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An optimally tuned power-law sensor is shown capable of amplifying the signal-to-noise ratio of a sine wave
in Gaussian white noise. When associated in parallel arrays, further improvement can be obtained with inde-
pendent noises injected on these sensors. This form of stochastic resonance in arrays, obtained here with
smooth threshold-free nonlinearities, yields signal-to-noise ratio gains above unity in a true regime of added
noise for a sine wave in Gaussian white noise, along with a class of nonlinear devices with useful potentialities
for noise-aided information processing.
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In recent years it has been realized that nonlinear devices
authorize improvement by noise of signal transmission or
processing through stochastic resonance(SR) [1]. Most
forms of SR so far reported involve nonlinear devices with a
threshold or a potential barrier in their response, driven by a
signal which is alone too small or subthreshold, and which
needs assistance by the noise to overcome the threshold or
barrier [1]. Some other forms of SR have been reported in
barrier-free monostabale dynamic systems as an amplifica-
tion by noise of a sinusoidal signal[2,3], and in nondynami-
cal threshold-free systems as an enhancement of the signal-
to-noise ratio(SNR) at the output of a pulse-firing device
whose emission rate depends exponentially on a noisy sinu-
soidal input[4]. In this paper, we will show the possibility of
SR in another class of nonlinear nondynamical(static)
threshold-free devices: power-law sensors. Such devices can
be viewed as models for existing sensors, but also as a basis
for a potentially useful generation of “intelligent” sensors,
owing to their response to noise.

For the transmission of a periodic signal as considered in
most SR studies, in addition to signal amplification and SNR
enhancement, SR devices can sometimes produce an output
SNR larger than the input SNR[5–7]. Yet, this last property
has never been observed with static nonlinearities in the
practically very important case of a sine wave buried in
Gaussian white noise. We will show that this becomes pos-
sible with the power-law sensors. In addition, we will show
that further improvement by noise is possible when the
power-law sensors are associated in parallel array according
to the configuration introduced in[8] for suprathreshold SR.
So far, suprathreshold SR has been demonstrated for nonlin-
ear devices with a threshold, essentially comparators or one-
bit quantizers; we shall extend this form of SR to threshold-
free smooth nonlinearities.

Consider the signal-plus-noise mixturexstd=sstd+jstd,
wheresstd is deterministic with periodTs, andjstd is a sta-
tionary white noise, independent ofsstd, and with probability
densityfjsud. Input xstd is applied to a nonlinear sensor with
a static or memoryless characteristicgs·d to produce the
output

ystd = g„sstd + jstd…. s1d

The transmission ofsstd is assessed by the output SNR which
is standard in SR studies[1,9]. It measures inystd the power

contained in the coherent spectral line at 1/Ts divided by the
power contained in the noise background in a small fre-
quency bandDB around 1/Ts, and reads[9]

Rout =
ukEfystdgexps− i2pt/Tsdlu2

kvarfystdglDtDB
. s2d

In Eq. (2), a time average is defined as

k¯l =
1

Ts
E

0

Ts

¯ dt, s3d

Efystdg and varfystdg=Efy2stdg−E2fystdg represent the expec-
tation and variance ofystd at a fixed timet, andDt is the time
resolution of the measurement(i.e., the signal sampling pe-
riod in a discrete time implementation); throughout this
study we takeDtDB=10−3. The white noise assumption,
throughout, models a broadband physical noise with a corre-
lation duration much smaller than the other relevant time
scales, i.e.,Ts andDt [9]. Sincexstd=sstd+jstd, the probabil-
ity density forxstd is fj(x−sstd), and from Eq.(1) one has

Efystdg =E
−`

+`

gsxdfj„x − sstd…dx, s4d

and

Efy2stdg =E
−`

+`

g2sxdfj„x − sstd…dx. s5d

Owing to its practical importance, we consider the case of
a sinusoidal input

sstd = A sins2pt/Tsd s6d

buried in zero-mean Gaussian noisejstd with variancesj
2.

An input SNRRin, defined in a similar way asRout of Eq.
(2), results as

Rin =
A2/4

sj
2DtDB

. s7d

The input-output characteristic of the sensor is chosen as the
power-law function, sometimes referred to asg-law correc-
tion in technologies,
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gsud = sgnsuduuug, s8d

parametrized bygù0. The choiceg=1 is the purely linear
sensor.g=0 gives the signum function, which is standard in
SR studies. Atg=0, with an extra thresholdu makinggsud
=sgnsu−ud, previous SR studies have shown that for a sub-
threshold inputsstd,u , ∀ t, the output SNRRout of Eq. (2)
can be improved by increasing the noise levelsj. At g=0
with no extra threshold(i.e.,u=0), the inputsstd of Eq. (6) is
suprathreshold, and no SNR improvement is observed but a
monotonic decay ofRout assj grows. This is also what we
have observed here at anyg.0 in Eq. (8): a monotonic
decay ofRout assj grows.

Another useful measure in SR studies is the input-output
SNR gainG=Rout/Rin. With hard-threshold nonlinearities,
comparable to Eq.(8) at g=0, SNR gainsG raised above
unity by increasingsj have been shown possible, separately
with a sinusoidal inputsstd and non-Gaussian noisehstd, or
with Gaussian noisehstd and a periodic nonsinusoidal input
sstd [5,6]. No SNR gainG above unity has been found with
simultaneously sinusoidalsstd and Gaussianhstd. We ob-
serve that this becomes possible by varyingg. At g.0 in
Eq. (8), with sstd of Eq. (6) and assj grows, althoughRout

experiences a monotonic decay,G=Rout/Rin can experience
a nonmonotonic evolution, culminating at a maximum which
can be above unity. Such evolutions can readily be obtained
from Eqs.(1)–(8) for a giveng.0, in a similar way as done
in [5] at g=0. A complementary characterization of the in-
fluence ofg is provided by Fig. 1 which shows, for each
noise levelsj, the optimal valuegopt of g that maximizes the
SNR gainG, along with the valueGmax of this maximum.

Figure 1 clearly shows that for each noise levelsj (evalu-
ated in units of the signal amplitudeA=1), there exists a
valuegopt of g that realizes a maximumGmax above unity for
the gainG. g=0 is the hard threshold andg=1 is the linear
sensor, and both cases are unable to produce a gainG.1.
The optimalg’s associated to withGmax.1 are found be-
tween 0 and 1, depending on the noise levelsj. Values ofg

above 1 are not found as optimal conditions to maximize the
gain G.

The possibility ofG.1 with the power-law sensor of Eq.
(8) with appropriateg, means that these sensors are able to
amplify the periodic inputsstd more than they amplify the
noise. Moreover, this preferential amplification ofsstd is at
its maximum of efficacy for a nonzero noise levelsj located
at sj,opt<0.22 in Fig. 1, whereGmax culminate at 1.27 with
gopt<0.59. In practice, one will usually work at a given
noise levelsj.0 imposed by the input signal-noise mixture
and fixingRin. It will then be beneficial to tune the sensor of
Eq. (8) at the optimalg given by Fig. 1, and this will provide
a maximally amplified output SNRRout.Rin. Furthermore,
if sj happens to be belowsj,opt, purposeful addition of noise
can be envisaged at the input to raise the noise level atsj,opt.
This will improve the maximal SNR gainGmax reachable in
Fig. 1 and simultaneously degradeRin. Yet, it can be verified
from Fig. 1 thatGmaxRin is a decreasing function ofsj. So
the purposeful addition of noise, although it can improve
Gmax, will always degradeRout.

A nonlinearity of Eq.(8) can therefore always be used as
an SNR amplifier, through an appropriate choice ofg. This
property afforded by simple static nonlinearities as Eq.(8) is
quite remarkable since it is proved that linear systems, what-
ever their complexity, are incapable ofG.1. As an SR de-
vice, noise addition on Eq.(8) can only improve the gainG
but not the output SNRRout. We shall now show that it is
possible to recover a systematic improvement of the output
SNR Rout through noise addition, when the sensors of Eq.
(8) are associated in a parallel array.

The input signalxstd=sstd+jstd is applied onto a parallel
array ofN identical sensors with the same input-output char-
acteristicgs·d of Eq. (8). A noisehistd, independent ofxstd,
can be added toxstd at each sensori so as to produce the
output

yistd = gfxstd + histdg, i = 1,2, . . . ,N. s9d

The N noises histd are white, mutually independent, and
identically distributed(i.i.d.) with probability densityfhsud.
The responseystd of the array is obtained by averaging the
outputs of all the sensors, as

ystd =
1

N
o
i=1

N

yistd. s10d

The transmission by the array is assessed in the same way by
the output SNRRout of Eq. (2).

At time t, for a fixed given valuex of the inputxstd, one
has, according to Eq.(10), the conditional expectations

Efystduxg = Efyistduxg s11d

and

Efy2stduxg =
1

N
Efyi

2stduxg +
N − 1

N
E2fyistduxg s12d

which are both independent ofi since thehistd are i.i.d. The
large array limitN=` will be simply accessible by letting
Efy2std uxg=E2fyistd uxg in Eq. (12). Next, one obtains

FIG. 1. Optimal exponentgopt in Eq. (8) and maximum input-
output SNR gainGmax at gopt, as a function of the rms amplitudesj

of the zero-mean Gaussian noisejstd, for the transmission of the
sinusoidalsstd of Eq. (6) with A=1.
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Efystdg =E
−`

+`

Efystduxgfj„x − sstd…dx, s13d

and

Efy2stdg =E
−`

+`

Efy2stduxgfj„x − sstd…dx. s14d

Because of Eq.(9), one has for anyi,

Efyistduxg =E
−`

+`

gsx + udfhsuddu s15d

and

Efyi
2stduxg =E

−`

+`

g2sx + udfhsuddu. s16d

Since thehi’s can be considered as purposely added noises
for the operation of the array, rather than noises imposed by
the physical world, we choose for analytical tractability their
probability densityfhsud uniform overf−a,ag. This allows,
with the characteristic of Eq.(8), an explicit evaluation of
the integrals(15) and (16) as

Efyistduxg =
1

2a

1

g + 1
sux + aug+1 − ux − aug+1d s17d

and

Efyi
2stduxg =

1

2a

1

2g + 1
fsx + adux + au2g − sx − adux − au2gg,

s18d

completing the theoretical derivation of the output SNRRout
of Eq. (2).

Figure 2 displays evolutions of the output SNRRout of
Eq. (2), as a function of the rms amplitudesh of the array
noiseshistd, for sensors withg=2.

Figure 2 reveals that, thanks to the added array noises
histd, moderately large arrayssN*5d perform better than a
single sensor with no array noise. An optimal nonzero
amount of the array noiseshistd maximizes the output SNR
Rout, and the improvement ofRout by noise gets more pro-
nounced as the array sizeN increases.

Improvement by the noiseshistd in the array persists for
supralinear sensorssg.1d, as well as for sublinear sensors
sg,1d as shown by Fig. 3. The effect would disappear for
linear sensorssg=1d, and it starts to appear asg departs
away from 1, from above or below.

A comparable behavior ofRout as in Figs. 2 and 3 had
already been observed in[10] at g=0 for hard-threshold non-
linearities and interpreted as a form of suprathreshold SR as

FIG. 2. Output SNRRout of Eq. (2), as a function of the rms
amplitudesh=a/Î3 of the uniform array noiseshistd, with g=2.
sj=1 whence the input SNR in Eq.(7) Rin=250 (dotted line).

FIG. 3. Same as in Fig. 2, exceptg=0.25 andsj=0.5 whence
Rin=1000(dotted line).

FIG. 4. Behavior of the array of sizeN, as a function of the rms
amplitudesj of the zero-mean Gaussian input noisejstd, for the
transmission of the sinusoidalsstd of Eq. (6) with A=1. Upper
panel: The optimal exponentgopt in Eq. (8) and maximum input-
output SNR gainGmax at sgopt,sh,optd. Lower panel: The corre-
sponding optimal valuesh,opt of the rms amplitudesh of the added
array noiseshistd.
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introduced in[8]. By contrast, Figs. 2 and 3, atg.0, char-
acterize smooth threshold-free nonlinearities. The effect of
suprathreshold SR as observed in[8,10] can therefore be
extended to smooth threshold-free nonlinearities, and is con-
sequently not essentially linked to the presence of a thresh-
old. It is more a collective effect of the nonlinear array. The
essential ingredient is the nonlinear transformation, after in-
jection of the noiseshistd and prior to averaging, that leads to
a richer capability of representation by the array. The effect
does not take place with a linear transformationsg=1d, but it
does not require a threshold nonlinearitysg=0d. Any smooth
nonlinearity, supralinearsg.1d or sublinear sg,1d, can
also produce this effect of array SR.

When the array is operated as in Figs. 2 and 3, the input
noise levelsj is fixed, as is the input SNRRin of Eq. (7). For
a given input noise levelsj and array sizeN, one can look
for the best choice ofg that will produce the highest output
SNR Rout at the optimal level of the array noisessh. We
have undertaken this double optimization, according to
sg ,shd, for maximizing the SNR gainG=Rout/Rin of the
array, at a givensj fixing Rin. The results are presented in
Fig. 4 and reveal several interesting properties specific to
these arrays of power-law sensors.

Figure 4 shows that for any given input noise levelsj

.0 and array sizeN, an optimal tuninggopt exists for the
exponentg with alwaysgoptP s0,1d; this means in particular
that neither the hard thresholdsg=0d, nor the linear sensor
sg=1d, nor supralinear sensorssg.1d are capable of the best
performance. In addition in Fig. 4, at the optimal tuninggopt,

the maximum output SNR gainGmax achieved by the array is
always larger than unity and also larger than the SNR gain
Gmax achieved by a single sensor as shown in Fig. 1; assem-
bling several sensors into arrays always leads to an improved
Gmax.1. Finally in Fig. 4, the best SNR gainGmax achieved
by the array is usually obtained at a nonzero optimal level of
the array noiseshistd. This is true for any input noise level
sj.0, even at largesj, provided the array sizeN is also
appropriately large. Thanks to the mechanism of array SR,
here SNR gains above unity are achieved in an SR regime,
i.e., where the best output SNRRout, maximally amplifying
aboveRin, is obtained at a nonzero amount of added noise.

Owing to their response to noise exhibited by the above
results, power-law sensors, possibly associated in arrays,
offer a class of useful devices with specific potentialities
for noise-aided processing of noisy signals. In particular,
they allow SNR gains above unity through a true regime of
added noise for a sine wave in Gaussian white noise. Several
possibilities are open for further improving the efficacy of
these devices, especially for array SR. For instance, prefer-
able forms for fhsud, other than uniform, can be sought.
Other classes of smooth nonlinearities can be tested for simi-
lar properties as inaugurated here with the power-law sen-
sors. Further perspectives are formed by the investigation of
such parallel arrays of nonlinear sensors for optimal dectec-
tion and estimation of signals in noise, or as candidates for
devising new generations of smart arrays for information
processing.
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