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Optimized probing states for qubit phase estimation with general quantum noise
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We exploit the theory of quantum estimation to investigate quantum state estimation in the presence of
noise. The quantum Fisher information is used to assess the estimation performance. For the qubit in Bloch
representation, general expressions are derived for the quantum score and then for the quantum Fisher information.
From this latter expression, it is proved that the Fisher information always increases with the purity of the
measured qubit state. An arbitrary quantum noise affecting the qubit is taken into account for its impact on
the Fisher information. The task is then specified to estimating the phase of a qubit in a rotation around an
arbitrary axis, equivalent to estimating the phase of an arbitrary single-qubit quantum gate. The analysis enables
determination of the optimal probing states best resistant to the noise, and proves that they always are pure
states but need to be specifically matched to the noise. This optimization is worked out for several noise models
important to the qubit. An adaptive scheme and a Bayesian approach are presented to handle phase-dependent
solutions.
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I. INTRODUCTION

Quantum estimation is a fundamental process for efficient
extraction of information from physical measurement on
a quantum system. The theoretical grounds of quantum
estimation were laid in [1,2], though new developments
continue to appear [3]. A generic form of a quantum estimation
problem is when a quantum state, generally represented
by a density operator ρξ , is dependent upon an unknown
parameter ξ , and from measurement performed on ρξ one has
to efficiently infer a value for ξ . Due to the probabilistic nature
of quantum measurement, quantum estimation is naturally
assessed in a statistical framework. Fundamental limits exist
which bound the efficiency of quantum estimation, and which
can be expressed by means of the Fisher information derived
from the statistical score function. A classical form of the
Fisher information limits the statistical exploitation of the
classical random variables occurring as the outcomes of a
quantum measurement; in turn, a quantum form of the Fisher
information puts a bound, of purely quantum origin, on the
classical Fisher information, as analyzed in [4,5]. We will
focus here on the Fisher information for performance analysis
in quantum estimation, and review its two forms.

In quantum estimation, as analyzed for instance in [1,2,4,5],
quantum states are usually represented by generic density
operators; however, an important and realistic condition is to
envisage that the quantum states accessible to measurement
for estimation, carry the mark of some quantum noise inherent
to the environment. One considers in this way that the quantum
state dependent on the unknown parameter ξ , is subsequently
affected by a specified quantum noise, before it becomes
accessible to measurement so as to infer a value for ξ . This
replaces estimation from a noise-free quantum system which
is somehow implicit in the standard approach, by estimation
from a noisy quantum system with an explicit handle on the
noise and its impact in the estimation task. One can especially
address the issue of optimizing the initial ξ -dependent state
prior to the action of noise, so as to maximize the estimation
performance after the action of a specified noise.

Such an approach of estimation from a noisy quantum
system has been considered recently in [6–8], with the
quantum Fisher information to assess the performance which is
maximized through selection of the initial states best resistant
to the noise, for several noise models. The references [6,7]
consider estimation of the phase of a qubit acquired in a
rotation around the Oz axis, when the qubit is affected by
a phase-flip noise in [6] and then extended to bit-flip and
to phase-bit-flip noises in [7]. A further extension to quantum
systems of higher dimension is performed in [8], for estimation
on phase-shifted pure single-mode Gaussian states of light
affected by a phase noise. In the present study we generalize
the work of [6,7] for estimation from a noisy qubit, with
the quantum Fisher information to assess the performance in
estimation. We consider estimation of the phase of a qubit
acquired in a rotation around an arbitrary given axis, this
being equivalent to estimation of the phase of an arbitrary
single-qubit quantum gate. We consider also the possibility
of an arbitrary quantum noise affecting the qubit. In such
general conditions, we exploit the Bloch representation for
qubit states to derive explicit expressions for the quantum
score and the quantum Fisher information. This outcome then
enables a characterization of the optimal initial qubit states
best resistant to the noise, upon estimation from a noisy qubit
affected by an arbitrary given noise. Several noise models
important to the qubit are analyzed for illustration.

II. QUANTUM STATE ESTIMATION

In this section we review the theory of quantum state
estimation, for completeness of the present study and to serve
as a guideline for its subsequent application to the noisy qubit.

A. Optimal performance in estimation

A quantum system, with complex Hilbert space HN of
dimension N , has its state represented by the density operator
ρξ dependent upon an unknown real scalar parameter ξ . To
estimate the value of ξ , a measurement is performed on the
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quantum system, generally by means of a positive operator-
valued measure (POVM) with elements {Mx,x ∈ X } returning
a set of possible outcomes x ∈ X . A number M of copies
of the quantum system prepared in state ρξ are successively
measured so as to provide M independent measurement
outcomes (x1,x2, . . . ,xM )� = �x, from which an estimator is
constructed as the mapping ξ̂ = ξ̂ (�x) to deduce a value ξ̂ for the
unknown parameter ξ . Due to the generally probabilistic nature
of quantum measurement, the generic outcome x represents a
classical random variable.

The performance in estimation [9] can be assessed by
the mean-squared error E[(̂ξ (�x) − ξ )2], related to the bias
b(̂ξ ) = E(̂ξ ) − ξ and variance var(̂ξ ) of estimator ξ̂ (�x) by
E[(̂ξ − ξ )2] = b2(̂ξ ) + var(̂ξ ). Especially, for any estimator
ξ̂ (�x), the mean-squared error is bounded below by the Cramér-
Rao inequality

E[(̂ξ − ξ )2] � b2 + (1 + ∂ξb)2

MFc(ξ )
, (1)

with Fc(ξ ) the classical Fisher information, and where for the
derivative we use throughout the shorthand notation ∂ξb ≡
∂b/∂ξ . The right side of Eq. (1) is the Cramér-Rao bound,
which especially depends on the estimator through its bias
b(̂ξ ). In general, a larger Fisher information Fc(ξ ) is more
favorable to estimation as associated to a lower Cramér-Rao
bound. The important class of unbiased estimators ξ̂ (�x) with
b(̂ξ ) = 0, is ruled by an intrinsic form of the Cramér-Rao
inequality

E[(̂ξ − ξ )2] = var(̂ξ ) �
1

MFc(ξ )
, (2)

with an intrinsic Cramér-Rao bound 1/[MFc(ξ )] common to
all unbiased estimators.

From a given dataset �x, an optimal strategy for estimation
is then to seek an estimator ξ̂ (�x) that saturates the Cramér-Rao
inequality. There is no general methodology to construct such
an optimal estimator. However, asymptotically in the limit of
a large number M of independent data points, the maximum
likelihood method achieves such an optimum and provides an
unbiased estimator saturating the Cramér-Rao inequality of
Eq. (2).

The classical Fisher information Fc(ξ ) acting in Eqs. (1)
and (2) is defined as the variance of the (classical) score
V (x; ξ ). In turn, the score V (x; ξ ) is the random variable
defined by

V (x; ξ ) = ∂ξ ln p(x; ξ ) = ∂ξp(x; ξ )

p(x; ξ )
, (3)

where p(x; ξ ) is the probability density of the data point x

bearing dependence on the unknown parameter ξ . The score
has vanishing mean E[V (x; ξ )] = 0, since

E[V (x; ξ )] =
∫
X

∂ξp(x; ξ )

p(x; ξ )
p(x; ξ )dx

= ∂ξ

∫
X

p(x; ξ )dx = ∂ξ 1 = 0. (4)

The variance of the score var[V (x; ξ )] = E[V 2(x; ξ )] defines
the classical Fisher information

Fc(ξ ) = E[V 2(x; ξ )] =
∫
X

1

p(x; ξ )
[∂ξp(x; ξ )]2dx. (5)

For the whole dataset of M independent random variables
�x = (x1,x2, . . . ,xM )� the probability density factorizes as
p(�x) = p(x1)p(x2) · · ·p(xM ) so the score V (�x,ξ ) is additive;
and since the variance of a sum of independent random
variables is also additive, the Fisher information of the whole
set of the M identically distributed data points �x is M

times the Fisher information Fc(ξ ) of a single data point of
Eq. (5), i.e., MFc(ξ ) at the denominator in Eqs. (1)–(2). The
Cramér-Rao inequality in Eqs. (1) and (2) follows from the
Cauchy-Schwarz inequality

{E([V − E(V )][̂ξ − E(̂ξ )])}2

� E([V − E(V )]2)E([̂ξ − E(̂ξ )]2). (6)

The right side of Eq. (6) is var[V (�x,ξ )]var(̂ξ ) =
MFc(ξ )var(̂ξ ); since E(V ) = 0 the left side of Eq. (6) is
[E(V ξ̂ )]2, and via Eq. (3) it evaluates (for ξ̂ independent of ξ )
to [∂ξE(̂ξ )]2 = (1 + ∂ξb)2 so as to yield Eq. (1).

This is an analysis of the performance in estimation based
on the classical random variables (x1,x2, . . . ,xM ) independent
and identically distributed according to p(x; ξ ). Additional
specifications arise when it is considered that the probability
distribution p(x; ξ ) is determined by a quantum measurement
of the quantum state ρξ that introduces the dependence on the
unknown parameter ξ .

Upon measuring with measurement operator Mx , the
resulting probability is given by the trace p(x; ξ ) = tr(Mxρξ ).
The derivative present in the Fisher information Fc(ξ ) of
Eq. (5) goes as ∂ξp(x; ξ ) = tr(Mx∂ξρξ ), since the measure-
ment operator Mx , much like the classical estimator ξ̂ (�x),
ought to be independent of the unknown parameter ξ . The
derivative is now transferred to a density operator, and a useful
way to handle the derivative of a density operator is through the
introduction of another operator Lξ , known as the symmetrized
logarithmic derivative, and defined by the equation (yet to be
solved) [1,2]

∂ξρξ ≡ ∂ρξ

∂ξ
= 1

2
(Lξρξ + ρξLξ ). (7)

Since ρξ is a positive hence Hermitian operator verifying
ρ
†
ξ = ρξ , hermiticity is also transferred to its derivative to

yield (∂ξρξ )† = (ρξL
†
ξ + L

†
ξ ρξ )/2 = ∂ξρξ , for any ξ , so that

by identification with Eq. (7) one deduces L
†
ξ = Lξ . Hence,

Eq. (7) defines a Hermitian operator Lξ , which is matched
to the density operator ρξ , and for this reason generally
bears dependence on the unknown parameter ξ . (This is,
in particular, preferable to the alternative of handling the
derivative through ∂ξρξ = Lξρξ , which would not set a
Hermitian Lξ .)

Also, taking the trace of Eq. (7) yields tr(∂ξρξ ) = tr(ρξLξ )
by the circular invariance of the trace; this is also tr(ρξLξ ) =
∂ξ tr(ρξ ) = ∂ξ 1 = 0, so that the mean value 〈Lξ 〉 = tr(ρξLξ ) =
0. The quantum observable Lξ with vanishing mean, is also
known as the quantum score, and can be viewed as a quantum
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analog of the classical score V (x; ξ ) of Eq. (3), as it will also
further verify in the sequel.

From Eq. (7) one obtains

tr(Mx∂ξρξ ) = 1
2 [tr(MxLξρξ ) + tr(MxρξLξ )] (8)

= 1
2 (tr(ρξMxLξ ) + tr[(ρξMxLξ )†]) (9)

= Re tr(ρξMxLξ ). (10)

This real part of the trace thus provides the derivative
∂ξp(x; ξ ) = tr(Mx∂ξρξ ) giving access to an expression of the
classical Fisher information Fc(ξ ) of Eq. (5) as a function of
the quantum ingredients determining the probability p(x; ξ ) =
tr(Mxρξ ) of the classical data x, and reading

Fc(ξ ) =
∫
X

1

tr(ρξMx)
[Re tr(ρξMxLξ )]2dx. (11)

For efficient estimation from measurement on the quantum
state ρξ , one has then the faculty to choose the measuring
POVM {Mx,x ∈ X } in order to maximize the classical Fisher
information Fc(ξ ) of Eq. (11). There exists in this respect an
upper bound [4] which limits from above the classical Fisher
information Fc(ξ ) of Eq. (11) for all feasible POVM {Mx,x ∈
X }, established from the Cauchy-Schwarz inequality, as we
now show.

Since tr(ρξMx) is real positive, a useful factorization
introduces the two operators A† = √

ρξ

√
Mx/

√
tr(ρξMx) and

B = √
MxLξ

√
ρξ so as to write for Eq. (11),

Fc(ξ ) =
∫
X

[Re tr(A†B)]2dx �
∫
X

| tr(A†B)|2dx. (12)

The Hilbert-Schmidt inner product tr(A†B) of two opera-
tors satisfies the Cauchy-Schwarz inequality | tr(A†B)|2 �
tr(A†A) tr(B†B). Both

√
ρξ and

√
Mx are Hermitian, since the

positive operators ρξ and Mx are. One then deduces tr(A†A) =
1 and tr(B†B) = tr(MxLξρξLξ ), leading from Eq. (12) to

Fc(ξ ) �
∫
X

| tr(A†B)|2dx (13)

�
∫
X

tr(MxLξρξLξ )dx = tr(LξρξLξ ), (14)

the last equality arising because the elements Mx of any valid
POVM satisfy

∫
X Mxdx = 1 summing to the identity operator

1 on HN . Equation (14) leads then to the targeted inequality

Fc(ξ ) � tr(ρξL
2
ξ ) ≡ Fq(ξ ), (15)

defining the quantum Fisher information Fq(ξ ) = tr(ρξL
2
ξ ) =

〈L2
ξ 〉 limiting the classical Fisher information Fc(ξ ), and

bearing analogy with the classical counterpart Fc(ξ ) =
E[V 2(x; ξ )] of Eq. (5), also reinforcing the interpretation of
Lξ as the quantum score. From Eq. (7) one also obtains the
alternative expression Fq(ξ ) = tr(Lξ∂ξρξ ).

Then, for efficient estimation, one would like to find
an optimal POVM {Mx,x ∈ X } saturating the inequality of
Eq. (15), i.e., a POVM achieving Fc(ξ ) = Fq(ξ ). This requires
first to achieve equality in Eq. (12) or (13), and a necessary
and sufficient condition for this is for tr(A†B) to be real. The
second requirement is to achieve equality also in Eq. (14), and
a necessary and sufficient condition for this is for A and B

to be proportional. These two requirements are jointly met by
the equivalent necessary and sufficient condition of A and B

proportional through a real proportionality coefficient, that we
write A ∝R B, so as to saturate the inequality of Eq. (15). In
this way, equality in Eq. (15) is achieved if and only if each
POVM element Mx realizes [4,5]√

MxLξ

√
ρξ ∝R

√
Mx

√
ρξ . (16)

A sufficient condition to satisfy Eq. (16) is to satisfy√
MxLξ ∝R

√
Mx , which becomes a sufficient and necessary

condition when ρξ , and hence
√

ρξ , are full-rank operators.
Moreover, we have to keep in mind that we are seeking a
complete set of POVM elements {Mx,x ∈ X } that together
sum to the identity operator1 onHN . The known Mx solutions
to Eq. (16) are usually expressed in terms of the eigen
decomposition of Lξ . A complete POVM {Mx,x ∈ X } with
general significance known [4,5,10] to satisfy Eq. (16) is the
von Neumann measurement made by the rank-one projectors
on the eigenstates of Lξ . In this case, Lξ and

√
Mx commute

in Eq. (16), and the proportionality coefficient is the (real)
eigenvalue in the corresponding eigendirection of (Hermitian)
Lξ . However such POVM, being characterized through Lξ ,
generally bear explicit dependence on the unknown parameter
ξ . In the context of the estimation problem, such solutions are
therefore unacceptable (inaccessible) for a practically feasible
quantum measurement. Also, only ξ -independent POVM and
estimators are constrained by the inequalities of Eqs. (15)
and (1), as it appeared in their derivations; if ξ -dependent
solutions were allowed, the best estimator would always be
ξ̂ (�x) = ξ , which is clearly unacceptable since ξ is unknown.
In general, there is no known solution, and a fortiori no known
methodology, to obtain an optimal acceptable (ξ -independent)
POVM {Mx,x ∈ X } that would satisfy Eq. (16) and maximize
the Fisher information Fc(ξ ) at Fq(ξ ) in Eq. (15).

Even if one cannot generally define a ξ -independent optimal
POVM saturating Eq. (15), one can, however, resort to an
adaptive scheme with feedback to iteratively construct such
an optimal POVM, whenever a series of identical copies of
the state ρξ are accessible for successive measurements, as
proposed in [5]. One would start with a rough estimate of ξ

from a nonoptimized initial POVM, then use this estimate
of ξ to construct the optimal POVM based on the eigen
decomposition of Lξ at this current estimate of ξ , then redo an
estimation with this current “optimal” POVM, and iterate over
the series of copies accessible for ρξ . In addition, even if it
cannot be saturated with a ξ -independent optimal POVM, the
inequality of Eq. (15) is nevertheless quite useful to assess the
performance of any feasible POVM. For a quantum estimation
problem, it is therefore quite desirable to explicitly evaluate the
quantum Fisher information Fq(ξ ) to serve in the quantitative
assessment of the performance via Eq. (15).

B. Computing the quantum Fisher information

For a quantum estimation problem, the explicit computation
of the quantum Fisher information Fq(ξ ) defined in Eq. (15),
requires an explicit characterization of the quantum score Lξ

defined by Eq. (7) for a given density operator ρξ . This com-
putation is now performed in this section, mainly following
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[11], and will serve in the guideline for the estimation from a
noisy qubit to be addressed in Sec. III.

Equation (7) for the linear operator Lξ is known as
the Lyapunov matrix equation. Its general solution can be
expressed as

Lξ = 2
∫ ∞

0
exp(−ρξu)(∂ξρξ ) exp(−ρξu)du. (17)

From Eq. (17) it is indeed verified that

ρξLξ + Lξρξ

2
=

∫ ∞

0
[ρξ exp(−ρξu)(∂ξρξ ) exp(−ρξu)

+ exp(−ρξu)(∂ξρξ ) exp(−ρξu)ρξ ]du

=
∫ ∞

0
− d

du
[exp(−ρξu)(∂ξρξ ) exp(−ρξu)]du

= −[exp(−ρξu)(∂ξρξ ) exp(−ρξu)]∞u=0 = ∂ξρξ ,

(18)

satisfying Eq. (7).
It is further possible to use the spectral decomposition

of ρξ in its orthonormal eigenbasis ρξ = ∑N
n=1 λn|λn〉〈λn|

to obtain exp(−ρξu) = ∑N
n=1 exp(−λnu)|λn〉〈λn|, which after

replacing in Eq. (17) and integrating in u yields

Lξ = 2
∑
m,n

〈λm|∂ξρξ |λn〉
λm + λn

|λm〉〈λn|, (19)

where the sums include any nonzero eigenvalue. Both the
eigenvalues λn and eigenvectors |λn〉 may depend on the pa-
rameter ξ , so that by differentiating the spectral decomposition
of ρξ one obtains

∂ξρξ =
N∑

n=1

[(∂ξλn)|λn〉〈λn| + λn|∂ξλn〉〈λn| + λn|λn〉〈∂ξλn|].
(20)

Also, since 〈λn|λm〉 = δnm, one has 0 = ∂ξ 〈λn|λm〉 =
〈∂ξλn|λm〉 + 〈λn|∂ξλm〉, so that 〈∂ξλn|λm〉 = −〈λn|∂ξλm〉; es-
pecially 〈∂ξλn|λn〉 = −〈λn|∂ξλn〉 = −〈∂ξλn|λn〉∗ so 〈∂ξλn|λn〉
is purely imaginary. This used with Eqs. (19) and (20) leads
finally to

Lξ =
∑

n

∂ξλn

λn

|λn〉〈λn| + 2
∑
m,n

λn − λm

λn + λm

〈λm|∂ξλn〉|λm〉〈λn|.
(21)

For the quantum Fisher information Fq(ξ ) = tr(ρξL
2
ξ ) =

tr(Lξ∂ξρξ ) of Eq. (15), one deduces from Eq. (17),

Fq(ξ ) = 2
∫ ∞

0
tr([(∂ξρξ ) exp(−ρξu)]2)du. (22)

Or referring to the eigenbasis of ρξ , from Eq. (19),

Fq(ξ ) = 2
∑
m,n

|〈λm|∂ξρξ |λn〉|2
λm + λn

(23)

=
∑

n

(∂ξλn)2

λn

+ 2
∑
m,n

(λn − λm)2

λn + λm

|〈λm|∂ξλn〉|2.

(24)

For the special but important case of a pure state ρξ =
|λ〉〈λ|, having zero as eigenvalues, the expressions of Eqs. (17)
and (19) for Lξ no longer apply. Instead, one has ρ2

ξ = ρξ and
therefore ρξ∂ξρξ + (∂ξρξ )ρξ = ∂ξρξ , and by comparing with
Eq. (7) one obtains the solution

Lξ = 2∂ξρξ = 2(|∂ξλ〉〈λ| + |λ〉〈∂ξλ|). (25)

The quantum Fisher information Fq(ξ ) = tr(ρξL
2
ξ ) =

tr(Lξ∂ξρξ ) follows for a pure state as

Fq(ξ ) = 4(〈∂ξλ|∂ξλ〉 + 〈∂ξλ|λ〉2). (26)

The characterizations of the quantum score Lξ and quantum
Fisher information Fq(ξ ) of this section, involving the eigen
decomposition of the density operator ρξ , will now serve for
the noisy qubit.

III. ESTIMATION ON A NOISY QUBIT

A. Quantum Fisher information for the qubit

In this section we further specify the characterization of
Sec. II for the qubit. For this purpose, we specifically exploit
the Bloch representation accessible for the qubit. We show that
this representation makes possible explicit general expressions
on which we shall rely for the analysis of estimation from the
noisy qubit. We consider the quantum system as a qubit in H2,
whose state can be represented in the general Bloch sphere
representation [12] as

ρξ = 1

2
[1 + �r(ξ )�σ ], (27)

with the real three-dimensional Bloch vector �r = �r(ξ ) carrying
the dependence with the unknown parameter ξ , and �σ a vector
assembling the three 2 × 2 (traceless Hermitian unitary) Pauli
matrices [σx,σy,σz] = �σ . The purity tr(ρ2

ξ ) = (1 + ‖�r ‖2)/2
is controlled by the Euclidean norm ‖�r ‖, with ‖�r ‖ < 1
for a mixed state and ‖�r ‖ = 1 for a pure state. The qubit
state ρξ of Eq. (27) has eigenvalues λ± = (1 ± ‖�r ‖)/2 and
normalized eigenvectors |λ±〉, the two projectors on these
eigenvectors having the Bloch representation |λ±〉〈λ±| =
(1 ± �r �σ/‖�r ‖)/2. The state of Eq. (27) differentiates as ∂ξρξ =
∂ξ �r �σ/2.

Equation (19) is also

Lξ = 2
∑
m,n

1

λm + λn

|λm〉〈λm|∂ξρξ |λn〉〈λn|, (28)

for the case of a mixed qubit state ρξ , and can be evaluated in
Bloch representation. For example, among the four terms in
the sum of Eq. (28) for the qubit, one is

1

λ− + λ+
|λ−〉〈λ−|∂ξρξ |λ+〉〈λ+|

= 1 − �r �σ/‖�r ‖
2

∂ξ �r �σ
2

1 + �r �σ/‖�r ‖
2

. (29)

To evaluate expressions such as Eq. (29) involving products
of noncommuting operators on H2, we use the identities
(�a �σ )(�b �σ ) = (�a �b)1 + i(�a × �b)�σ , and in R3 for the dou-
ble cross product (�a × �b) × �c = (�a �c)�b − (�b �c)�a. Handling
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Eq. (28) in this way for the qubit, we finally obtain the quantum
score in Bloch representation

Lξ = − �r ∂ξ �r
1 − ‖�r ‖2 1 +

(
�r ∂ξ �r

1 − ‖�r ‖2 �r + ∂ξ �r
)

�σ . (30)

With a comparable approach in Bloch representation, the
quantum Fisher information Fq(ξ ) = tr(ρξL

2
ξ ) = tr(Lξ∂ξρξ )

follows as

Fq(ξ ) = [�r(ξ ) ∂ξ �r(ξ )]2

1 − ‖�r(ξ )‖2 + [∂ξ �r(ξ )]2. (31)

For the case of a pure qubit state ρξ , differentiating
‖�r ‖2 = �r �r = 1 gives 2�r ∂ξ �r = 0, whence �r ∂ξ �r = 0 indicating
�r orthogonal to ∂ξ �r . The quantum score Lξ = 2∂ξρξ of Eq. (25)
in Bloch representation is

Lξ = ∂ξ �r �σ , (32)

and the quantum Fisher information Fq(ξ ) = tr(Lξ∂ξρξ ) of
Eq. (26) is

Fq(ξ ) = [∂ξ �r(ξ )]2. (33)

Equations (31) and (33) offer a general characterization
of the quantum Fisher information Fq(ξ ) characterizing the
performance in estimating any scalar parameter ξ attached to a
qubit state ρξ . These general equations for the qubit expressed
in Bloch representation are new here, and stand as a useful
basis for performance analysis in qubit state estimation.

A general property which can be deduced is that the
quantum Fisher information Fq(ξ ) always increases with the
purity of the measured qubit state ρξ , for any dependence
of ρξ on the parameter ξ , as we now demonstrate. For
the Bloch vector �r(ξ ) we separate the magnitude r(ξ ) and
direction, which both can depend on ξ , by writing �r(ξ ) =
r(ξ )�r un(ξ ) with r(ξ ) = ‖�r(ξ )‖ ∈ [0,1] and �r un(ξ ) the unitary
vector fixing the direction of �r(ξ ) in R3. Then ∂ξ �r(ξ ) =
(∂ξ r)�r un + r∂ξ �r un. Since ‖�r un‖2 = (�r un)2 = 1, it follows
∂ξ (�r un)2 = 2�r un∂ξ �r un = 0, so that �r∂ξ �r = r∂ξ r and (∂ξ �r)2 =
(∂ξ r)2 + r2(∂ξ �r un)2, to yield in Eq. (31)

Fq(ξ ) = [∂ξ r(ξ )]2

1 − r2(ξ )
+ r2(ξ )[∂ξ �r un(ξ )]2. (34)

From Eq. (34), we deduce that Fq(ξ ) is an increasing function
of the magnitude r when r increases over [0,1]. So if one seeks
to maximize the quantum Fisher information Fq(ξ ), whenever
feasible it is always favorable to increase r = ‖�r(ξ )‖ as much
as possible, i.e., increase the purity of the measured qubit state
ρξ . This is true for any dependence of ρξ on the parameter ξ .
In this respect, qubit states with higher purity are always more
efficient for estimation.

As a specificity here, to explore more realistic conditions,
we want to analyze the impact of a quantum noise affecting
the qubit which is measured for estimation.

B. Noise on the qubit

A quantum noise acting on a qubit affects its state ρ in a way
which can be generally represented by a completely positive

linear trace-preserving map of the form [12,13]

ρ −→ N (ρ) =
∑

�

	�ρ	
†
�, (35)

with the Kraus operators 	� (which need not be more than four
for the qubit) satisfying

∑
� 	

†
�	� = 1. Equivalently, Eq. (35)

realizes a transformation of the Bloch vector �r of ρ under the
general form [12,14]

�r → A�r + �c, (36)

where A is a 3 × 3 real matrix, and �c a real vector in R3,
mapping the Bloch ball onto itself. By the polar decomposition
[12], one can write A = US, where U is a real unitary
matrix, and S a real symmetric matrix. The matrix S always
has, associated with three real eigenvalues (s1,s2,s3), three
eigenvectors {�s1,�s2,�s3} forming an orthonormal basis of R3.
The transformation of the Bloch vector �r in Eq. (36) is thus
a deformation by S along the axes {�s1,�s2,�s3} followed by an
isometry U and a translation by �c.

We consider a noise-free qubit state ρ1(ξ ), with Bloch
vector �r1(ξ ), to introduce the dependence on the unknown
parameter ξ . The state ρ1(ξ ) is not directly accessible to
measurement, but only after alteration by some quantum noise
N (·). The noisy qubit state accessible to measurement is thus
N [ρ1(ξ )] = ρξ with Bloch vector

�r(ξ ) = A�r1(ξ ) + �c, (37)

where (A,�c) are given as a characterization of the quantum
noise affecting the qubit, and

∂ξ �r(ξ ) = A∂ξ �r1(ξ ). (38)

Equations (37) and (38) used in Eq. (31) or (33) enable one to
study the impact of any quantum noise defined by (A,�c), on
the performance expressed by the quantum Fisher information
Fq(ξ ), upon estimation from a noisy qubit.

One can, for instance, predict that, for a Bloch vector �r1(ξ )
with a given fixed direction �r un

1 , increasing the purity of the
state ρ1 by increasing ‖�r1(ξ )‖ may not always be favorable to
enhance the quantum Fisher information Fq(ξ ). There may
exist geometric configurations, when �r1(ξ ) and �c form an
obtuse angle in R3, where an increase of the purity ‖�r1(ξ )‖
of the nonmeasurable noise-free state ρ1 induces in Eq. (37)
a decrease of the purity ‖�r(ξ )‖ of the measured noisy state
ρξ , and hence a decrease of the quantum Fisher information
Fq(ξ ). Such types of unexpected counterintuitive behaviors
might be compared to stochastic resonance or useful-noise
effects occurring in classical estimation [15–17] or quantum
information processing [18–20].

For further analysis of the estimation process, we now
introduce a general family of parametric quantum state ρξ

relevant to the qubit and providing an explicit specification of
the estimation task.

C. Qubit transformation

An arbitrary unitary transformation on the qubit (an
arbitrary single-qubit quantum gate) can be expressed [12]
in the form U = exp(iα) exp(−iξ �n �σ/2), and since the overall
scalar phase α is unimportant here, we consider the general
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unitary transformation on the qubit as

Uξ = exp

(
− i

ξ

2
�n �σ

)
, (39)

where �n = [nx,ny,nz]� is a real unit vector of R3 and ξ

introduces the unknown phase parameter to be estimated. The
transformation of Eq. (39) acts on an input qubit state ρ0 with
Bloch vector �r0, which is considered as the probing state or
probe that will serve as a support to the estimation process.
The probe ρ0 is transformed by Uξ of Eq. (39) so as to yield
the quantum state ρ1(ξ ) = Uξρ0U

†
ξ (especially, the presence

of a scalar phase α in U would have had no effect on ρ1). As
a result, the transformed qubit state ρ1(ξ ) is characterized by
the Bloch vector �r1(ξ ) = Rξ �r0, where Rξ is the rotation in R3

with axis �n and angle ξ , expressible in matrix form as [21]

Rξ = exp(ξN ) = I + sin(ξ )N + [1 − cos(ξ )]N2, (40)

with I the 3 × 3 identity matrix on R3 and the matrix

N =
⎡⎣0 −nz ny

nz 0 −nx

−ny nx 0

⎤⎦ . (41)

The qubit transformation of Eqs. (40) and (41) generalizes to
an arbitrary rotation axis �n the transformation considered in
[6,7] which was a rotation around the Oz axis. One deduces
the derivative ∂ξ �r1(ξ ) = (∂ξRξ )�r0, with the matrix

∂ξRξ = N exp(ξN ) = cos(ξ )N + sin(ξ )N2. (42)

For the noisy qubit state ρξ = N [ρ1(ξ )] accessible to
measurement, come from Eqs. (37) and (38), the Bloch vector

�r(ξ ) = A�r1(ξ ) + �c = ARξ �r0 + �c (43)

and

∂ξ �r(ξ ) = A∂ξ �r1(ξ ) = A(∂ξRξ )�r0. (44)

From Eqs. (43) and (44), one then gets access to a complete
characterization of the quantum Fisher information Fq(ξ ) of
Eq. (31), for estimation of the phase angle ξ in the rotation
of the qubit state around any given axis �n in the presence of
an arbitrary quantum noise defined by (A,�c). It is especially
possible to study the impact of the input probe ρ0 defined by
Bloch vector �r0, on the performance expressed by Fq(ξ ), upon
estimation from a noisy qubit affected by any given quantum
noise.

To continue on this path, a general property which can
be deduced is that maximization of the quantum Fisher
information Fq(ξ ) in Eq. (31) necessarily requires an input
probe ρ0 satisfying ‖�r0‖ = 1, i.e., a pure probe state ρ0. This
follows from Eqs. (43) and (44) acting in Fq(ξ ) of Eq. (31).
Especially, in order to maximize Fq(ξ ) in Eq. (31), it is
always favorable to act on �r0 to maximize the magnitude
of �r in Eq. (43). The favorable configuration to maximize
the magnitude of �r and Fq(ξ ) occurs when ARξ �r0 and �c in
Eq. (43) have a positive inner product or equivalently form an
acute angle in R3, otherwise reversing the input probe with
�r0 → −�r0 realizes this favorable configuration. Then with an
�r0 realizing such favorable configuration in R3, pushing to
‖�r0‖ → 1 always increases the magnitude of both �r in Eq. (43)
and ∂ξ �r in Eq. (44) and also decreases the positive denominator

in Eq. (31), raising in this way Fq(ξ ) of Eq. (31). The same
conclusion of a pure ρ0 applies for maximization of Fq(ξ ) in
Eq. (33) with �r from a pure state ρξ , although the noise usually
causes a mixed state ρξ . A pure probe state ρ0 is thus generally
required for maximizing the Fisher information Fq(ξ ), for any
quantum noise acting on the qubit.

When the increase of the purity ‖�r0‖ of the input probe ρ0

increases the quantum Fisher information Fq(ξ ), at the same
time it increases in Eq. (43) the purity ‖�r ‖ of the measured
quantum state ρξ . So this is another demonstration that the
quantum Fisher information Fq(ξ ) always increases with the
purity ‖�r ‖ of the measured quantum state ρξ . This is obtained
here for a parametric dependence specified by the phase ξ of
the qubit, and when, in the presence of a specified quantum
noise (A,�c), the purity ‖�r ‖ of the measured quantum state ρξ

is varied through the purity ‖�r0‖ of the input probe ρ0.
To further investigate the performance in estimation and

the conditions for maximization of the quantum Fisher
information Fq(ξ ) in the presence of noise, we shall now adapt
the parametrization of the Bloch vectors to enable a concise
vision on relevant factors of influence.

D. In the frame of the rotation axis

A convenient parametrization in R3 refers to an orthonor-
mal basis made of the rotation axis �n = [nx,ny,nz]�, of an
orthogonal unit vector that we choose in the plane (Ox,Oy) as
�n⊥ = [ny, − nx,0]�/

√
1 − n2

z , and of a third orthogonal unit
vector �n ′

⊥ = �n × �n⊥ = [nxnz,nynz,n
2
z − 1]�/

√
1 − n2

z . In the
orthonormal basis {�n,�n⊥,�n ′

⊥} of R3, any input probe state
ρ0 has a Bloch vector �r0 whose direction in R3 is defined
by the two angles (θ0,ϕ0): one coelevation angle θ0 ∈ [0,π ]
between �r0 and �n; and in the plane (�n⊥,�n ′

⊥), one azimuth
angle ϕ0 ∈ [0,2π ). With this parametrization, the rotated
state ρ1(ξ ) = Uξρ0U

†
ξ has a Bloch vector �r1(ξ ) = Rξ �r0 whose

direction is defined in the orthonormal basis {�n,�n⊥,�n ′
⊥} by

the two angles (θ1 = θ0,ϕ1 = ϕ0 + ξ ). Also, for the derivative
∂ξ �r1(ξ ) = (∂ξRξ )�r0 present in Eq. (44), since in the basis
{�n,�n⊥,�n ′

⊥} of R3 one has for the rotation of axis �n and angle
ξ the matrix

Rξ =
⎡⎣1 0 0

0 cos(ξ ) − sin(ξ )
0 sin(ξ ) cos(ξ )

⎤⎦ , (45)

then

∂ξRξ =
⎡⎣0 0 0

0 − sin(ξ ) − cos(ξ )
0 cos(ξ ) − sin(ξ )

⎤⎦
=

⎡⎣0 0 0
0 cos(ξ + π/2) − sin(ξ + π/2)
0 sin(ξ + π/2) cos(ξ + π/2)

⎤⎦ , (46)

so that ∂ξ �r1 is just �r1 with an extra angle ϕ1 → ϕ1 + π/2 and
the component along �n set to zero. Thus ∂ξ �r1 is orthogonal to
�r1 and 0 � ‖∂ξ �r1‖ � ‖�r1‖ � 1.

The quantum noise then acts on �r1 and ∂ξ �r1 to produce their
noisy versions �r and ∂ξ �r of Eqs. (43) and (44). As a result, the
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quantum Fisher information of Eq. (31) becomes

Fq(ξ ) = [(A�r1 + �c )A∂ξ �r1]2

1 − (A�r1 + �c )2 + (A∂ξ �r1)2. (47)

Especially, a pure input probe ρ0 which is required to
maximize the quantum Fisher information Fq(ξ ), leads to
a pure rotated state ρ1 with ‖�r1‖ = 1 which in the basis
{�n,�n⊥,�n ′

⊥} has components

�r1 = [cos(θ1), sin(θ1) cos(ϕ1), sin(θ1) sin(ϕ1)]� (48)

and

∂ξ �r1 = [0, − sin(θ1) sin(ϕ1), sin(θ1) cos(ϕ1)]�. (49)

If there were no noise, i.e., A = I and �c = �0 in Eq. (47),
the quantum Fisher information based on �r1 ⊥ ∂ξ �r1 yielding
�r1∂ξ �r1 = 0 would amount to Fq(ξ ) = [∂ξ �r1(ξ )]2 � 1, and this
is true both for a pure or a mixed state ρ1. Moreover, reaching
the maximum Fq(ξ ) = 1 would require ‖∂ξ �r1‖ = 1, which is
obtained for a pure state ρ1 with ‖�r1‖ = 1 and �r1 with no
component along �n, i.e., �r1 ⊥ �n, which is accomplished by a
pure input probe ρ0 with θ0 = π/2 also orthogonal to �n. There
is thus an intrinsic limit Fq(ξ ) � 1 on the quantum Fisher
information for qubit phase estimation. With an active quantum
noise, Fq(ξ ) = 1 can be preserved only with a pure ρ1, in
special conditions with �r1 ⊥ �n and specific noise parameters
(A,�c) as we will see in the sequel.

With the parametrization in the basis {�n,�n⊥,�n ′
⊥}, we gain

the advantage that to study the impact of a pure input probe ρ0

of Bloch vector �r0 on the quantum Fisher information Fq(ξ )
of Eq. (31), it is feasible and enough to study Fq as a function
of (θ1,ϕ1) only. This is accomplished essentially through
Eq. (47), with Eqs. (48) and (49) to explore the conditions
for maximization of Fq(θ1,ϕ1) occurring with a pure input
probe ρ0 equivalent to a pure rotated state ρ1. For instance, a
maximum of Fq(θ1,ϕ1) observed at (θopt

1 ,ϕ
opt
1 ) reveals that the

optimal input probe ρ
opt
0 is the pure state defined in the basis

{�n,�n⊥,�n ′
⊥} by (θopt

0 = θ
opt
1 ,ϕ

opt
0 = ϕ

opt
1 − ξ ), for estimation of

any given phase ξ . In this way, referring to the parametrization
(θ1,ϕ1) and (θ0,ϕ0) relative to the basis {�n,�n⊥,�n ′

⊥}, enables a
general characterization of the maximum Fisher information
Fq(ξ ) as a function of the input probe ρ0 in the presence of
any phase ξ .

E. Evaluation with different noise models

For estimation of the phase ξ from a noisy qubit, we now
consider different relevant quantum noise models, and analyze
their impact on the estimation performance assessed by the
quantum Fisher information Fq(ξ ) from Eq. (47). In each case
also, we characterize the optimal (pure) input probe state ρ0

maximizing the quantum Fisher information Fq(ξ ).

1. Pauli noises

A significant class of noise processes relevant to the
qubit is the class of Pauli noises [13]. A Pauli noise acts
through random applications of the four Pauli operators {σ0 ≡
1,σx,σy,σz} which form an orthogonal basis for operators on
H2. In the Kraus representation of Eq. (35), a Pauli noise

implements the quantum operation

ρ −→ N (ρ) =
∑

�=0,x,y,z

p�σ�ρσ
†
� , (50)

with the {p�} a probability distribution, leading for Eq. (36) to

�r −→ A�r =
⎡⎣axx 0 0

0 ayy 0
0 0 azz

⎤⎦ �r, (51)

with the real scalar coefficients

axx = p0 + px − py − pz, (52)

ayy = p0 − px + py − pz, (53)

azz = p0 − px − py + pz, (54)

referring to the original frame (Ox,Oy,Oz) of R3.
An important instance of a Pauli noise is the depolarizing

noise [12,13] for which axx = ayy = azz. With this maximally
symmetric noise, the configuration �r1 ⊥ ∂ξ �r1 which always
holds, entails �r = A�r1 ⊥ ∂ξ �r = A∂ξ �r1. The depolarizing noise
thus preserves the orthogonality of �r1 and ∂ξ �r1, which
persists in their noisy versions �r and ∂ξ �r . As a result, the
quantum Fisher information of Eq. (31) or (47) reduces to
Fq(ξ ) = [∂ξ �r(ξ )]2 = [A∂ξ �r1(ξ )]2 = a2

xx‖∂ξ �r1‖2, which for the
pure state ρ1 of Eqs. (48) and (49) is Fq(ξ ) = a2

xx sin2(θ1) =
a2

xx sin2(θ0). A visualization of the corresponding quantum
Fisher information Fq(ξ ) is provided by Fig. 1 in the plane
(θ1,ϕ1).

In the conditions similar to Fig. 1, the variation Fq(ξ ) =
a2

xx sin2(θ1) = a2
xx sin2(θ0) indicates that with the highly sym-

metric depolarizing noise, the quantum Fisher information
Fq(ξ ) is invariant with the rotated angle ϕ1 = ϕ0 + ξ , i.e.,
invariant with the phase ξ to be estimated on the noisy qubit.
However, Fq(ξ ) varies with the orientation �n of the qubit
rotation, yet only through the coelevation θ1 = θ0 controllable
via the input probe. This indicates that optimization of the
Fisher information at its maximum Fq(ξ ) = a2

xx can always be
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FIG. 1. (Color online) Quantum Fisher information Fq (θ1,ϕ1)
from Eq. (47) in the plane of the two angles (θ1,ϕ1) defining in the
basis {�n,�n⊥,�n ′

⊥} the rotated Bloch vector �r1(ξ ) = Rξ �r0 related to the
pure input probe ρ0 by (θ1 = θ0,ϕ1 = ϕ0 + ξ ). The qubit is affected
by the depolarizing noise from Eq. (51) with axx = ayy = azz = 0.9,
yielding the uniform maximum Fq (θ1,ϕ1) = a2

xx = 0.81 for θ
opt
1 =

π/2, ∀ϕ1.
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achieved by selecting the pure input probe ρ0 to ensure θ0 =
π/2, i.e., a ξ -independent pure input probe ρ0 characterized
by a Bloch vector �r0 orthogonal to the rotation axis �n having
arbitrary direction.

For Pauli noises less symmetric than the depolarizing noise,
the orthogonality of �r1 and ∂ξ �r1 is likely to disappear in their
noisy versions �r = A�r1 and ∂ξ �r = A∂ξ �r1. The variation of the
Fisher information Fq(ξ ) can be expected to depend also on
the angle ϕ1 and on the orientation in R3 of the rotation axis
�n relative to the eigenaxes (Ox,Oy,Oz) of the Pauli noise.
However, for any Pauli noise, when the rotation axis �n is
parallel to one of the eigenaxes (Ox,Oy,Oz) of the noise
matrix A, the rotated vector ∂ξ �r1 in Eq. (49) which is always
in the plane orthogonal to �n, has its noisy version A∂ξ �r1 = ∂ξ �r
which remains in this plane. Choosing �r1 of Eq. (48) also in
the plane orthogonal to �n, i.e., θ1 = π/2, yields A�r1 = �r which
also remains in this plane. This condition θ1 = π/2 locates the
maximum of Fq(θ1,ϕ1). This can be proved by differentiating
Fq(θ1,ϕ1) from Eq. (47) with respect to θ1, using from Eqs. (48)
and (49),

∂

∂θ1
�r1 = [− sin(θ1), cos(θ1) cos(ϕ1), cos(θ1) sin(ϕ1)]� (55)

and

∂

∂θ1
∂ξ �r1 = [0, − cos(θ1) sin(ϕ1), cos(θ1) cos(ϕ1)]�, (56)

and their evaluation at θ1 = π/2 yielding ∂(∂ξ �r1)/∂θ1 = �0
and ∂�r1/∂θ1 = [−1,0,0]� ⊥ �r1, to show that ∂Fq(θ1,ϕ1)/∂θ1

always vanishes in θ1 = π/2, for any ϕ1. Furthermore, in
Eq. (47), one chooses ϕ1 = 0 or π/2 so as to place ∂ξ �r1 in
the direction of the dominant eigendirection of A in the plane
orthogonal to �n. This choice minimizes the compression of
∂ξ �r1 by A and completes the maximization of Fq(θ1,ϕ1) at
the level of the associated dominant squared eigenvalue. For

instance, with a rotation axis �n parallel to Oz, one obtains
from Eq. (47)

Fq(θ1 = π/2,ϕ1) =
(
1 − a2

xx

)
a2

yy + (
a2

xx − a2
yy

)
sin2(ϕ1)

1 − a2
xx + (

a2
xx − a2

yy

)
sin2(ϕ1)

,

(57)

reaching the maximum a2
yy in ϕ

opt
1 = 0 when ayy > axx , or the

maximum a2
xx in ϕ

opt
1 = π/2 when axx � ayy . With the rotation

axis �n parallel to one of the eigenaxes of any Pauli noise, one
can thus expect a maximum of the quantum Fisher information
Fq(θ1,ϕ1) at θ

opt
1 = θ

opt
0 = π/2, i.e., with an optimal input

probe ρ0 orthogonal to �n, and at ϕ
opt
1 = 0 or ϕ

opt
1 = π/2

fixing the optimal input probe with an azimuth ϕ
opt
0 = ϕ

opt
1 − ξ

dependent on the phase ξ .
Another Pauli noise important to the qubit is the bit-flip

noise [12,13], characterized in Eq. (50) by py = pz = 0,
implementing a random application of σx to the qubit with
probability px or no change with probability 1 − px . This
leads in Eq. (51) to axx = 1 and ayy = azz = 1 − 2px . The
reduced symmetry of the bit-flip noise entails, as expected,
that the orthogonality of �r1 and ∂ξ �r1 is not generally preserved
in their noisy versions �r = A�r1 and ∂ξ �r = A∂ξ �r1. The Fisher
information Fq(ξ ) in Eq. (47) then usually depends on ϕ1 and
θ1, and on the orientation in R3 of the rotation axis �n relative
to the eigenaxes (Ox,Oy,Oz) of the Pauli noise. A rotation
axis �n parallel to Oz is considered in Fig. 2(a) for illustration.
Figure 2(a) shows that with the bit-flip noise, the quantum
Fisher information Fq(θ1,ϕ1) from Eq. (47) bears explicit
dependence on both angles ϕ1 = ϕ0 + ξ and θ1 = θ0. With
axx = 1 of the bit-flip noise, however, there is from Eq. (57) a
uniform maximum at Fq(θ1,ϕ1) = 1 for θ

opt
1 = π/2, ∀ϕ1. For

an arbitrary ϕ1, there is an effective compression by the noise
of both �r1 and ∂ξ �r1, reducing the magnitude of their noisy
versions �r = A�r1 and ∂ξ �r = A∂ξ �r1; yet, as revealed by the
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FIG. 2. (Color online) The level curves of the quantum Fisher information Fq (θ1,ϕ1) from Eq. (47) in the plane of the two angles
(θ1,ϕ1) defining in the basis {�n,�n⊥,�n ′

⊥} the rotated Bloch vector �r1(ξ ) = Rξ �r0 related to the pure input probe ρ0 by (θ1 = θ0, ϕ1 = ϕ0 + ξ ).
The qubit is affected by a bit-flip noise with px = 0.2. In the frame (Ox,Oy,Oz) of R3 the rotation axis is (a) �n = (θn = 0,ϕn) ‖ Oz

with the uniform maximum Fq (θ1,ϕ1) = 1 for θ
opt
1 = π/2, ∀ϕ1; (b) �n = (θn = 0.3π, ϕn = 0.4π ) with two maxima at Fq (θ1,ϕ1) = 0.960 for

(θ opt
1 = π/2, ϕ

opt
1 = 0.56π ) and (θopt

1 = π/2, ϕ
opt
1 = 1.56π ) at the locations of the two crosses (×).
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analysis of the Fisher information of Eq. (47), this does not
prevent the preservation of a maximum Fq(θ1 = π/2,ϕ1) = 1
for any ϕ1. The condition θ

opt
1 = π/2 = θ

opt
0 is achieved by a

pure input probe ρ0 with a Bloch vector �r0 orthogonal to the
rotation axis �n; this ensures the maximum Fq(θ1 = π/2,ϕ1) =
1 for any rotated angle ϕ1 = ϕ0 + ξ , i.e., any phase ξ to
be estimated. The same outcome of Fq(θ1 = π/2,ϕ1) = 1,
∀ϕ1 = ϕ0 + ξ , achievable by any input probe orthogonal to
�n, could be obtained in equivalent configurations with a
phase-flip noise when azz = 1, and with a bit-phase-flip noise
when ayy = 1. In this way, with a rotation axis �n parallel to
an eigenaxis (Ox,Oy,Oz), these three Pauli noises, having
one of the diagonal coefficients ajj = 1 in Eq. (51) in an
eigendirection not coinciding with �n, lead to an optimized input
probe ρ0 independent of the phase ξ and allowing complete
immunity from the noise: the maximum Fq(θ1 = π/2,ϕ1) = 1
materializing that there is no reduction by the noise of the
available Fisher information.

For the more general configurations where the rotation axis
�n is not parallel to any of the eigenaxes (Ox,Oy,Oz) of the
Pauli noise, the analysis of Eq. (47) and its derivatives in
(θ1,ϕ1) especially via Eqs. (55) and (56), shows that the Fisher
information Fq(θ1,ϕ1) culminates at a maximum �1 occurring
in θ

opt
1 = π/2 and specific values of ϕ1 = ϕ

opt
1 dependent on

the orientation of �n. An example is presented in Fig. 2(b) for an
oblique �n in the frame (Ox,Oy,Oz). The optimality condition
θ

opt
1 = π/2 = θ

opt
0 can always be achieved by a pure input

probe ρ0 with �r0 in the plane orthogonal to the rotation axis �n;
yet this has to be complemented, so as to reach the maximum
of Fq(θ1,ϕ1), for the input probe by an azimuth ϕ

opt
0 = ϕ

opt
1 − ξ

having a specific tuning dependent on the phase ξ .
The transformation of Eq. (50) always satisfyingN (1) = 1

belongs to the class of unital noise models for the qubit, with
specific interesting properties [22,23]. This is associated with
�c = �0 in Eq. (36). Beyond the case of the Pauli noises of
Eqs. (50) and (51), any quantum noise with �c = �0 and A = US

non-necessarily diagonal in the original frame (0x,0y,Oz)
is also unital, satisfying N (1) = 1. For the quantum Fisher
information Fq(ξ ), the behaviors observed in this section are
essentially controlled by the situation of the rotation axis �n
relative to the eigenaxes (Ox,Oy,Oz) of the Pauli noise. With
an arbitrary unital noise characterized by (A = US, �c = �0),
similar behaviors can be expected for the quantum Fisher
information Fq(ξ ), but controlled this time by the situation
of the rotation axis �n relative to the eigendirections {�s1,�s2,�s3}
of S, the isometry U preserving the inner product in R3 will
have no effect on Fq(ξ ) of Eq. (31).

2. Nonunital noises

The effect of �c �= �0 with nonunital noises can also play a
significant role when optimizing the input probe ρ0 through
maximization of the quantum Fisher information Fq(ξ ). A
nonunital noise important to the qubit is the generalized am-
plitude damping (GAD) noise [12], characterized in Eq. (36)
by

A =
⎡⎣√

1 − γ 0 0
0

√
1 − γ 0

0 0 1 − γ

⎤⎦ (58)
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FIG. 3. (Color online) The level curves of the quantum Fisher
information Fq (θ1,ϕ1) from Eq. (47) as in Fig. 2, with a rotation axis
�n = (θn = 0.3π, ϕn = 0.4π ) in the frame (Ox,Oy,Oz) of R3. The
qubit is affected by a GAD noise from Eq. (58) with parameters (γ =
0.42, p = 0.12). With two maxima at Fq (θ1,ϕ1) = 0.58 for (θopt

1 =
π/2, ϕ

opt
1 = π/2) and (θopt

1 = π/2, ϕ
opt
1 = 3π/2) at the locations of

the two crosses (×).

and �c = [0,0,(2p − 1)γ ]�, with γ and p in [0,1], which can
describe the interaction of the qubit with a thermal bath. With
the symmetries of the GAD noise, Eq. (47) shows that the
quantum Fisher information Fq(θ1,ϕ1) is always maximized
at (θopt

1 = π/2; ϕopt
1 = π/2,3π/2), for any rotation axis �n,

with a value of 1 − γ for the maximum which is therefore
independent of �n and a function only of the noise parameter γ .
An illustration is provided in Fig. 3, depicting the landscape of
Fq(θ1,ϕ1) in the plane (θ1,ϕ1), which in general changes with
both the rotation axis �n and the GAD noise parameters (γ,p).
However, as visible in Fig. 3, there is invariably a maximum
of Fq(θ1,ϕ1) = 1 − γ in (θopt

1 = π/2; ϕopt
1 = π/2,3π/2).

For maximizing the quantum Fisher information with the
GAD noise, the optimality condition θ

opt
1 = π/2 = θ

opt
0 is

again achieved by a pure input probe ρ0 with �r0 orthogonal
to the rotation axis �n. Yet this again has to be complemented
for the input probe by an azimuth ϕ

opt
0 = π/2 − ξ or ϕ

opt
0 =

3π/2 − ξ having a specific tuning dependent on the phase ξ .
A less symmetrical nonunital noise relevant to the qubit is

the squeezed generalized amplitude damping (SGAD) noise
[24–26]. Such a noise process describes the interaction of
the qubit with a squeezed thermal bath. Squeezing of a
thermal bath is obtained by a nonlinear operation capable
of introducing correlations between the modes or thermal
photons of the bath, with possibilities to counteract the
detrimental decohering effect of temperature [24,25,27]. The
SGAD quantum noise is characterized in Eq. (36) by

A =
⎡⎣axx axy 0

axy ayy 0
0 0 azz

⎤⎦ , (59)

and �c = [0,0,cz]�.
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FIG. 4. (Color online) The level curves of the quantum Fisher
information Fq (θ1,ϕ1) from Eq. (47) as in Figs. 2 and 3,
with a rotation axis �n = (θn = 0.3π, ϕn = 0.4π ) in the frame
(Ox,Oy,Oz) of R3. The qubit is affected by a SGAD noise
from Eq. (59) with parameters (axx = 0.3604, axy = −0.2712,

ayy = 0.5433, azz = 0.1248; cz = 0.6379). With two maxima at
Fq (θ1,ϕ1) = 0.436 for (θopt

1 = 0.56π, ϕ
opt
1 = 0.22π ) and (θopt

1 =
0.56π, ϕ

opt
1 = 1.48π ) at the locations of the two crosses (×).

With the SGAD noise, Eq. (47) shows that the quantum
Fisher information Fq(θ1,ϕ1) generally takes its maximum at
arbitrary locations (θopt

1 �= π/2; ϕopt
1 ) specifically determined

by the rotation axis �n and by the SGAD noise parameters. An
illustration is provided in Fig. 4, depicting a typical arbitrary
(with no simple symmetries) landscape of the quantum Fisher
information Fq(θ1,ϕ1) with a SGAD noise.

For maximizing the quantum Fisher information with the
SGAD noise, the optimality conditions (θopt

1 = θ
opt
0 , ϕ

opt
1 =

ϕ
opt
0 + ξ ) as illustrated in Fig. 4, generally point to a pure

input probe ρ0 with a very specific noise-dependent orientation
nonorthogonal to the rotation axis �n and also matched to the
phase ξ .

In this way, with approaches similar to those illustrated in
Figs. 1–4 on important noises relevant to the qubit, the form of
Eq. (47) for the quantum Fisher information Fq(ξ ) allows one
to determine the conditions of optimality for the input probe
ρ0, with any given quantum noise defined by (A,�c).

F. Bayesian optimization

The evaluation of the quantum Fisher information Fq(ξ )
performed in Sec. III E has revealed that, with most types of
noise characterized by (A,�c ) in Eq. (36) and most rotation axes
�n, the optimal pure input probe ρ0 maximizing the quantum
Fisher information Fq(ξ ) is usually dependent on the phase
ξ to be estimated from the noisy qubit. This is true except
with isotropic noises similar to the depolarizing noise, and
with unital noises when the rotation axis �n is parallel to
an eigendirection {�s1,�s2,�s3} and an eigenvalue sj = 1 in an
eigendirection differing form �n, in which cases any pure input
probe ρ0 orthogonal to �n is optimal for maximizing Fq(ξ ).

To cope with a ξ -dependent optimal probe ρ0, one can
resort to an adaptive scheme with feedback whenever a series
of experiments can be repeated to estimate a same phase
ξ , much like the adaptive approach to optimize a POVM
mentioned at the end of Sec. II A. The adaptive scheme is
driven by the analysis of Eq. (47) providing the solution
(θopt

1 ,ϕ
opt
1 ) to the maximization of Fq(ξ ). A nonoptimized

initial (pure) probe ρ0 defined by (θ0 = θ
opt
1 ,ϕ0) provides

a rough estimate ξ̂ of the phase ξ , and this estimate ξ̂ is
used to adjust the probe ρ0 via ϕ0 ← ϕ

opt
1 − ξ̂ ; the step is
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(b)

FIG. 5. (Color online) The level curves of the ξ -averaged quantum Fisher information F q (θ0,ϕ0) in the plane of the two angles (θ0,ϕ0)
defining in the basis {�n,�n⊥,�n ′

⊥} the pure input probe ρ0. The average is according to a Gaussian prior p0(ξ ) with mean mξ = π/3 and standard
deviation σξ = π/10. The rotation axis is �n = (θn = 0.3π, ϕn = 0.4π ) in the frame (Ox,Oy,Oz) of R3. The qubit is affected by (a) a bit-flip
noise with px = 0.2 of Fig. 2(b), with the maximum F q (θ0,ϕ0) = F

max
q = 0.955 for (θopt

0 = π/2, ϕ
opt
0 = 0.22π ) and (θopt

0 = π/2, ϕ
opt
0 = 1.22π )

at the locations of the two crosses (×); (b) a SGAD noise with the same parameters as in Fig. 4, with the maximum F q (θ0,ϕ0) = F
max
q = 0.425

for (θ opt
0 = 0.55π, ϕ

opt
0 = 1.92π ) at the location of the cross (×).
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FIG. 6. (Color online) The level curves of the ξ -averaged quantum Fisher information F q (θ0,ϕ0) in the plane of the two angles (θ0,ϕ0)
defining in the basis {�n,�n⊥,�n ′

⊥} the pure input probe ρ0. The average is according to a prior p0(ξ ) uniform over [0,ξmax]. The rotation axis is
�n = (θn = 0.3π, ϕn = 0.4π ) in the frame (Ox,Oy,Oz) of R3. The qubit is affected by a SGAD noise with the same parameters as in Fig. 4.
(a) ξmax = π/2 with the maximum F q (θ0,ϕ0) = F

max
q = 0.415 for (θopt

0 = 0.55π, ϕ
opt
0 = 0.02π ) at the location of the cross (×); (b) ξmax = π

with the maximum F q (θ0,ϕ0) = F
max
q = 0.351 for (θopt

0 = 0.59π, ϕ
opt
0 = 1.36π ) at the location of the cross (×); (c) ξmax = 3π/2 with the

maximum F q (θ0,ϕ0) = F
max
q = 0.348 for (θopt

0 = 0.57π, ϕ
opt
0 = 1.14π ) at the location of the cross (×); (d) ξmax = 2π with the maximum

F q (θ0,ϕ0) = F
max
q = 0.293 for θ

opt
0 = 0.54π, ∀ϕ0.

repeated with the newly adjusted probe, and iterated. Such
an adaptive scheme has been experimentally implemented in
[6] for the estimation of the rotation angle of a qubit around
Oz in the presence of phase-flip noise, and was shown to
converge in a few iterations. Our analysis here provides access
to (θopt

1 ,ϕ
opt
1 ) for any rotation axis �n and any noise (A,�c), and

therefore enables application of the adaptive scheme in any
conditions.

As an alternative, to obtain an optimal input probe ρ0

independent of ξ , in general conditions, a Bayesian approach
can be adopted. One has to introduce a prior probability density
p0(ξ ) quantifying the a priori range and values admissible
for the unknown phase ξ . The quantum Fisher information
Fq(ξ ) of Eq. (47) can then be averaged according to the prior
p0(ξ ), using Eqs. (48) and (49) with (θ1 = θ0, ϕ1 = ϕ0 + ξ ).

One then obtains the ξ -averaged quantum Fisher information
Fq = Fq(θ0,ϕ0), which is now only a function of the two
angles (θ0,ϕ0) defining the pure input probe ρ0. Finally,
maximization of Fq(θ0,ϕ0) in the plane (θ0,ϕ0) determines
the optimal configuration (θopt

0 ,ϕ
opt
0 ) for the pure input probe

ρ0, matched to given noise and rotation axis �n. An input probe
ρ0 optimized in this way can be expected to perform well
on most occasions, over a series of successive estimations
of a large number of independent instances of ξ distributed
according to p0(ξ ).

For illustration of this Bayesian approach, Fig. 5 con-
siders the case of a Gaussian prior p0(ξ ) = exp[−(ξ −
mξ )2/(2σ 2

ξ )]/(σξ

√
2π ), with mean mξ = π/3 and standard

deviation σξ = π/10, and depicts the ξ -averaged quantum
Fisher information Fq(θ0,ϕ0) corresponding to the qubit
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affected by the bit-flip noise of Fig. 2(b) or by the SGAD
noise of Fig. 4.

Maximization of Fq(θ0,ϕ0) in Fig. 5 gives access to the
optimal parametrization (θopt

0 ,ϕ
opt
0 ) for the pure input probe

ρ
opt
0 , together with the corresponding maximum average Fisher

information Fq(θopt
0 ,ϕ

opt
0 ) = F

max
q . The optimal probe ρ

opt
0

and its performance F
max
q are clearly distinct for each noise

condition in Fig. 5, expressing again the necessity of an
input probe specifically matched to the noise in order to
maximize the performance in estimation. There is, however,
a rotation invariance of the configuration of the optimum, in
the sense that if the prior distribution p0(ξ ) is shifted by an
amount �ξ , for instance when the Gaussian mean is changed
by mξ → mξ + �ξ , then the optimum is simply displaced
as (θopt

0 ,ϕ
opt
0 ) → (θopt

0 ,ϕ
opt
0 − �ξ ) while the maximum F

max
q

remains unchanged. Meanwhile, if the standard deviation σξ

of the prior p0(ξ ) increases, this usually entails a decrease of
the maximum detection performance F

max
q . To illustrate this

point, Fig. 6 shows the situation of a prior p0(ξ ) uniform over
[0,ξmax], with a SGAD noise.

The four panels of Fig. 6 with the prior p0(ξ ) uniform over
[0,ξmax], show the nontrivial evolution, as ξmax is increased, of
the landscape of the ξ -averaged quantum Fisher information
Fq(θ0,ϕ0) in the plane of the two angles (θ0,ϕ0) defining the
pure input probe ρ0, with in each condition the possibility
of identifying the optimal tuning (θopt

0 ,ϕ
opt
0 ) achieving the

maximum F
max
q of the Fisher information Fq(θ0,ϕ0). It is

also indicated in Fig. 6 that as the dispersion ξmax increases,
expressing less accurate prior information on ξ , then the
maximum detection performance assessed by F

max
q gradually

decreases, consistently since estimation thereof is assisted by
lesser prior knowledge. The extreme ξmax = 2π of Fig. 6(d)
corresponds to the most dispersed and uninformative prior
p0(ξ ), and in this condition any azimuth ϕ0 is equivalent to
devise the optimal probe ρ

opt
0 . Nevertheless, a specific tuning

of the coelevation at θ
opt
0 = 0.54π is necessary to define the

optimal probe ρ
opt
0 capable of maximizing the average Fisher

information at Fq(θopt
0 ,ϕ0) = F

max
q = 0.293, for the SGAD

noise of Fig. 6(d). This situation of a prior probability density
p0(ξ ) uniform over [0,2π ] corresponds to no prior knowledge
on the unknown phase ξ to be estimated. Yet, even in such
circumstance, the present analysis shows the necessity usually
of a specific tuning for the input probe ρ

opt
0 , and determines its

value, in order to best cope with the quantum noise hindering
the estimation.

IV. CONCLUSION

We have reviewed the theory of quantum estimation and
applied it for parametric estimation on a noisy qubit. An
important step is the exploitation of the Bloch representation
of qubit states in order to obtain explicit expressions for the
quantum score Lξ and quantum Fisher information Fq(ξ )
according to Eqs. (30)–(33). This served to establish that, for
any parametric dependence on ξ of the measured qubit state ρξ ,
the quantum Fisher information Fq(ξ ) always increases with
the purity of ρξ . In Bloch representation, an arbitrary quantum
noise affecting the qubit has been taken into account, enabling

one to describe the impact of any noise on the quantum score
and on the quantum Fisher information, and this again for any
parametric dependence of ρξ on ξ . The task has then been
specified to estimating the phase ξ acquired by a qubit in a
rotation around an arbitrary axis �n, equivalent to estimating
the phase of an arbitrary single-qubit quantum gate. It then
became possible to address the optimization of the input probe
state ρ0, so as to maximize the quantum Fisher information
upon estimation from the noisy qubit. In such circumstance,
the optimal probe is proved to always be a pure state, yet
specifically matched to the noise. The optimal input probes
have been determined for important quantum noises relevant
to the qubit, including Pauli noises and nonunital noises as
GAD or SGAD noises, with any other noise model which
can be equally handled by our approach. In highly symmetric
configurations, for instance with the isotropic depolarizing
noise or with privileged orientations of the qubit rotation axis �n
relative to the eigenaxes of a Pauli noise, an optimal input probe
ρ0 independent of the unknown parameter ξ is found to exist. In
other, less symmetric configurations, the optimal input probe
ρ0 comes out as a pure state with a Bloch vector orthogonal
to the rotation axis �n and with a ξ -dependent azimuth. For
even more sophisticated configurations, for instance with the
SGAD noise, the optimal input probe ρ0 can be found in
arbitrary positions relative to the rotation axis �n, which can
all be determined from the present analysis.

The present analysis identifies the conditions with an
optimal input probe ρ0 independent of the unknown parameter
ξ , defining in this way a useful setting which can be selected
for efficient estimation. In addition, the situations that are
identified with a ξ -dependent optimal input probe ρ0, point
in such cases to the expedient of an adaptive scheme with
feedback, over a sequence of successive measurements, as
explained in Sec. III F. This will, in principle, give access to the
optimal probe ρ0 maximizing the quantum Fisher information
Fq(ξ ). Alternatively, we have presented a Bayesian approach
which, based on a prior probability distribution p0(ξ ) for
the unknown parameter ξ , leads to a ξ -independent optimal
input probe. The optimization of the input probe can also be
coupled to the adaptive scheme constructing a POVM capable
of reaching the maximum Fc(ξ ) = Fq(ξ ), as explained at the
end of Sec. II A. This adaptive scheme for the POVM relies
on the eigen decomposition of the quantum score Lξ , and
will therefore also benefit from the present analysis for the
noisy qubit. The eigen decomposition of Lξ follows directly
from the expressions for Lξ given in Eq. (30) or (32), since
any operator on H2 written as L = a01 + �a�σ has the two
eigenvalues a0 ±

√
�a 2 with the two projectors in H2 on the

two associated eigenvectors reading (1 ± �a�σ/
√

�a 2 )/2. In this
way, the present analysis of quantum state estimation from a
noisy qubit, offers several useful possibilities for optimizing
the estimation task.

The present approach can be extended to multiparametric
estimation [1] on a noisy qubit, with a qubit state ρ�ξ =
ρ(�ξ ) dependent on a vector of unknown parameters �ξ =
(ξ1,ξ2, . . . ξK )�. The estimation performance will be con-
trolled by the K partial derivatives ∂kρ(�ξ ) ≡ ∂ρ(�ξ )/∂ξk and a
score function with K components Lk(�ξ ) each defined via an
analog of Eq. (7). For the noisy qubit, the Bloch representation
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with Bloch vector �r(�ξ ) in R3 and its K partial derivatives
∂k�r(�ξ ) ≡ ∂�r(�ξ )/∂ξk will remain central for the analysis, with
more involved, multidimensional expressions, yet with the
action of the noise still governed by Eq. (36).

The present approach where one seeks to optimize the input
probe state prior to the action of noise, in order to maximize
the performance in estimation from a noisy quantum state,
can also be extended to quantum systems of dimension higher
than the dimension N = 2 of the qubit. However, to extend the
present approach in this direction, one would have to resort to
some generalization of the Bloch representation decomposing
a qubit state essentially on a basis of traceless Hermitian
operators (plus the identity), such as, for instance, Gell-Mann
matrices for the qutrit with dimension N = 3 or their gener-

alization in higher dimension [28]. Here also the theoretical
analysis is more involved, and moreover the characterization
of quantum noises in higher dimension is another separate
difficulty adding to the complication of the task.

Returning to the more tractable level of the qubit, which is
a fundamental system for quantum information, informational
processes other than estimation could also be envisaged
along the same line, looking for optimized conditions of
operation in the presence of a definite quantum noise sep-
arately characterized. In this respect, one could propose, for
instance, to include the noise in specifically quantum processes
involving entanglement and nonlocal quantum correlations
violating Bell-type inequalities [29–31], for better exploitation
of entanglement in the presence of noise.
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