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Abstract

We analyze signal detection with nonlinear test statistics in the presence of colored noise. In the limits of small signal and
weak noise correlation, the optimal test statistic and its performance are derived under general conditions, especially
concerning the type of noise. We also analyze, for a threshold nonlinearity–a key component of a neural model, the
conditions for noise-enhanced performance, establishing that colored noise is superior to white noise for detection. For a
parallel array of nonlinear elements, approximating neurons, we demonstrate even broader conditions allowing noise-
enhanced detection, via a form of suprathreshold stochastic resonance.
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Introduction

Stochastic resonance has emerged as a significant statistical

phenomenon where the presence of noise is beneficial for signal

and information processing in both man-made and natural

systems [1–11]. The excitable FitzHugh–Nagumo (FHN) neuron

model has been discussed for exploring the functional role of noise

in neural coding of sensory information [12]. Following this, the

milestone concept of aperiodic stochastic resonance using the

FHN neuron model [13] stimulated a number of interesting

investigations in sensory biology [3,7,14,15] and physiological

experiments [6,8,16–20]. Due to the character of activity in the

nervous system, the neuron coding strategy based on stochastic

resonance is also found in threshold (level-crossing) [21–23] and

threshold-free [24–28] neurons. Since there are large numbers of

neurons in the nervous system of animals and humans with

variations in structure, function and size [2,4,7–9], then the

potential exploitation of stochastic resonance in a neuron bundle

becomes an interesting open question in neuroscience. In a general

summing neural network, Collins et al. [4] reported that the noise

intrinsic to each neuron could be used to extend the operating

range of the sensitivity of the overall system. This, however, is not

a unique case. In the summing multi-threshold network, supra-

threshold stochastic resonance discovered by Stocks [29] over-

comes the restriction of subthreshold signals, and appears to offer a

possible explantation of dc adaptation in sensory neurons [9,30].

One-dimensional coupling [31] and spatio-temporal stochastic

resonance [7,32] show that not only an optimal noise intensity but

also an optimal coupling strength exists. Recent stochastic

resonance research in complex networks [33–40] also demon-

strates that an interconnected network configuration, as well as the

non-zero noise level, can be optimized to achieve the best system

performance.

In many practical situations, the idealization of white noise is never

exactly realized [2,5]. Consequently, the effect of colored noise on

stochastic resonance has been investigated using the measure of

output signal-to-noise ratio of a periodic signal [2,5,16,41–43].

Although the suppression of stochastic resonance with increasing

noise correlation time was demonstrated [2,5,41–43], it is interesting

to note that, under certain circumstances, colored noise can be

superior to white noise for enhancing the response of a nonlinear

system to a weak signal [16,44]. In the field of signal detection, the

employment of noise to enhance signal detectability also becomes a

possible option [45–55]. However, in most of these studies, the

observed noise samples are often assumed to be independent.

Colored noise for signal detection [56–60] is not adequately

investigated in the context of stochastic resonance. In this article,

we focus on the weak signal detection problem with the beneficial role

of additive colored noise in threshold neurons. Because of the ‘‘all-

and-none’’ character of nerve activity [61], the problem of threshold-

based neural signal detection can be considered as a statistical binary

hypothesis test [7,23,27]. In this situation, explicit expressions for the

maximum asymptotic detection efficacy are derived for a given

transfer function of neuron model. We prove that colored noise that

arises from a moving-average model is superior to white noise in

improving the detection efficacy of neurons. It is illustratively shown

that, for a single neuron with a signum threshold nonlinearity, the

possibility of noise-enhanced detection only holds for non-scaled

noise. For scaled noise, the effect of noise-enhanced detection does

not occur in a single neuron model. However, when we tune the

internal noise components of a parallel array of threshold neurons, it

is observed that the constructive role of noise comes into play again in

improving the signal detection efficacy, wherein suprathreshold

stochastic resonance manifests its potentiality.
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Results

Detection model
Consider the detection problem formulated as a binary

hypothesis test [23,60,62]

H0 : x~z,

H1 : x~zzhs:
ð1Þ

Under hypothesis H0, the observation vector x~½x1,x2, � � � ,xN �T

consists of noise z~½z1,z2, � � � ,zN �T only, and under hypothesis H1

it consists of noise z and known signal s~½s1,s2, � � � ,sN �T with its

strength h. There exists a finite bound Us such that 0ƒjsnjƒUs,

and the asymptotic average signal power satisfies

0vPs~ limN?? sT s=Nv? [56–58,60,62]. Next, the test statis-

tic T(x) is compared with a decision threshold c to decide the

hypotheses, as

T(x)~cT g(x)wv
H0

H1

c, ð2Þ

where the coefficient vector c~½c1,c2, � � � ,cN �T is associated with

the function g(x) to form T(x).

Assume the N-dimensional probability distribution f (z) of noise

z and zero-mean vector of E½g(z)�~
Ð

g(z)f (z)dz (for a shift in

mean) [58,60]. Then, for a large sample size N of observation

vector x, the test statistic T(x) has zero-mean and asymptotic

variance

var(T(x)jH0)~cT E½g(z)g(z)T �c, ð3Þ

under hypothesis H0. Furthermore, for weak signals (h?0) and

under hypothesis H1, g(x) can be expanded to the first-order

g(x)~g(zzhs)&g(z)zh
Lg(z)

Lz
s: ð4Þ

Then, the characteristics of T(x) under H1, up to the first-order in

h, can be calculated as

E(T(x)jH1)&hcT E½Lg(z)

Lz
�s, var(T(x)jH1)&var(T(x)jH0): ð5Þ

Under both hypotheses H0 and H1, the test statistic T(x),
according to the central limit theorem, converges to a Gaussian

distribution. Thus, the binary hypothesis test of Eq. (1) becomes a

Gaussian mean-shift detection problem [60,62]. Given the false

probability, the detection probability is a monotonically increasing

function of the detection efficacy j(T) [60,62] given by

j(T)~ lim
N??

LE½T(x)jH1�=Lhjh~0

� �2

var½T(x)jH0�

~
cT E Lg(z)=Lz½ �sð Þ2

cT E½g(z)gT (z)�c

~
cT E½g(z) L ln f (z)=Lzð ÞT �s
� �2

cT E½g(z)g(z)T �c

ƒ sT J s,

ð6Þ

where the Cauchy-Schwarz inequality yields

cT E½g(z)(
L ln f (z)

Lz
)T �s

� �2

ƒcT E½g(z)g(z)T �c:sT J s, ð7Þ

with the Fisher information matrix J~E½( L ln f (z)
Lz

)( L ln f (z)
Lz

)T �. Note

that the equality of Eq. (6) is satisfied by the locally optimum

nonlinearity

gopt(z)~C
L ln f (z)

Lz
, ð8Þ

for an arbitrary constant C.

However, a complete closed-form noise distribution f (z) may be

unavailable, especially in unknown noisy circumstances [56–

58,60,62], which makes the nonlinearity of Eq. (8) difficult or too

complex to implement. Thus, there may be compelling reasons for

considering the given function g with an easily implemented

feature. In this case, the detection efficacy in Eq. (6) can be

maximized as

j(T)~
cT E Lg(z)=Lz½ �sð Þ2

cT E½g(z)gT (z)�c

~
LT c
� �T

L{1E Lg(z)=Lz½ �s
� �h i2

LT c
� �T

LT c
� �

ƒsT E
Lg(z)

Lz

� 	T

V{1E
Lg(z)

Lz

� 	
s,

ð9Þ

with the Cholesky decomposition of the variance matrix

V~E g(z)g(z)T

 �

~LLT and by optimally choosing the coefficient

vector copt~k E½g(z)g(z)T �{1E Lg(z)=Lz½ �s for an arbitrary con-

stant k.

Colored noise
Consider a useful colored noise model of the first-order moving-

average [56,59] as

zi~r1wi{1zwizr2wiz1, ð10Þ

where the correlation coefficients are r1,2 and

w~½w1,w2, � � � ,wN �T is an independent identically distributed

(i.i.d.) random vector. For small values of r1,2 (jr1,2j%1), the

dependence among noise samples zi will be weak [56,59]. Here,

we assume wi have an univariate distribution fw(w) that is

symmetric about the origin. We also assume the memoryless

nonlinearity g(z)~½g(z1),g(z2), � � � ,g(zN )�T to be odd symmetric

about the origin. Then, up to first order in small correlation

coefficients r1,2, we can expand g(zi) as

g(zi)&g(wi)z(r1wi{1zr2wiz1)g0(wi), ð11Þ

g0(zi)&g0(wi)z(r1wi{1zr2wiz1)g00(wi), ð12Þ

and obtain expectations

E½g0(zi)�&E½g0(w)�, ð13Þ
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E½g2(zi)�&E½g2(w)�, ð14Þ

E½g(zi)g(ziz1)�&(r1zr2)E½wg(w)�E½g0(w)�: ð15Þ

Therefore, we have the expectation matrix

E
Lg(z)

Lz

� 	
&E½g0(w)� I, ð16Þ

with the unit matrix I, and the variance matrix V~E g(z)g(z)T

 �

has elements

Vi,i~E½g2(w)�, ð17Þ

Vi,iz1~Viz1,i~(r1zr2)E½wg(w)�E½g0(w)�, ð18Þ

for i~1,2, � � � ,N. Then, based on Eq. (9), the normalized

detection efficacy e(g) can be computed as

e(g,r)~
j(T)

NPs

~
sT E Lg(z)=Lz½ �T V{1E Lg(z)=Lz½ �s

sT s

~E2½g0(w)� sT V{1s

sT s

ƒ

E2½g0(w)�
lmin

:

ð19Þ

Here, when the equality of Eq. (19) is achieved, the signal s is the

corresponding eigenvector to the minimum eigenvalue lmin of the

matrix V. It is known that the eigenvalues of the matrix V are [62]

li~Vi,iz2Vi,iz1 cos
pi

Nz1

� �

~E½g2(w)�z2(r1zr2)E½wg(w)�E½g0(w)� cos
pi

Nz1

� �
,

ð20Þ

corresponding to eigenvectors vi~ sin (pik=(Nz1)) for

k~1,2, � � � ,N. Here, as the nonlinearity g is assumed to be odd,

it is then found that E½wg(w)�§0 and E½g0(w)�§0. Therefore, if

r1zr2v0 and for a large sample size N, we take i~1 and

lmin~l1&E½g2(w)�z2(r1zr2)E½wg(w)�E½g0(w)�. Otherwise, we

choose lmin~lN&E½g2(w)�{2(r1zr2)E½wg(w)�E½g0(w)�. An il-

lustration of the eigenvector vN is shown in Fig. 1 for N~200. In

this way, by optimally choosing the input signal (eigenvector) s~v1

(vN ), the maximum efficacy e(g,r) can be calculated as

emax(g,r)~ max
s

e(g,r)

~
E2½g0(w)�

Vi,i{2jVi,iz1j

~
E2½g0(w)�

E½g2(w)�{2jr1zr2j E½wg(w)� E½g0(w)� :

ð21Þ

Since, from its definition in Eq. (6), the efficacy e(g,r) is non-

negative, the denominator in Eq. (21) must satisfy

E½g2(w)�{2jr1zr2jE½wg(w)�E½g0(w)�w0: ð22Þ

In order to validate Eq. (22), we use the Cauchy-Schwarz

inequality to yield

E2½wg(w)�ƒE½w2�E½g2(w)�~s2
wE½g2(w)�, ð23Þ

E2½g0(w)�ƒE½( f 0w
fw

)2�E½g2(w)�~J(fw)E½g2(w)�, ð24Þ

with the Fisher information quantity J(fw)~E½(f 0w=fw)2� and the

variance s2
w of noise distribution of fw [56]. Thus, we find

E½wg(w)� E½g0(w)�ƒ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

wJ(fw)
q

E½g2(w)�: ð25Þ

Substituting Eq. (25) into Eq. (22) and noting

s2
wJ(fw)~E½w2�E½( f 0w

fw

)
2�§E½w f 0w

fw

�2~1, ð26Þ

we have

jr1zr2jƒ
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

wJ(fw)
p ƒ

1

2
: ð27Þ

Since we assume jr1,2j%1, the inequalities of Eqs. (27) and (22)

can be satisfied, and the detector efficacy in Eq. (21) will be

theoretically analyzed in the following.

For white noise vector z with zero correlation coefficients

r1,2~0, the detection efficacy e(g,r) in Eq. (21) satisfies

e(g,r)~
E2½g0(w)�
E½g2(w)�ƒemax(g,r): ð28Þ

Figure 1. Eigenvector vN . An illustration of the eigenvector vN of the
variance matrix V (N~200).
doi:10.1371/journal.pone.0091345.g001
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Thus, for a given function g, colored noise is superior to white

noise in enhancing the detection efficacy, at a cost of optimally

matching the input signal with the eigenvector vi of covariance

matrix V.

Stochastic resonance in threshold-based neurons
We will illustratively show the possibilities of noise-enhanced

detection in threshold-based neurons. The classical McCulloch-

Pitts threshold neuron has the form

g(x)~
1,xw‘,

0,xƒ‘,



ð29Þ

with the response threshold ‘. It is seen that g can be expressed as

a function of x in terms of the signum (sign) function as

g(x)~ 1
2

sign(x{‘)z 1
2
. Since the constant factor 1=2 does not

affect the detection efficacy of the transfer function g, then we

focus on the signum function

g(x)~sign(x), ð30Þ

with response threshold ‘~0 in the following parts. Here, the

signum function g is not continuous at x~0, but has its derivative

g0(x)~2d(x) for any x [60].

For the colored noise model of Eq. (10), the correlation

coefficient r2~0 indicates the noise sequence zi is a causal process

that can be physically realized. Here, we assume r1~r (jrj%1)

and r2~0, and show the possibility of stochastic resonance in the

physically realizable noise environment. First, consider scaled

noise w(t)~sww0(t) that has the distribution fw(w)~
fw0

(w=sw)=sw [23,60]. Here, w0(t) has a standardized distribution

fw0
with unity variance s2

w0
~1. Thus, based on Eq. (21), the

absolute moment is

E½wg(w)�~E½w sign(w)�~E½jwj�~swEw0
½jw0j�, ð31Þ

where the operator Ew0
½:�~

Ð
:fw0

(w0)dw0. Thus, for the signum

function g, the detection efficacy of Eq. (21) can be expressed as

emax(g,r)~
4f 2

w (0)

1{4jrjfw(0)E½jwj�~
4s{2

w f 2
w0

(0)

1{4jrjfw0
(0)Ew0

½jw0j�
: ð32Þ

It is seen in Eq. (32) that emax(g,r) is a monotonically decreasing

function of noise variance s2
w, and no noise-enhanced detection

effect will occur in such a single neuron model for scaled noise.

We further consider non-scaled Gaussian mixture distribution

[5,47,48,60]

fw(x)~
1

2
ffiffiffiffiffiffiffiffiffi
2pE2
p exp (

{(x{m)2

2E2
)z exp (

{(xzm)2

2E2
)

" #
, ð33Þ

where the variance s2
w~m2zE2 and parameters m,E§0. Then, for

the signum function g in Eq. (30), the detection efficacy of Eq. (21)

can be computed as

emax(g,r)~

2

pE2
exp ({ m2

E2
)

1{2jrj 2
p exp ({ m2

E2
)z

ffiffi
2
p

q
m
E exp ({ m2

2E2
)erf( mffiffi

2
p

E
)

h i , ð34Þ

where the error function erf(x)~2=
ffiffiffi
p
p Ð x

0
exp ({t2)dt. In Fig. 2,

for the correlation coefficient jrj~0:2 and different values of

m~0:3,0:5 and 1, we show the detection efficacy of Eq. (34) as a

function of noise variance s2
w. For a given non-zero value m and as

E?0, the noise distribution model of Eq. (33) indicates the

dichotomous noise [5,48,53]. In this situation, as the signal

strength h?0 and jhsnj%m, the signum function g will not change

its output whether the signal appears or not. Therefore, the test

statistics T(x)~cT g(x) in Eq. (2) will be the same value under

hypotheses H0 and H1, and the detection efficacy emax(g,r) in Eq.

(34) starts from zero. This explantation can be also validated by

Eq. (34) as E?0 and m being fixed, as illustrated in Fig. 2.

However, it is clearly seen that, upon increasing the noise variance

s2
w~E2zm2 (actually increasing E), the noise-enhanced detection

effect appears. The smaller the parameter m is, the more

pronounced the resonant peak of emax(g,r) becomes, as shown

in Fig. 2.

Next, an interesting problem is that, for scaled noise, can we

observe the noise-enhanced detection effect in threshold-based

neurons? The answer to this question is affirmative. Here, we will

resort to the constructive role of internal noise for improving the

performance of an array of threshold neurons. Let

xxm~½�xx1,m,�xx2,m, � � � ,�xxN,m�T be the vector of N observation

components at the m-th element of receiving array of M identical

neurons. In this observation model, �xxi,m~zizyi,m under the

hypothesis H0. Here, in each neuron element, the M noise terms

ym are assumed to be mutually independent with the same PDF fy

and variance s2
y. Then, at the observed time i, the array outputs

are collected as �gg(�xxi)~
PM

m~1 g(�xxi,m)=M, and the test statistics

can be reconstructed as TGC(xx)~cT �gg(xx) with

�gg(xx)~½�gg(�xx1),�gg(�xx2), � � � ,�gg(�xxN )�T . For the colored noise model of

Eq. (10) with r1~r and r2~0, we have

g(�xxi)&g(vi)zrwi{1g0(vi), ð35Þ

g0(�xxi)&g0(vi)zrwi{1g00(vi), ð36Þ

where the composite noise vi~wizyi has the convolved

distribution fv(v)~
Ð

fw(v{u)fy(u)du. Then, we have expectations

Ev½�gg0(�xxi)�~
1

M

XM
m~1

Ev½g0(�xxi,m)�&Ev½g0(v)�, ð37Þ

and

Ev
L�gg(�xx)

L�xx

� 	
&Ev½g0(v)� I, ð38Þ

with the operator Ev½:�~
Ð
:fv(v)dv. The variance matrix

V~Ev �gg(�xx)�gg(�xx)T

 �

has elements

Vi,i~Ev½�gg2(�xxi)�

~Ewf 1

M2

XM
m~1

XM
n~1

Ey½g(�xxi,m)g(�xxi,n)�g
&

1

M
Ev½g2(v)�z (M{1)

M
EwfE2

y½g(wzy)�g,

ð39Þ

ð34Þ
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Vi,iz1~Viz1,i~Ev½�gg(�xxi)�gg(�xxiz1)�

~Ewf 1

M2

XM
m~1

XM
n~1

Ey½g(�xxi,m)g(�xxiz1,n)�g
~

1

M2
EwfM2Ey½g(�xxi)g(�xxiz1)�g

&rEwfwEy½g(wzy)�gEv½g0(v)�:

ð40Þ

Then, based on Eqs. (38), (39) and (40), the maximum efficacy

emax(g,r) can be computed by Eq. (21) as

emax(g,r)~ max
s

e(g,r)~
E2

v ½g0(v)�
Vi,i{2jVi,iz1j

: ð41Þ

For instance, we assume the initial Gaussian noise components

wi have the distribution of fw(x)~ 1ffiffiffiffiffiffiffiffi
2ps2

w

p exp ({ w2

2s2
x
) and the

given variance s2
w. The internal noise components of each neuron

is assumed to be the uniform random variable yi with its

distribution fy(x)~1=(2b) for {bƒxƒb and zero otherwise. The

composite random variables vi are distributed by

fv(x)~
erf( xzbffiffi

2
p

sw
){erf( x{bffiffi

2
p

sw
)

4b
: ð42Þ

For a given Gaussian noise level sw~0:3, it is shown in Figs. 3 (a)

and (b) that the maximum detection efficacy emax(g,r) varies as a

function of internal uniform noise level b for different array sizes

M and correlation coefficients r. It is noted that, at the uniform

noise level b~0, the detection efficacy in Eq. (41) is just the

expression of Eq. (32) for a single neuron. Thus, emax(g,r)~9:49
and 11:45 for jrj~0:2 (see Fig. 3 (a)) and jrj~0:3 (see Fig. 3 (b)),

respectively. By comparing Fig. 3 (a) with Fig. 3 (b), it is seen that

the maximum detection efficacy emax(g,r) can be further

enhanced for a higher value of r. For the array size M~1 and

upon increasing uniform noise level b, it is seen in Fig. 3 that there

is no noise-enhanced effect in a single neuron. However, as M§2,

it is illustrated in Fig. 3 that the internal uniform noise can

enhance the detection efficacy emax(g,r), and the noise-enhanced

effect does occur. Moreover, as the array size M increases, the

noise-induced enhancement becomes more visible by adopting an

appropriate amount of uniform noise of the neuron array, as

shown in Fig. 3. As the detection problem so far is confined to the

weak signal with its strength h?0 but hw0, and the response

threshold ‘ of all neurons is zero, thus Fig. 3 shows the potential

capability of suprathreshold stochastic resonance in improving the

detection efficacy of a parallel array threshold-based neurons.

Methods

Under the assumption of weak signals, the Taylor expansion of

the function is utilized in Eqs. (4), (5), (11) and (12). The Cauchy-

Schwarz inequality is used in Eqs. (7), (9), (23), and (24). The

maximum of Rayleigh quotients for a symmetric matrix is

calculated in Eqs. (19), (21) and (41).

Conclusion

In this paper, we study the performance enhancement of

threshold-based neurons for detecting weak signals in the presence

of colored noise. For a given transfer function, we maximize the

detection efficacy by optimally choosing the signal waveform. We

prove that colored noise is superior to white noise in enhancing the

Figure 2. Stochastic resonance of a single threshold neuron.
Detection efficacy of emax(g,r) as a function of noise variance
s2

w~m2zE2 for the correlation coefficient jrj~0:2 and different values
of m~0:3 (red), 0:5 (blue) and 1 (green). The resonant peaks of emax(g,r)
are marked by the square (&), the star (�) and the down triangle (.) for
m~0:3,0:5 and 1, respectively. Here, the transfer function g(x)~sign(x),
and the noise distribution is Gaussian mixture model of Eq. (33).
doi:10.1371/journal.pone.0091345.g002

Figure 3. Suprathreshold stochastic resonance in an array of
threshold neurons. Detection efficacy emax(g,r) as a function of the
internal uniform noise level b and the neuron array size M . From the
bottom upwards, M~1,2,5,10,100,1000,?. Here, the initial Gaussian
noise level sw~0:3, the transfer function g(x)~sign(x), the correlation
coefficient (a) jrj~0:2 and (b) jrj~0:3.
doi:10.1371/journal.pone.0091345.g003
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detection efficacy, at a cost of optimally matching the input signal

with the eigenvector of the covariance matrix. Furthermore, we

illustrate that, for a single threshold neuron, the possibility of

noise-enhanced detection cannot occur in scaled noise, but does

appear in a non-scaled Gaussian mixture noise model. Further-

more, for scaled noise, we can test a parallel bundle of neurons

with the same response threshold, and recover the positive role of

internal noise in enhancing the detection efficacy of the neuron

array via the mechanism of suprathreshold stochastic resonance.

These results demonstrate that the strategy of exploiting stochastic

resonance is still interesting in the case of improving the nonlinear

system performance by adding more noise to the signal corrupted

by colored noise.

Here, we mainly consider the first-order moving-average noise

model of Eq. (10) which is, as we show, amenable to analytical

treatment. It is possible to extend the present approach to higher-

order moving-average noise models. However, the same analytical

treatment maybe no longer feasible. It is also interesting to

consider yet other models of colored noise to enhance the

detectability of the neuron array. This subject is very promising

and currently under study.

It is noted that the detection efficacy of Eqs. (6) and (9) are

established under the assumption of weak signal strength h?0. We

only consider the first-order Taylor expansion of nonlinearities in

Eq. (4), because it makes an analytical treatment possible and the

corresponding results are rigorous. In practice, most noise

distributions are symmetric and the nonlinear characteristics are

odd symmetric about the origin. In this case, we can expand the

nonlinearity to the second-order terms. The expectation of the

second-order term of Taylor expansion of Eq. (4) vanishes and

does not affect the conclusion of this paper. However, for

unsymmetrical noise distributions and nonlinearities, the high-

order terms of Taylor expansion of Eq. (4) are not exactly zero.

For this case, we need to numerically observe the effect of high-

order terms on the detector performance. It is interesting to

compare the present theoretical results of first-order expansion

with the numerical results in the further studies.

We also note that these equations of Eqs. (4)–(9) are the

extension of white noise [54,56–58,60] to the case of colored noise.

Then, we consider a model of colored noise allowing for an

analytical evaluation of the detection efficacy in Eqs. (6) and (9).

The detection efficacy can also be numerically computed to

address other models of colored noise, or to explore broader

conditions beyond the weak signal limit. As the signal strength h
increases, the Taylor expansion of Eq. (4) and the upper bound of

Eq. (6) gradually cease to apply. However, based on the present

results on weak signal in colored noise, and on [25,26,63] on non-

weak signal in Gaussian white noise, it can be expected that noise

benefit as reported here will persist with colored noise beyond the

small-signal limit.
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