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Abstract

This paper studies the output-input signal-to-noise ratio (SNR) gain of an uncoupled parallel array of static, yet arbitrary,
nonlinear elements for transmitting a weak periodic signal in additive white noise. In the small-signal limit, an explicit
expression for the SNR gain is derived. It serves to prove that the SNR gain is always a monotonically increasing function of
the array size for any given nonlinearity and noisy environment. It also determines the SNR gain maximized by the locally
optimal nonlinearity as the upper bound of the SNR gain achieved by an array of static nonlinear elements. With locally
optimal nonlinearity, it is demonstrated that stochastic resonance cannot occur, i.e. adding internal noise into the array
never improves the SNR gain. However, in an array of suboptimal but easily implemented threshold nonlinearities, we show
the feasibility of situations where stochastic resonance occurs, and also the possibility of the SNR gain exceeding unity for a
wide range of input noise distributions.
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Introduction

Stochastic resonance (SR) is a nonlinear phenomenon where the

transmission of a coherent signal by certain nonlinear systems can

be improved by the addition of noise [1–12]. The SR effect was

initially observed in a bistable climate model driven by a

subthreshold periodic input [1–4]. Then, this phenomenon

attracted much attention in physics and biology [2,5,6,8,13,14].

It is reported that SR occurs in peripheral [5,6,8,13–16] and

central [17–19] nervous systems, since the nervous systems

implement, as a basis, complex dynamics that very often involve

nonlinear processes, and commonly have to operate in environ-

ments containing noise, either of external or internal origins

[8,20]. The SR phenomenon can also be observed at a behavioral

level, for instance, feeding paddle-fish [21], human posture

stabilization [22,23] and attention control [24]. Currently, the

utilization of noise has become an optional and nontrivial strategy

for statistical signal processing. It is noted that different static

nonlinearities have been employed to exhibit the SR effect, for

instance, the threshold nonlinearity [3,4,8,25], the saturation

nonlinearity [7], the power-law sensor [26], non-adjustable [27–

29] or variable [30] detectors, estimators [30–35] and optimal

processors [36]. By including nonlinear elements into an array, the

array enhanced SR effect was observed by tuning the array noise

level and the coupling strength [37,38]. Moreover, in the generic

model of an uncoupled parallel array of static nonlinearities, some

significant SR effects, e.g. SR without tuning [39], suprathreshold

SR [40] and array SR [26], were subsequently reported. The

constructive role of internal noise is adequately reappraised for

improving the performance of the array of nonlinearities [31–

34,41–44]. Recently, the SR effect has been further shown with

new characteristics in complex network topologies, such as small-

world networks and scale-free networks [45–52]. Particularly, the

influence of network architectures, as well as the non-zero noise

level, on SR is recognized [45–52]. It is interesting to note that

these related studies in general also provide evidence that, besides

an optimal noise intensity, an optimal network configuration

exists, at which the best system response can be obtained [49–52].

There has been considerable interest in the amplification of the

signal-to-noise ratio (SNR) of a periodic signal by exploiting the

SR effect [2,8,53–57]. From the viewpoint of the gain behavior,

i.e., the SNR at the output divided by that at the input, the

primary issue of a gain exceeding unity has been found for

suprathreshold input signals [54–57]. However, most previous SR

studies involved a fixed nonlinearity. When we consider an

arbitrary adjustable static nonlinearity, the maximum SNR gain is

achieved by a locally optimal nonlinearity for a weak periodic

signal in additive white noise [29,58]. Since the SNR gain of a

locally optimal nonlinearity is given by the Fisher information of

the noise distribution, we demonstrated that the SNR gain of a

locally optimal nonlinearity certainly exceeds unity for a weak

periodic signal in additive non-Gaussian noise, and SR does not

exist in an updated locally optimal nonlinearity [58]. However, the

structure of the locally optimal nonlinearity is determined by the

noise probability density function (PDF) and also the noise level

[58,59]. Then, in some practical signal processing tasks, the locally

optimal nonlinearity may be too complex to be implemented, and

also can not be established for an unknown noise distribution [59].

Therefore, this provides an opportunity for the suboptimal
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nonlinearity to improve the SNR gain by the SR effect

[3,4,7,8,25–29,58].

In this paper, we focus on amplifying the output-input SNR

gain of an uncoupled parallel array of static nonlinearities for

transmitting a weak periodic signal in additive white noise. For an

array of arbitrary static nonlinearities, the asymptotic expression of

the SNR gain is first developed. Then, for a given nonlinearity and

fixed noise levels, we prove that the SNR gain of an array is a

monotonically increasing function of the array size. It is shown

that the SNR gain maximized by the locally optimal nonlinearity

is the upper bound of the performance of an array of static

nonlinearities. Furthermore, it is demonstrated that the internal

array noise components are incapable of further improving the

SNR gain for locally optimal processing. This result extends the

study of SR in a single static nonlinearity [58,60] to an array of

static nonlinearities. The establishment of a locally optimal

nonlinearity needs the complete descriptions of the noise PDF

and the noise level. Therefore, when this is not feasible, we

propose instead a parallel array of suboptimal but easily

implemented threshold nonlinearities for transmitting a weak

periodic signal, in order to improve the SNR gain via the SR

phenomenon. It is shown that such an array of threshold

nonlinearities exhibits the SR effect by increasing the array noise

level and the array size. Moreover, with a sufficiently large array

size, the fact of the SNR gain exceeding unity is shown for a wide

range of underlying noise distributions. These interesting results

demonstrate that a parallel array of threshold nonlinearities can be

practically exploited, and is useful for nonlinear signal processing.

Results

Model
Consider the observation of a process x(t)~s(t)zj(t), where

the component s(t) is a weak periodic signal with a maximal

amplitude A (Ds(t)DƒA) and period T , and zero-mean additive

white noise j(t), independent of s(t), having a PDF fj and

variance s2
j~Ej½x2�~

Ð?
{? x2fj(x)dx. Next, the input x(t) is

applied to an uncoupled parallel array of N identical static

nonlinearities. In these nonlinearities, the noise terms gn(t),
independent of x(t), are the internal noise components for each

static nonlinearity g, so as to yield the outputs [26].

yn(t)~g(x(t)zgn(t)), n~1,2, � � � , N: ð1Þ

Here, assume that the derivative g’(z)~dg(z)=dz exists for

almost all z, and g has zero mean under fz, i.e. Ez½g(x)�~0, which

is not restrictive since any arbitrary g can always include a

constant bias to cancel this average [59]. The internal noise

components gn(t) are mutually independent and identically

distributed (i.i.d.) with the same PDF fg and variance s2
g. The

noise components j(t) and gn(t) are all assumed to be stationary

random variables. Since j(t) and gn(t) are independent, Eq. (1)

can be rewritten as yn(t)~g(s(t)zz(t)), where the composite

noise components z(t)~j(t)zgn(t) are with the same convolved

PDF fz(x)~
Ð?
{? fj(x{u)fg(u)du. Then, the array output y(t) is

given by

y(t)~
1

N

XN

n~1

yn(t): ð2Þ

The input SNR for x(t) can be defined as the power contained

in the spectral line at 1=T divided by the power contained in the

noise background in a small frequency bin DB around 1=T , this is

[3]

Rin~
DSs(t) exp ({i2pt=T)TD2

s2
jDtDB

, ð3Þ

with Dt indicating the time resolution or the sampling period in a

discrete-time implementation and the temporal average defined as

S � � � T~ 1
T

Ð T

0
� � � dt [3]. Since s(t) is periodic, y(t) is in general a

cyclostationary random signal with period T [3]. Similarly, the

output SNR at y(t) is expressed as

Rout~
DSEz½y(t)� exp ({i2pt=T)TD2

Svar½y(t)�TDtDB
, ð4Þ

where the nonstationary expectation

Ez½y(t)�~Ez½yn(t)�~
Ð?
{? yn(t)fz(x)dx and nonstationary vari-

ance var½y(t)�~Ez½y2(t)�{E2
z ½y(t)� are also temporal functions

of time t [3]. Then, the SNR gain, GN , is defined as the ratio of the

output SNR over the input SNR [3,26,57]

GN~
Rout

Rin

~
s2

j DSEz½y(t)� exp ({i2pt=T)TD2

Svar½y(t)�T DSs(t) exp ({i2pt=T)TD2
, ð5Þ

for an array of static nonlinearities with array size N .

SNR Gain of an Array for Weak Signals
For a weak signal s(t) (A?0 and Ds(t)DƒA) and at a fixed time t,

we make a Taylor expansion of g around z and have the

asymptotic form

Ez½y(t)�~Ez½yn(t)�~Ez½g(z(t)zs(t))�

&Ez½g(z)zs(t)g’(z)�~s(t)Ez½g’(z)�,
ð6Þ

where the outputs yn are i.i.d. for n~1,2, � � � , N . The output

degree-two moment is given by

Ez½y2(t)�~Ej Eg½y2(t)�
� �

~Ejf
1

N2

XN

n~1

XN

m~1

Eg½ynym�g

~
1

N2
Ej NEg½y2

n�zN(N{1)Eg½ynym�
� �

(Vm=n)

~
1

N
EjfEg½y2

n�gz
N{1

N
EjfE2

g ½yn�g

~
1

N
Ez½g2(szz)�z N{1

N
EjfE2

g ½g(szz)�g,

ð7Þ

where Ez½:�~EjfEg½:�g and Eg½yn�~Eg½ym�. Therefore, based on

Eq. (6), we have
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var½y(t)�~Ez½y2(t)�{E2
z ½y(t)�

&
1

N
Ez½g2(szz)�z N{1

N
EjfE2

g ½g(szz)�g

{s2(t)E2
z ½g0(z)�

&
1

N
Ez½g2(z)�z 1

N
2s(t)Ez½g(z)g0(z)�

z
N{1

N
EjfE2

g ½g(z)�gz N{1

N
2s(t)EjfE2

g ½g0(z)g(z)�g,

ð8Þ

where the approximations are up to first order in the small signal

s(t). Substituting the asymptotic forms of Ez½y(t)� of Eq. (6) and

var½y(t)� of Eq. (8) into Eq. (5), we obtain the asymptotic

expression of the SNR gain of a parallel array of static

nonlinearities as

GN&
s2

jE2
z ½g’(z)�

1
N

Ez½g2(z)�z N{1
N

EjfE2
g ½g(jzg)�g

, ð9Þ

where terms 2s(t)Ez½g(z)g’(z)� and 2s(t)EjfE2
g ½g’(z)g(z)�g, com-

pared with primary terms Ez½g2(z)� and EjfE2
g ½g(z)�g, are

neglected as A?0 (Ds(t)DƒA). It is interesting to note that the

SNR gain GN in Eq. (9) is applicable for an arbitrary weak-

periodic signal s(t) throughout an array of static (yet arbitrary)

nonlinearities.

For the random variable g(jzg) and the convex function x2,

by the Jensen inequality [61], we have

Eg½g2(jzg)�§E2
g½g(jzg)�, ð10Þ

for any fixed variable j [61]. Therefore, we have

Ez½g2(z)�~EjfEg½g2(jzg)�g§EjfE2
g ½g(jzg)�g: ð11Þ

From Eq. (11) and for any integers K§N§1, we have

(K{N)Ez½g2(z)�§(K{N)EjfE2
g ½g(jzg)�g, ð12Þ

1

N
Ez½g2(z)�z N{1

N
EjfE2

g ½g(jzg)�g

§

1

K
Ez½g2(z)�z K{1

K
EjfE2

g ½g(jzg)�g,
ð13Þ

GN~
s2

jE2
z ½g’(z)�

1
N

Ez½g2(z)�z N{1
N

EjfE2
g ½g(jzg)�g

ƒGK

~
s2

jE2
z ½g’(z)�

1
K

Ez½g2(z)�z K{1
K

EjfE2
g ½g(jzg)�g

,

ð14Þ

Thus, for the given nonlinearity g and fixed noise components

j(t) and gn(t), the SNR gain GN in Eq. (9) is a monotonically

increasing function of the array size N. From Eq. (9), we have the

minimum.

G1~s2
jE2

z ½g’(z)�=Ez½g2(z)�, ð15Þ

for N~1, and the maximum

G?~s2
jE2

z ½g’(z)�=EjfE2
g ½g(jzg)�g, ð16Þ

for N~?.

Naturally, Eq. (12) inspires us to consider the increase of array

size N for the further improvement of the SNR gain obtained by a

single nonlinearity. We will demonstrate in Eq. (17) that this

thought is infeasible for locally optimal processing.

Without the internal noise gn(t), Eq. (9) becomes

GN~
s2

jE2
j ½g’(x)�

1
N

Ej½g2(x)�z N{1
N

Ej½g2(x)�
~G1

~
s2

jE2
j ½g’(x)�

Ej½g2(x)� ƒs2
jEj

f ’2j(x)

f 2
j (x)

" #
~s2

jI(fj),

ð17Þ

where the array size N does not work, and the equality occurs as g
becomes a locally optimal nonlinearity

gopt(x) ¼D Cf ’j(x)=fj(x), ð18Þ

for the derivative f ’j(x)~dfj(x)=dx (without loss of generality

C~{1) [29,59]. Here, I(f )~E½f ’2=f 2� is the Fisher information

of the noise distribution f [61].

We add the extra noise g(t) to the observation data X , aiming to

improve the performance of gopt. However, based on the Fisher

information in inequality I(fz)ƒ min (I(fj),I(fg)) [61], we have

G1~
s2

jE2
z ½g’(z)�

E2
z ½g(z)� ƒs2

jI(fz)ƒs2
jI(fj), ð19Þ

where the later inequality indicates that the addition of extra noise

cannot improve the performance of a single locally optimal

nonlinearity gopt [58].

Based on Eq. (12), the SNR gain of an array of arbitrary static

nonlinearities attains its maximum G? in Eq. (16). Using the

Cauchy-Schwarz inequality, we have

G?~
s2

jE2
z ½g’(z)�

Ej E2
g½g(jzg)�

n o~
s2

jE2
j dEg½g(jzg)�=dj
� �

Ej E2
g½g(jzg)�

n o

ƒs2
jEj½

f ’2j(j)

f 2
j (j)
�~s2

jI(fj),

ð20Þ

where the nonlinearity Eg½g(jzg)� is a function of j. The equality

occurs as the nonlinearity Eg½gopt(jzg)�~Cf ’j(j)=fj(j), i.e. the

nonlinearity gopt(j)~Cf ’j(j)=fj(j) and the PDF fg(x)~d(x).

Here, d(x) is the Dirac delta function, and this means there is no

internal noise in the nonlinearity. From Eqs. (17), (19) and (20),

this result indicates that the upper bound of the SNR gain G? is

achieved by gopt in Eq. (18) without the internal noise gn(t).

Therefore, the addition of internal noise components gn(t) to the

signal is never helpful for improving the SNR gain that is obtained

by the locally optimal nonlinearity of Eq. (18).

Thus, Eq. (17) extends our previous result of the incapability of

SR in the SNR gain improvement of a single locally optimal
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nonlinearity [58] to the configuration of the array of static

nonlinearities. For instance, consider the Gaussian noise compo-

nents j(t) and gn(t) with PDFs fj(x)~ exp ({x2=(2s2
j))=

ffiffiffiffiffiffiffiffiffiffi
2ps2

j

q
and fg(x)~ exp ({x2=(2s2

g))=
ffiffiffiffiffiffiffiffiffiffi
2ps2

g

q
, respectively. Then, the

composite noise z(t) is also Gaussian distributed with PDF

fz(x)~ exp ({x2=(2s2
z))=

ffiffiffiffiffiffiffiffiffiffi
2ps2

z

p
and variance s2

z~s2
jzs2

g. The

Gaussian distribution corresponds to the locally optimal nonlin-

earity gopt(x)~x [58]. Substituting gopt into Eq. (9), we have

GN~
s2

jE2
z ½g’opt(z)�

1
N

Ez½g2
opt(z)�z N{1

N
EjfE2

g ½gopt(jzg)�g

~
s2

j

1
N

s2
zz

N{1
N

s2
j

~
s2

j

s2
jz

1
N

s2
g

ƒG?~s2
jI(fj)~1,

ð21Þ

where EjfE2
g ½gopt(jzg)�g~s2

j and the Fisher information of fj is

I(fj)~1=s2
j [59]. In Eq. (21), it is seen that the increase of noise

variance s2
g only degrades the SNR gain. The upper bound of

unity can be only achieved for the infinite array size N~? or

s2
g~0 by the locally optimal nonlinearity of Eq. (18).

Noise-enhanced Signal Transmission in Arrays
It is seen in Eq. (17) that, for transmitting a weak periodic signal

in additive white noise, the addition of internal array noise to an

uncoupled parallel array of nonlinearities is incapable of improv-

ing the SNR gain of the locally optimal nonlinearity gopt.

However, the structure of gopt in Eq. (18) depends on the

complete description of the noise PDF and the noise level, and in

practice it may be difficult to obtain an explicit analytical

expression of gopt in the unknown noisy environment [59].

Moreover, the presence of internal noise gn(t) is unavoidable in

some practical signal processing cases [5,6,38–41,59]. Thus, we

place suboptimal but easily implemented nonlinearities in a

parallel array to transmit a weak periodic signal, and then show

the feasibility of the SR phenomenon [1,3,26].

In the observation model of Eq. (1), the external noise j(t) is

considered as zero-mean generalized Gaussian noise, which is a

flexible family containing some common important cases (e.g.

Gaussian noise and Laplacian noise) [27,59,61]. The generalized

Gaussian noise j(t) has PDF

fj(x)~
c1

sj
exp ({c2D

x

sj
Da), ð22Þ

where c1~
a
2
C

1
2 3a{1
� �

=C
3
2 a{1
� �

and c2~ C 3a{1
� �

C a{1
� �� �a=2

for a decay exponent aw0 [59]. The array noise terms gn(t) are

assumed to be i.i.d. uniform noise with the same PDF

fg(x)~1=(2b), ð23Þ

for {bƒxƒb (b~
ffiffiffi
3
p

sgw0) and zero otherwise. When the

exponent a~2, Eq. (22) represents the PDF of Gaussian noise j(t).
In this case, the signal s(t) is buried in the composite noise

z(t)~j(t)zgn(t). Then, the corresponding locally optimum

nonlinearity gopt of Eq. (18) needs to be updated as

gopt(x)~{
f ’z(x)

fz(x)

~

exp {
(x{

ffiffiffi
3
p

sg)2

2s2
j

 !
{ exp {

(xz
ffiffiffi
3
p

sg)2

2s2
j

 !

ffiffiffiffiffiffi
2p
p

sj½Q(
x{

ffiffiffi
3
p

sg

sj
){Q(

xz
ffiffiffi
3
p

sg

sj
)�

,

ð24Þ

with Q(x)~
Ð?

x
exp ({t2=2)=

ffiffiffiffiffiffi
2p
p

dt. It is seen in Eq. (24) that the

structure of gopt is rather complicated and depends closely on the

noise root-mean-square (RMS) amplitudes sj and sg. An

illustrative plot of the locally optimum nonlinearity is shown in

Fig. 1 for sj~sg~1.

A suboptimal but easily implemented nonlinearity that we

consider is the three-level threshold nonlinearity [3,55]

gth(x)~
1

2
½sign(x{h)zsign(xzh)�, ð25Þ

with the sign or signum function sign(:) and the response threshold

h. Furthermore, the SNR gain GN of a parallel array of threshold

elements is plotted in Fig. 2 as a function of the RMS amplitude sg

of the array noise gn(t) and the array size N . Here, the Gaussian

noise j(t) is with RMS amplitude sj~1, and the response

threshold of gth takes h~1. From the bottom up, the SNR gain

GN is shown for N~1,2,5,100,500 and ? in Fig. 2 (solid lines). It

is seen in Fig. 2 that, for an isolated static nonlinearity gth (N~1),

the SR effect does not appear, and the SNR gain decreases

monotonically as sg increases. The SNR gain G
opt
1 of a single

locally optimum nonlinearity gopt is also plotted in Fig. 2 (dashed

line). It is seen in Fig. 2 that the SNR gain G
opt
1 of gopt is always

better than G1 of a single threshold nonlinearity gth (N~1).

However, as the array size N§2 and the array noise RMS

amplitude sg increases, GN of the array of threshold nonlinearities

gradually catches up, and finally exceeds G
opt
1 of the isolated

locally optimum nonlinearity gopt, as shown in Fig. 2. Additionally,

upon increasing the array size N, the bell-shape behavior of GN of

a parallel array of threshold elements versus sg and N is clearly

visible, this is the array SR effect. It is also noted in Fig. 2 that, for

a sufficiently large array size Nw500, the SNR gain GN tends to

its upper limit of G? for N~?. Of course, based on Eq. (17), the

upper limit of G? is less than the quantity of s2
jI(fj)~1 achieved

by the locally optimal nonlinearity gopt in Eq. (18) (without the

internal noise gn(t)), as shown in Fig. 2.

Next, an interesting question is, for transmitting a weak periodic

signal, whether the SNR gain GN of an array of threshold

nonlinearities can exceed unity or not. This possibility, for the case

of SNR gain exceeding unity, is shown for Laplacian noise j(t)
with a~1 in Eq. (22). In this case, when the array noise

components gn(t) are i.i.d. uniform random variables, the locally

optimum nonlinearity should be updated as

gopt(x)~{
f ’z(x)

fz(x)
~{

fj(xz
ffiffiffi
3
p

sg){fj(x{
ffiffiffi
3
p

sg)

Fj(xz
ffiffiffi
3
p

sg){Fj(x{
ffiffiffi
3
p

sg)
, ð26Þ

where Fj(x)~½1zsign(x)(1{ exp ({
ffiffiffi
2
p

DxD)=sj)�=2 is the cumu-

lative distribution function of Laplacian noise j(t). For the noise

RMS amplitudes sj~sg~1, an illustrative example of the

structure of gopt is plotted in Fig. 3. Furthermore, when we fix

sj~1 and tune sg, the SNR gains GN of an array of threshold

Stochastic Resonance in an Array of Nonlinearities
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elements with the threshold h~1 are presented in Fig. 4. It is seen

in Fig. 4 that, for a sufficiently larger array size N§5, the fact of

the SNR gain GN exceeding unity is clearly demonstrated in this

case. It is also interesting to note in Fig. 4 that SR effect survives

for a single threshold nonlinearity gth with N~1.

In Eq. (12), it is known that the performance of an array of

nonlinearities increases monotonically with the array size. As

indicated in Figs. 2 and 4, we advocate the significance of a

parallel array of nonlinearities with large array size N : The region

of the noise level that improves the SNR gain of an array is

gradually expanded as the array size N increases. Thus, increasing

the array size N provides a simple alternative means of improving

the performance of nonlinearities, especially when the optimal

noise associated with a single nonlinearity [28,30] is not known or

accessible.

We also emphasize that the fact of the SNR gain exceeding

unity is not exceptive. Here, we employ an array of gth threshold

elements with the threshold h~0 and the array size N~100. The

external generalized Gaussian noise j(t) is with the RMS

amplitude sj~1. The array noise is uniform noise with its RMS

amplitude sg~1. It is shown in Fig. 5 that, for a sufficiently large

array size N~100, the SNR gain G100 (red line) can be larger than

Figure 1. The locally optimum nonlinearity gopt. The locally
optimum nonlinearity gopt in Eq. (24). The internal uniform noise
components gn(t) have the RMS amplitude sg~1. The external noise
j(t) is with the RMS amplitude sj~1 and the decay parameter a~2
(Gaussian noise).
doi:10.1371/journal.pone.0058507.g001

Figure 2. Output-input SNR gain GN . Output-input SNR gain GN as
a function of the RMS amplitude sg of the array uniform noise terms
gn(t) in the array of threshold nonlinearities of Eq. (25). The external
noise j(t) is with the RMS amplitude sj~1 and the decay parameter
a~2 (Gaussian noise). The threshold of gth takes h~1. The SNR gain GN

of Eq. (9) is plotted by black lines for N~1,2,5,100,500 and ? (from the

bottom up). For comparison, the SNR gains G
opt
1 (blue line) of the locally

optimum nonlinearities gopt(x) in Eq. (24) and the quantity of s2
jI(fj)~1

(red line) achieved by the locally optimal nonlinearity gopt in Eq. (18)
(without the internal noise gn(t)) are also illustrated.
doi:10.1371/journal.pone.0058507.g002

Figure 3. The locally optimum nonlinearity gopt. The locally
optimum nonlinearity gopt in Eq. (26). The internal noise terms gn(t) are
uniform noises with the RMS amplitude sg~1. The external noise j(t) is
with the RMS amplitude sj~1 and the decay parameter a~1
(Laplacian noise).
doi:10.1371/journal.pone.0058507.g003

Figure 4. Output-input SNR gain GN . Output-input SNR gain GN as
a function of the RMS amplitude sg of the array uniform noises gn(t) in
the array of threshold nonlinearities of Eq. (25). The external noise j(t) is
with the RMS amplitude sj~1 and the decay parameter a~1
(Laplacian noise). The threshold of gth takes h~1. The SNR gain GN

of Eq. (9) is plotted by black lines for N~1,2,5,100,500 and ? (from the

bottom up). For comparison, the SNR gains G
opt
1 (blue line) of the locally

optimum nonlinearities gopt in Eq. (26) and the quantity of s2
jI(fj)~2

(red line) achieved by the locally optimal nonlinearity gopt in Eq. (18)
(without the internal noise gn(t)) are also illustrated.
doi:10.1371/journal.pone.0058507.g004
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unity for the decay exponent av1:83, which represents a wide

range of generalized Gaussian noise distributions. Here, the black

line indicates the upper limit of

s2
jI(fj)~a2C(3a{1)C(2{a{1)=C2(a{1) [58,59] that the SNR

gain G? cannot exceed, as Eq. (20) indicated.

Discussion

In this paper, for a weak periodic signal in additive white noise,

we study the characteristics of the SNR gain of an uncoupled

parallel array of arbitrary static nonlinearities. Under the

assumption of weak signal, an explicit expression of the SNR

gain of an array is developed. Then, it is proven that, for a given

nonlinearity and fixed noise levels, the SNR gain of an array is a

monotonically increasing function of the array size. Furthermore,

it is demonstrated that the internal array noise components are

incapable of further improving the SNR gain of locally optimal

processing. However, since the locally optimal nonlinearity

requires a complete knowledge of the underlying noise statics,

the structure of the locally optimal nonlinearity may have no

analytical expression or be intractable. Therefore, a parallel array

of suboptimal but easily implemented threshold nonlinearities

becomes an optional approach. It is shown that such an array of

threshold nonlinearities can exhibit the SR effect by increasing the

array noise level and the array size. For a sufficiently large array

size, we also show that the SNR gain of an array of threshold

nonlinearities can exceed unity for a wide range of noise

distributions, e.g. the exponent aƒ1:83 in Fig. 5.

Some interesting open questions arise. For example, we only

considered the array of threshold nonlinearities for processing a

weak noisy signal. Therefore, can other tractable nonlinearities be

connected in parallel for achieving improved output-input SNR

gain via the array SR effect? As indicated in Fig. 2 and 4, we can

operate an array of nonlinearities with large array size at a feasible

level of noise. Therefore, given an acceptance criterion of the

performance of nonlinearities, how large the array size is and

which level the noise takes are interesting questions. These

questions will be of interest for further studies of nonlinear signal

processing in the context of array SR, especially in the ensemble of

neurons. Often quite a number of neurons have similar properties

and respond to the same stimuli [5,6,15], thus the condition of all

neurons in parallel having the same pattern of input and output

connections will be considered. It is of interest to explore how the

external (internal) noise components assist the information transfer

through the neural network. For the static nonlinearity considered

in Eq. (1), Eq. (20) provides the upper bound of the performance of

the array of static nonlinearities. While many neuron models, such

as the leaky integrate-and-fire model and the Hodgkin-Huxley

model [6,8], represent the neurodynamics with the time evolution

nonlinear process (not a static nonlinearity), then whether the

transmission efficiency of a parallel array of neurons has an upper

bound for the neural signal propagate or not deserves to be

studied.

Methods

Under the assumption of weak signals, the Taylor expansion of

the noise PDF is utilized in Eqs. (6), (7), (8) and (9). The Jensen

inequality is applied to Eq. (11). The Cauchy-Schwarz inequality is

extensively used in Eqs. (17), (20) and (21).
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