξ) goes to zero and phase estimation from the standard channel of Fig. 2 becomes completely inoperative. Standard 
phase estimation resting on the same elementary probe–unitary interaction ρ �→ Uξ ρU†

ξ will remain inoperative in the same conditions, 
even with more elaborate scenarios as with several passes through Uξ of the probe or several probing qubits possibly entangled [38,17].

By contrast, a distinctive feature is that the control qubit of the switched channel exhibits a Fisher information F con
q (ξ) in Eq. (17) not 

limited in the same way by the conditions (i)–(iii) above. In this respect, the control qubit gives access to novel capabilities relevant to 
phase estimation and complementary to those offered by the standard approach of Eq. (20). Especially, the performance of the control 
qubit for phase estimation, as assessed by the Fisher information F con

q (ξ) of Eq. (17), is not adversely impacted by ill configurations of 
the input probe 	r of Eq. (5) in relation to the rotation axis 	n. Even when 	r ∥ 	n with an input probe 	r parallel to the rotation axis 	n, or 
when ‖	r ‖ = 	0 with a fully depolarized input probe, the control qubit of the switched channel remains operative for phase estimation. We 
specially focus in the sequel on analyzing the performance of the control qubit for phase estimation in these conditions where standard 
phase estimation becomes completely inoperative, with Fq(ξ) ≡ 0 in Eq. (20).

Figs. 3 to 6 illustrate the impact of the thermal noise parameters on the performance F con
q (ξ) of the control qubit of the switched 

channel for phase estimation, in conditions where standard phase estimation is completely inoperative.
Figs. 3 and 4 deal with two cases of a pure input probe, ρ = |0〉〈0| associated with ρ00 = 1 in Fig. 3, and ρ = |1〉〈1| associated with 

ρ00 = 0 in Fig. 4. In both cases the input Bloch vector 	r is parallel to the rotation axis 	n = 	ez . In this circumstance, for the standard 

Fig. 3. For the control qubit of the switched channel, quantum Fisher information F con
q (ξ) of Eq. (17), for a phase ξ = π/4, as a function of the effective temperature 

T p = 2(1 − p) and damping factor γ of the quantum thermal noise of Eqs. (7)–(12). The input probe is prepared in the pure state ρ = |0〉〈0| with Bloch vector 	r = 	ez parallel 
to the rotation axis 	n = 	ez of the unitary Uξ , making standard phase estimation completely inoperative.

Fig. 4. Same as in Fig. 3, except that the input probe is prepared in the pure state ρ = |1〉〈1| with Bloch vector 	r = −	ez parallel to the rotation axis 	n = 	ez of the unitary Uξ , 
also making standard phase estimation completely inoperative.
5
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Fig. 5. Same as in Fig. 3, except that the input probe is prepared in the fully depolarized mixed state ρ = I2/2 with Bloch vector 	r = 	0, where standard phase estimation is 
also completely inoperative.

estimation the Fisher information Fq(ξ) of Eq. (20) vanishes since Uξ	r ∥ 	n, manifesting the impossibility of estimating the phase by 
measuring the probe qubit. By contrast, the control qubit of the switched channel remains efficient for estimation, as manifested by a 
nonvanishing Fisher information F con

q (ξ) in Figs. 3–4.
In addition, Figs. 3–4 illustrate two typical behaviors accessible to the Fisher information F con

q (ξ) of Eq. (17), and therefrom to the 
estimation efficiency, upon increasing the temperature of the thermal bath, at any fixed value of the damping factor γ . Depending on the 
input probe ρ , Fig. 3 shows the possibility of a Fisher information F con

q (ξ) that increases as the noise temperature T p increases, while 
Fig. 4 shows a decreasing F con

q (ξ). This manifests that the (thermal) noise is not univocally detrimental to the estimation efficiency from 
the switched channel, as also observed in [17] with depolarizing noise. Increasing the level of noise, via increasing the noise temperature 
in Fig. 3, may enhance the Fisher information F con

q (ξ) and therefore the efficiency of the control qubit for the phase estimation. Such a 
versatile role of noise in the switched channel can also be substantiated in the following way. In the elementary noisy unitary channel of 
Fig. 2, the noise N (·) has the natural effect of degrading the probe qubit, and hence the estimation efficiency. Yet, when two such channels 
are superposed as in Fig. 1, the noise is necessary to make the two superposed channels (1) and (2) distinguishable, and to couple the 
control qubit to the unitary Uξ . At vanishing noise, the two channels (1) and (2) are two identical unitary channels with one single Kraus 
operator K1 = Uξ , so that the joint probe-control output state of Eq. (3) reduces to the separable state S(ρ ⊗ρc) = S00(ρ) ⊗ |ψc〉〈ψc |, and 
the control qubit does not couple to the unitary Uξ . This in particular entails, at vanishing noise, when the damping γ → 0 in Eq. (12), 
a coupling factor Q c(ξ) in Eq. (18) which becomes independent of the phase ξ , so that the control qubit cannot serve to estimate the 
phase ξ . A nonvanishing amount of noise is required to couple the control qubit to the phase ξ and maintain a ξ -dependent Q c(ξ) in 
Eq. (18). Increasing the amount of noise, in this way, may be beneficial to the efficiency of the control qubit for estimation, depending on 
the conditions, as determined by the expression of Eq. (17) for the quantum Fisher information F con

q (ξ).

Fig. 5 shows the situation of a fully depolarized input probe ρ = I2/2 with ρ00 = 1/2 and Bloch vector 	r = 	0, which maintains a 
nonvanishing Fisher information F con

q (ξ) in Eq. (17) and therefore the capability of the control qubit of the switched channel for estimating 
the phase ξ . On the contrary, with the standard channel of Fig. 2, a fully depolarized input probe ρ = I2/2 on the unitary, undergoes the 
transformation ρ = I2/2 �→ Uξ ρU†

ξ = I2/2, and extracts no information about Uξ , so that it is completely inoperative for estimating its 
phase ξ .

Figs. 3–5 also clearly show a non-monotonic action of the damping factor γ = 1 − e−t/τ1 on the quantum Fisher information F con
q (ξ), 

at any fixed temperature of the thermal noise. A damping factor γ = 1 − e−t/τ1 tending to zero at an extremely brief exposition time 
t � τ1 to the noise, is the situation of a vanishing thermal noise. As explained above, at vanishing noise the control qubit is no longer 
coupled to the unitary Uξ in the switched channel, whence the vanishing Fisher information F con

q (ξ) at γ = 0 in Figs. 3–5. Also, when 
γ = 1 − e−t/τ1 → 1, with an increasing exposition time t � τ1, the Fisher information F con

q (ξ) also tends to vanish, as visible in Figs. 3–5. 
This points to an intermediate damping γ , i.e. an intermediate exposition time t to the noise, to maximize the estimation efficiency 
F con

q (ξ), with t not too short so that the control qubit sufficiently couples to Uξ , and t not too long to avoid thermalization where 
the process terminates in an equilibrium state independent of Uξ . This is reflected in a Fisher information F con

q (ξ) of the control qubit, 
culminating at a maximum for an intermediate damping γ , whose precise value is slightly dependent on the temperature of the thermal 
bath, as observed in the finer view provided by Fig. 6 in the illustrative conditions of Fig. 4.

Such a constructive role of the thermal noise here, which may benefit to the efficiency of the control qubit for estimation, was similarly 
observed with the depolarizing noise in the coherently superposed channels of [17,39]. Such a constructive role of noise can be related 
to a phenomenon of stochastic resonance, a general effect taking place in diverse information processing operations, classical [40–43] or 
quantum [44–48], and where maximum efficacy is observed at a non-vanishing optimal amount of noise. Here it confirms with a novel 
scenario that quantum noise or decoherence can sometimes turn beneficial to quantum information processing.

Fig. 6 also compares the quantum Fisher information of the control qubit of the switched channel and that of the standard channel 
of Fig. 2 when both channels are operated at their best. When the standard channel of Fig. 2 can be operated in its optimal conditions, 
matching the three conditions (i)–(iii) mentioned above after Eq. (20), the maximal quantum Fisher information F max

q (ξ) = 1 −γ it obtains 
is usually superior to F con

q (ξ) from the switched channel, over a significant range of the noise parameters (p, γ ). Nevertheless, as visible 
in Fig. 6, there exists a range, at high p and γ , where F con

q (ξ) from the switched channel becomes superior to F max
q (ξ) = 1 − γ from the 

standard channel. In the conditions of Fig. 6, as p and γ go to 1, one has for the control qubit the Fisher information F con
q (ξ) → 2(1 − γ ). 

The same quantum Fisher information 2(1 − γ ) = 2F max
q (ξ) could be reached by two independent qubits traversing the standard channel 
6
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Fig. 6. Solid lines: in the conditions of Fig. 4, the quantum Fisher information F con
q (ξ) of Eq. (17) as a function of the noise damping factor γ , for 6 values of the probability 

p fixed by the noise temperature: the uppermost curve is for p = 1 at zero temperature, then in descending order of the curves are p = 0.9, 0.8, 0.7 and 0.6, finally the 
lowermost curve is for p = 0.5 at infinite temperature. Dashed curve: maximal quantum Fisher information F max

q (ξ) = 1 − γ accessible in Eq. (20) with the standard channel 
of Fig. 2 operated in its optimal conditions with an input probe prepared in the pure state |+〉 with Bloch vector 	r = 	ex .

Fig. 7. Quantum Fisher information F con
q (ξ) of Eq. (17), for a phase ξ = π/4, as a function of the input probe coordinate ρ00, with a noise damping factor γ = 0.5 and a noise 

probability p = 1 corresponding to the zero temperature T = 0 (solid line), p = 0.75 at intermediate temperature T (dashed line), p = 0.5 at infinite temperature T = ∞
(dotted line). The pure input probe ρ = |1〉〈1| is at ρ00 = 0, while ρ = |0〉〈0| is at ρ00 = 1, the fully depolarized input probe ρ = I2/2 is at ρ00 = 1/2, all three configurations 
where standard phase estimation is completely inoperative.

of Fig. 2 and then being measured. A single qubit traversing twice, in two passes, the standard channel of Fig. 2, would achieve a quantum 
Fisher information comparable to Eq. (20) but acting on the Bloch vector AUξ

(
AUξ	r + 	c) + 	c as transformed by the two passes. Yet this 

would lead to a poorer performance compared with the two independent qubits, because when starting the second pass the (noisy) qubit 
would no longer be in the optimal input state. Two entangled probe qubits, although more complicated to handle, could even be envisaged 
to probe the standard channel of Fig. 2, to benefit from the so-called Heisenberg enhanced performance, but the optimal configurations 
in the presence of thermal noise are not fully characterized, and it is known that the Heisenberg enhanced performance is very fragile 
to noise [19,49,38,50]. In the high range of the noise parameters (p, γ ) in Fig. 6, the control qubit of the switched channel performs 
as well as two independent qubits across the standard channel, but it can be measured alone. The two channels compared in Fig. 6
are rather distinct in their constitution and mode of operation, means and resources they imply. The standard channel which is more 
directly intended for estimation, however, does not always achieve the best performance of the two channels. The two channels are rather 
complementary, especially as the switched channel offers estimation capabilities inaccessible to the standard channel and forming the 
main focus of this study.

Fig. 7 shows typical evolutions of the quantum Fisher information F con
q (ξ) resulting from Eq. (17) and Eqs. (18)–(19) for the control 

qubit of the switched channel, as a function of the coordinate ρ00 of the input probe ρ .
The configurations in Fig. 7 encompass the pure input probes ρ = |1〉〈1| at ρ00 = 0 and ρ = |0〉〈0| at ρ00 = 1, the fully depolarized 

input probe ρ = I2/2 at ρ00 = 1/2, all three configurations where standard phase estimation is completely inoperative. Meanwhile, in 
these configurations, and over the whole range of ρ00 ∈ [0, 1], the control qubit of the switched channel generally remains operative for 
estimating the phase ξ , as established by the nonvanishing Fisher information F con

q (ξ) in Fig. 7. When seen as a function of ρ00, the Fisher 
information F con

q (ξ) resulting from Eqs. (17)–(19), is a decreasing function of ρ00 ∈ [0, 1], so that F con
q (ξ) is always maximized in ρ00 = 0, 

that is, by the pure input probe ρ = |1〉〈1|, as in Figs. 4 and 6.
Finally, it is possible to refer to an explicit measurement of the control qubit in the state ρcon of Eq. (14), by means of a von Neumann 

measurement in the Hadamard basis 
{|+〉, |−〉}. The two measurement outcomes of projecting the control qubit on |+〉 or |−〉 occur with 

the probabilities Pr
{|±〉} = P con± which are

P con± = 〈±|ρcon|±〉 = 1

2
± √

(1 − pc)pc Q c . (21)

This binary measurement result contains, about the unknown phase ξ , the classical Fisher information [35]
7
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F con
c (ξ) = (∂ξ P con+ )2

(1 − P con+ )P con+
(22)

= 4(1 − pc)pc
[
∂ξ Q c(ξ)

]2

1 − 4(1 − pc)pc Q 2
c (ξ)

. (23)

At the optimal preparation pc = 1/2 of the control qubit, F con
c (ξ) gets maximized at the level F con

q (ξ) of Eq. (17). This establishes the 
measurement of the control qubit in the Hadamard basis 

{|+〉, |−〉} as an optimal measurement, reaching the highest possible classical 
Fisher information F con

c (ξ) = F con
q (ξ), and by means of the maximum likelihood estimator reaching the smallest mean-squared estimation 

error. Measurement in the Hadamard basis 
{|+〉, |−〉} is equivalent to measuring the spin observable 	ωc · 	σ characterized by the mea-

surement vector 	ωc = [1, 0, 0]� = 	ex . It is remarkable that such a fixed optimal measurement reaching F con
c (ξ) = F con

q (ξ) exists for the 
control qubit, independent of the axis 	n and angle ξ of the unitary Uξ under estimation. By comparison, standard estimation approaches 
ruled by Eq. (20) are in general not granted with such a fixed optimal measurement, and to reach the optimum of Fc(ξ) = Fq(ξ) matching 
the classical and quantum Fisher informations, they usually need [35] to measure a spin observable 	ω · 	σ with a measurement vector 	ω
dependent on 	n and ξ , which is not generally feasible with an unknown phase ξ .

In the switched channel, the measurement in the Hadamard basis 
{|+〉, |−〉} of the control qubit leaves the probe qubit in the unnor-

malized conditional state

ρ± = c〈±|S(ρ ⊗ ρc)|±〉c = 1

2
S00(ρ) ± √

(1 − pc)pc S01(ρ) . (24)

After proper normalization by the corresponding probabilities of occurrence P con± = tr(ρ±) of Eq. (21), one obtains the post-measurement 
state of the probe qubit ρpost

± = ρ±/P con± conditioned on the measurement outcome obtained on the control qubit. It is observed that 
in general this state ρpost

± of the probe is dependent on the phase ξ under estimation, so that the probe qubit can be subsequently 
measured, after the control qubit, so as to extract additional information about the phase ξ . Proceeding in this way is a sequential 
strategy, implementing two separable measurements, successively on the control and probe qubits. A joint entangled measurement of the 
qubit pair could also be envisaged, based on the explicit characterization of the joint state S(ρ⊗ρc ) developed in the Appendix. Such two-
qubit strategies are a priori more complicated to analyze, to optimize and to implement. Interesting properties could nevertheless result, 
based on the non-standard capabilities contributed by the control qubit we reported here. This direction is open for further investigation 
to complement the present demonstration of non-standard capabilities offered by the control qubit of the switched channel for quantum 
phase estimation in presence of thermal noise.

5. Discussion and conclusion

We have considered the switched quantum channel with indefinite causal order of Fig. 1 when the elementary channels (1) and (2) 
are two copies of the noisy unitary qubit channel of Fig. 2. From the characterization of the two-qubit probe-control state S(ρ ⊗ρc) from 
Eq. (3) delivered by the switched channel, we have specifically investigated the properties accessible for the fundamental metrological task 
of phase estimation on the unitary process Uξ in the presence of a quantum thermal noise N (·). This study complements the report of 
[17] that concentrated on the qubit depolarizing noise, and it brings further results useful to a broader appreciation of the capabilities of 
switched channels with indefinite causal order for quantum metrology. We have observed here, as in [17], that the noise is an important 
ingredient to make the elementary channels (1) and (2) distinguishable, so that the superposition of Fig. 1 does not reduce to a standard 
cascade of two identical unitaries Uξ and so that it can exhibit novel properties inaccessible to standard cascades with definite causal 
order.

Another important property is that in the presence of noise, the control qubit of the switched channel gets coupled to the unitary Uξ , 
in such a way that the control qubit alone, although it does not actively interact with the unitary Uξ , can be measured to estimate its 
phase ξ . In standard estimation approaches, such noninteracting qubits, to be of some use, need to be jointly measured with the active 
probing qubits [38,34]. This points here to non-standard quantum correlations induced in the switched channel with indefinite causal 
order, offering non-standard properties useful to quantum estimation, as also observed in [17]. We then have concentrated the analysis 
on such non-standard properties specific to the switched channel. Especially, we have analyzed phase estimation from the control qubit 
alone in configurations of the input probe where standard estimation approaches become completely inoperative, even when repeated 
with multiple probing qubits or several passes across the unitary Uξ under estimation. In particular, we have shown that the control qubit 
remains efficient for phase estimation even with an input probe 	r aligned with the rotation axis 	n of the unitary Uξ , or with a fully 
depolarized input probe.

In the present study, the probe and control qubits have different status and position, with a probe qubit that directly interacts with 
the noisy unitary Uξ and a control qubit that does not. This conforms with the common reference framework for studying switched 
non-causal order, of two noisy channels whose causal order is driven by a noise-free control signal, as for instance in [8–15,17]. However, 
when the control qubit is also affected by some quantum noise or alteration, the present analysis can be used to predict how the 
essential properties stemming from non-causal order, as conveyed by the quantum Fisher information F con

q (ξ), are preserved or gradually 
diminished. When the input state ρc of the control qubit is a pure state that gradually departs from the optimum pure state at pc = 1/2, 
the quantum Fisher information F con

q (ξ) in Eq. (16) of the control qubit gradually decays, but does not vanish until the superposition of 
orders completely disappears at pc = 0 or pc = 1. When the control state ρc becomes a mixed state, Eq. (3) shows that its action is still 
operative and conveyed by its matrix elements in the basis 

{|0c〉, |1c〉
}

. When tracing Eq. (3) over the probe, the matrix elements 〈0c |ρc|1c〉
and 〈1c |ρc|0c〉 = 〈0c |ρc|1c〉∗ are transported as multiplicative factors on Q c in Eq. (14), in place of 

√
(1 − pc)pc of the pure control. The 

factor Q c ≡ Q c(ξ) = tr
[
S01(ρ)

]
remains the essential element that conveys the dependence on the phase ξ of the transformed state ρcon

of the control qubit, via Eqs. (15) or (18) which are unchanged as determined by the probe qubit. As long as 〈0c |ρc|1c〉 is not reduced to 
8
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zero, the control state ρcon of Eq. (14) remains dependent, via Q c(ξ), on the phase ξ and can serve to its estimation. This is reflected in a 
quantum Fisher information F con

q (ξ) of the control qubit that gradually decays with |〈0c |ρc|1c〉|, to vanish when |〈0c |ρc|1c〉| reaches zero, 
but not earlier. As long as ρcon remains dependent on ξ it can be measured to estimate ξ , and an additional noise altering ρcon before it 
can be measured, would still preserve its capability for phase estimation, until the off-diagonal matrix elements of the control qubit state 
that carry Q c(ξ) are completely canceled by the noise. In this way, the properties of the control qubit for phase estimation are robustly 
preserved.

Other explorations can be envisaged of the properties of the switched channel with indefinite causal order, based on the general 
characterization of the two-qubit output state S(ρ ⊗ ρc) of Eq. (3). For instance, estimation of the thermal noise parameters γ or p can 
be envisaged, and this can again be performed by measuring the control qubit alone, while discarding the probe qubit interacting with 
the thermal bath. This is feasible thanks to the coupling factor Q c in Eq. (14) which bears dependence, as indicated by Eq. (18), also 
on the noise parameters γ and p and thus extract information about them. This is still true for instance with a fully depolarized input 
probe ρ = I2/2, having ρ00 = 1/2. Our analysis, in the special case where the phase of the unitary Uξ is canceled as ξ ≡ 0, describes a 
pure thermal noise channel engaged in a superposition of causal orders, as studied for quantum thermometry in [15] in the thermalized 
regime when the damping γ → 1. Another direction of exploration could be the investigation of extensions and generalizations proposed 
of structures with non-causal order [51,9,52] for estimation tasks with noise as we considered here in the quantum switch superposing 
two causal orders.

In this way, the present study brings additional elements and results to better appreciate the capabilities of switched quantum channels 
with indefinite causal order, especially with novel and specific properties, to contribute to quantum estimation and quantum metrology 
and more broadly to quantum signal and information processing.
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Appendix A

In this Appendix, we explicitly work out the joint state S(ρ ⊗ρc) of Eq. (3), as a function of the parameters (p, γ ) of the thermal noise, 
with a control qubit prepared in the pure state |ψc〉 = √

pc |0c〉 + √
1 − pc |1c〉, and a unitary Uξ with axis 	n = 	ez . The density operator 

S00(ρ) = ∑4
j=1

∑4
k=1 � jUξ�kUξ ρU†

ξ�
†
kU†

ξ�
†
j can be represented as the 2 × 2 matrix

S00(ρ) =
[

(1 − γ )2ρ00 + p(1 − γ )γ + pγ (1 − γ )ρ01e−i2ξ

(1 − γ )ρ∗
01ei2ξ (1 − γ )2(1 − ρ00) + (1 − p)(1 − γ )γ + (1 − p)γ

]
. (A-1)

The Hermitian operator S01(ρ) = ∑4
j=1

∑4
k=1 � jUξ�kUξ ρU†

ξ�
†
jU

†
ξ�

†
k resulting in Eq. (4) can be represented as the 2 × 2 matrix

S01(ρ) =
[

b00 b01
b∗

01 b11

]
, (A-2)

with the matrix elements

b00 = 2γ
√

1 − γ p(1 − ρ00) cos(ξ) + [
1 − γ (1 − p)

]2
ρ00 , (A-3)

b01 = [
(1 − γ )e−i2ξ + γ 2(1 − p)p

]
ρ01 , (A-4)

b11 = 2γ
√

1 − γ (1 − p)ρ00 cos(ξ) + (1 − γ p)2(1 − ρ00) . (A-5)

We especially obtain for Eq. (15) the trace Q c = tr
[
S01(ρ)

] = b00 + b11 expressed in Eq. (18). From these two matrices for S00(ρ) and 
S01(ρ), the joint state S(ρ ⊗ρc) of Eq. (3) for the probe-control qubit pair of the switched channel can be represented as the 4 ×4 matrix

S(ρ ⊗ ρc) =
[

pcS00(ρ)
√

(1 − pc)pc S01(ρ)√
(1 − pc)pc S01(ρ) (1 − pc)S00(ρ)

]
. (A-6)

As mentioned at the beginning of Section 4, if only the probe qubit, that interacts with the unitary Uξ , is measured, then the per-
formance for estimating the phase ξ is similar to a standard cascade, with standard properties. Meanwhile, if only the control qubit, 
that does not directly interact with the unitary Uξ , is measured, then non-standard performance results, with non-standard properties 
inaccessible to standard estimation, as analyzed in Section 4. If the two qubits, probe and control, of the switched channel, are measured 
for phase estimation, the resulting performance can be analyzed by means of the joint state S(ρ ⊗ ρc) characterized in Eq. (A-6). An 
9
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eigendecomposition of this bipartite state S(ρ ⊗ ρc) would give access to its four eigenstates |λ〉 and four eigenvalues λ determining 
[32,22] the quantum Fisher information

Fq(ξ) = 2
4∑

=1

4∑
m=1

|〈λ|∂ξS(ρ ⊗ ρc)|λm〉|2
λ + λm

(A-7)

characterizing the performance upon measuring the qubit pair for estimating the phase ξ . This, however, can hardly be accomplished 
analytically in general, and preclude the accessibility of closed-form analytical solutions as they were obtained in Section 4 for the 
control qubit. Alternatively, numerical analysis can be implemented, with however a rather large range of configurations to be explored, 
according to the noise parameters (p, γ ), the input configuration of the qubit pair and its output measurement. A combination of the 
standard and non-standard properties can be expected to hold. Such two-qubit approaches and their optimization remain open for further 
characterization.
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