
PHYSICAL REVIEW A 94, 022334 (2016)

Optimizing qubit phase estimation

François Chapeau-Blondeau
Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d’Angers,
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The theory of quantum state estimation is exploited here to investigate the most efficient strategies for this task,
especially targeting a complete picture identifying optimal conditions in terms of Fisher information, quantum
measurement, and associated estimator. The approach is specified to estimation of the phase of a qubit in a
rotation around an arbitrary given axis, equivalent to estimating the phase of an arbitrary single-qubit quantum
gate, both in noise-free and then in noisy conditions. In noise-free conditions, we establish the possibility of
defining an optimal quantum probe, optimal quantum measurement, and optimal estimator together capable of
achieving the ultimate best performance uniformly for any unknown phase. With arbitrary quantum noise, we
show that in general the optimal solutions are phase dependent and require adaptive techniques for practical
implementation. However, for the important case of the depolarizing noise, we again establish the possibility of
a quantum probe, quantum measurement, and estimator uniformly optimal for any unknown phase. In this way,
for qubit phase estimation, without and then with quantum noise, we characterize the phase-independent optimal
solutions when they generally exist, and also identify the complementary conditions where the optimal solutions
are phase dependent and only adaptively implementable.
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I. INTRODUCTION

To efficiently infer information from measurements, the
theory of quantum estimation enables one to characterize the
overall best performance in estimating parameters defining
a quantum state from quantum measurements on this state.
Since its introduction in Refs. [1–3], this theory of quantum
estimation has received a significant number of applications,
extensions, experimental implementations, with many possible
variations according to the conditions and quantum systems
undergoing estimation [4–6]. Several related aspects of an
estimation task can be addressed through this theory. The
theory, by means of the quantum Fisher information, places
an upper bound on the classical Fisher information, and in
turn the classical Fisher information determines a lower bound
for the mean-squared error of any conceivable estimator. Once
the bounds are established, their conditions of attainability can
also be investigated. It turns out that, depending on the con-
ditions, the best performances dictated by the bounds are not
always attainable [5–7]. This is especially true if attention is
paid to practical realizability which restricts one to parameter-
independent optimal solutions: since the parameters are un-
known, if they enter in the formulation of the optimal solutions,
then these solutions are inaccessible for practical implementa-
tion. Optimal quantum measurement protocols and associated
optimal estimators can be investigated to reach or best
approach these bounds. Some studies have concentrated on
expressing the ultimate best performance in definite conditions
of estimation [7–11]; others concentrated more on devising ef-
ficient quantum measurement protocols and associated estima-
tors [12–16]. Here, we will consistently address these succes-
sive stages in conjunction, for optimizing an estimation task.

Most of the studies so far have considered estimation on
a generic quantum state generally represented by a density
operator carrying the dependence with the unknown parame-
ters of interest. A more realistic approach, especially natural
in a quantum signal or information processing perspective, is

to consider that estimation has to be performed from a noisy
quantum state altered by decoherence. The initial quantum
state carrying the dependence with the unknown parameters is
subsequently affected by some specified quantum noise, before
it becomes accessible for estimation. Such a more realistic
scenario allows one to explicitly examine the impact of the
noise or decoherence on the optimal estimation strategies and
their performance. Such an approach of estimation from a
noisy quantum state has recently been considered in [17–20],
with the quantum Fisher information to assess the performance
which is maximized through selection of the probe state best
resistant to the noise, for several noise models.

We will especially consider such conditions with noise here.
We address estimation of the phase of a qubit in a rotation
around an arbitrary axis, equivalent to estimating the phase of
an arbitrary single-qubit quantum gate, and generalizing the
rotations of Refs. [17,18]. The ultimate best performance for
phase estimation is characterized through explicit evaluation
of the quantum Fisher information, in the presence of arbitrary
quantum noise on the qubit. We examine the successive stages
to be implemented for phase estimation, and their optimization
towards realizing the ultimate best performance. In this
way, optimization of the quantum probe carrying the phase
dependence of the quantum measurement protocol and of the
optimal estimator, are successively addressed. We especially
examine the possibility of determining phase-independent
optimal solutions at each of these stages, so as to enable
direct practical implementations. According to the noise
conditions, we investigate, consistently for the quantum probe,
the quantum measurement and the estimator, whether there
exist phase-independent optimal solutions, and when they
are feasible we exhibit the forms of such phase-independent
solutions that best approach the ultimate maximal performance
in qubit phase estimation.

In the following, in Sec. II we briefly review elements of
quantum estimation theory providing a general characteriza-
tion of the ultimate best performance via the quantum Fisher
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information. Section III specializes to phase estimation on a
qubit, first with no noise, where are successively established
the optimal probe state, quantum measurement, and estimator
together achieving the ultimate best estimation performance,
with a phase-independent solution. Section IV addresses the
same phase estimation task, yet from a qubit affected by an
arbitrary quantum noise, and where also the possibility of
phase-independent optimal solutions are investigated while
targeting maximal performance in estimation.

II. GENERAL PERFORMANCE IN QUANTUM
ESTIMATION

A. Quantum score and Fisher information

A quantum system with D-dimensional Hilbert space HD

has its state represented by a density operator ρξ dependent
upon an unknown scalar parameter ξ to be estimated. A
quantum measurement protocol is implemented on the state
ρξ , and the measurement outcomes are processed through
an estimator ξ̂ , in order to infer a value for the unknown
parameter ξ . To assess the performance in such an estimation
task, a meaningful metric is the mean-squared estimation
error 〈(̂ξ − ξ )2〉. From classical estimation theory [21,22], it is
known that any conceivable estimator ξ̂ for ξ is endowed with
a mean-squared error 〈(̂ξ − ξ )2〉 which is lower bounded by
the Cramér-Rao bound involving the reciprocal of the classical
Fisher information Fc(ξ ). Estimators are known, such as the
maximum likelihood estimator, that allow us to reach the
Cramér-Rao bound in definite (usually asymptotic) conditions
[22]. Higher Fisher information Fc(ξ ) generally entails better
performance in estimation, and one has then the faculty to
devise the quantum measurement protocol so as to maximize
Fc(ξ ). In this respect, there is a fundamental upper bound
[1,23] provided by the quantum Fisher information Fq(ξ )
which sets a limit to the classical Fisher information Fc(ξ ),
i.e., fixing Fc(ξ ) � Fq(ξ ).

The quantum Fisher information Fq(ξ ) for estimating the
scalar parameter ξ from the quantum state ρξ is defined as the
mean-squared quantum score, i.e. [2,3,6,23],

Fq(ξ ) = 〈
L2

ξ

〉 = tr
(
ρξL

2
ξ

)
. (1)

The quantum score Lξ , or symmetrized logarithmic derivative,
is a Hermitian operator defined by the equation [1–3,23]

∂ξρξ ≡ ∂ρξ

∂ξ
= 1

2
(Lξρξ + ρξLξ ). (2)

By referring to the spectral decomposition of ρξ in its
orthonormal eigenbasis ρξ = ∑D

n=1 λn |λn〉 〈λn|, it is possible
to obtain a more explicit expression for the quantum score as
[6,20]

Lξ = 2
∑
m,n

1

λm + λn

|λm〉 〈λm|∂ξρξ |λn〉 〈λn| , (3)

where the sums as in Eq. (3) include all terms corresponding
to eigenvalues λm + λn �= 0. This leads, from Eq. (1), to the

quantum Fisher information [3,6,20]

Fq(ξ ) = 2
∑
m,n

| 〈λm|∂ξρξ |λn〉 |2
λm + λn

. (4)

For the special case of a pure state ρξ = |λ〉 〈λ| then ∂ξρξ =
|∂ξλ〉 〈λ| + |λ〉 〈∂ξλ|, and also the expressions of Eqs. (3) and
(4) are replaced [6,20] by

Lξ = 2(|∂ξλ〉 〈λ| + |λ〉 〈∂ξλ|), (5)

and

Fq(ξ ) = 4(〈∂ξλ|∂ξλ〉 + 〈∂ξλ|λ〉2). (6)

For further determination of the quantum score Lξ and
quantum Fisher information Fq(ξ ), we now examine a specific
and useful form for the parametric dependence with ξ

determining the derivative ∂ξ .

B. Estimation in a unitary family

An important parametric family [2,6] of quantum states ρξ

arises when a quantum probe state ρ0 experiences an arbitrary
unitary transformation Uξ to yield the quantum state ρξ =
Uξρ0U

†
ξ , with the parametrization

Uξ = exp(−iξG), (7)

where G is an arbitrary Hermitian operator forming the
generator of the unitary Uξ , with G and Uξ which commute
since they are diagonal in the same orthonormal basis. For
this type of parametric dependence of ρξ , one obtains ∂ξρξ =
i[ρξ ,G] = iUξ [ρ0,G]U †

ξ , leading for the quantum score of

Eq. (3) to Lξ = UξL0U
†
ξ , with

L0 = 2i
∑
m,n

1

λm + λn

∣∣λ0
m

〉 〈
λ0

m

∣∣ [ρ0,G]
∣∣λ0

n

〉 〈
λ0

n

∣∣ . (8)

For Eq. (8), when the transformed state ρξ = Uξρ0U
†
ξ has

eigenvalues λn and eigenvectors |λn〉, the initial probe state
ρ0 has same eigenvalues λn and eigenvectors |λ0

n〉 with |λn〉 =
Uξ |λ0

n〉. The quantum Fisher information of Eq. (1) is equally
Fq(ξ ) = tr(ρ0L2

0) expressible as

Fq(ξ ) = 2
∑
m,n

(λm − λn)2

λm + λn

∣∣〈λ0
m

∣∣G∣∣λ0
n

〉∣∣2
. (9)

For the special case of a pure state |λ〉 = Uξ |λ0〉, Eqs. (5)
and (6) lead, with ρ0 = |λ0〉 〈λ0|, to

L0 = 2i[ρ0,G], (10)

and

Fq(ξ ) = 4
(〈λ0|G2|λ0〉 − 〈λ0|G|λ0〉2) = 4〈λ0|�G2|λ0〉.

(11)
These elements of quantum estimation theory are now

applied to estimation from a qubit state in the two-dimensional
Hilbert space H2.

III. OPTIMAL QUBIT PHASE ESTIMATION

For parametric estimation on a qubit, it is possible to
come up with explicit expressions for the quantum score
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and quantum Fisher information fixing the ultimate maximal
performance, and also to devise optimal strategies achieving
this maximal performance, as we now address.

A. Optimizing the quantum Fisher information

For qubit states in H2, a convenient representation allowing
an insightful geometric picture is the Bloch representation
[24], where the density operators are expressed in the basis of
the four Pauli operators {I2,σx,σy,σz}. In Bloch representation
the quantum state ρξ is generally expressed as

ρξ = 1
2 (I2 + �rξ · �σ ), (12)

with I2 the identity of H2, and �σ a formal vector assembling
the three 2 × 2 (traceless Hermitian unitary) Pauli matrices
[σx,σy,σz] = �σ . The coordinates of ρξ are specified by the
Bloch vector �rξ in R3, with norm ‖�rξ‖ = 1 for a pure state and
‖�rξ‖ < 1 for a mixed state. The qubit state ρξ of Eq. (12) has
the two eigenvalues λ± = (1 ± ‖�rξ‖)/2 and normalized eigen-
vectors |λ±〉, the two projectors on these eigenvectors having
the Bloch representation |λ±〉 〈λ±| = (I2 ± �rξ · �σ/‖�rξ‖)/2.

When estimation is performed from the qubit state ρξ

characterized by the Bloch vector �rξ , for any arbitrary
dependence on ξ , as derived in [20], the quantum score of
Eq. (3) follows as

Lξ = − �rξ ∂ξ �rξ

1 − �r 2
ξ

I2 +
( �rξ ∂ξ �rξ

1 − �r 2
ξ

�rξ + ∂ξ �rξ

)
· �σ , (13)

and the quantum Fisher information of Eq. (4) as

Fq(ξ ) = (�rξ ∂ξ �rξ )2

1 − �r 2
ξ

+ (∂ξ �rξ )2, (14)

for the general case of a mixed state ρξ . Meanwhile, for the
special case of a pure state ρξ , Eq. (5) becomes

Lξ = ∂ξ �rξ · �σ , (15)

and Eq. (6),

Fq(ξ ) = (∂ξ �rξ )2. (16)

For estimation in a unitary family, as in Sec. II B, we
consider a qubit, representing the probe, which is prepared
in a quantum state ρ0 characterized by the Bloch vector �r0.
An arbitrary unitary transformation on the qubit (an arbitrary
single-qubit quantum gate) can be expressed [24] in the form
U = exp(iγ ) exp(−iξ �n · �σ/2); and since the overall scalar
phase γ is unimportant here, we consider the general unitary
transformation on the qubit as

Uξ = exp

(
−i

ξ

2
�n · �σ

)
, (17)

where �n = [nx,ny,nz]� is a real unit vector of R3, equivalent
in Eq. (7) with a Hermitian operator G = �n · �σ/2. The
transformation of Eq. (17) acts on the input probe state ρ0

so as to yield the qubit state ρξ = Uξρ0U
†
ξ (especially the

presence of a scalar phase γ in U would have had no effect on
ρξ ). As a result, the transformed qubit state ρξ is characterized
by the Bloch vector �rξ which geometrically in R3 represents
the input Bloch vector �r0 rotated by the angle ξ around the
axis �n.

In Bloch representation, one can deduce the commutator
[ρ0,G] = −i(�n × �r0) · �σ/2, and then evaluate Eq. (8) as the
compact expression

L0 = (�n × �r0) · �σ , (18)

which also holds when ρ0 is a pure state ruled by Eq. (10).
And next, the quantum Fisher information of Eq. (9) evaluates
to

Fq(ξ ) = (�n × �r0)2, (19)

which also holds when ρ0 is a pure state ruled by Eq. (11).
Alternatively, for �r0 in R3, it can always be written �r0 =

r0‖�n + r0⊥�n⊥ defining the unit vector �n⊥ orthogonal to �n.
The rotated Bloch vector is then �rξ = r0‖�n + r0⊥ cos(ξ )�n⊥ +
r0⊥ sin(ξ )�n ′

⊥ with a third orthogonal unit vector �n ′
⊥ =

�n × �n⊥. The derivative follows as ∂ξ �rξ = −r0⊥ sin(ξ )�n⊥ +
r0⊥ cos(ξ )�n ′

⊥ = �n × �rξ , offering an intrinsic geometric char-
acterization of the derivative

∂ξ �rξ = �n × �rξ , (20)

which entails the vanishing inner product �rξ ∂ξ �rξ = 0. It then
follows in Eqs. (13) and (15) equally that the quantum score is

Lξ = (�n × �rξ ) · �σ , (21)

and it also follows in Eqs. (14) and (16) equally that Fq(ξ ) =
(�n × �rξ )2 which is similar to Eq. (19) due to the geometry of
�r0 and �rξ .

For estimating the phase ξ of Eq. (17) on the qubit, it is
remarkable that Eqs. (18), (19), and (21) provide very concise
expressions for the quantum score and Fisher information,
with insightful geometric formulations, under a form that we
did not find previously in the literature. The expressions for
the quantum score and Fisher information of Eqs. (13)–(16)
are general for parameter estimation on a qubit and were
derived in detail in [20]. For phase estimation, these equations
are transformed here to obtain the simple geometric forms
of Eqs. (18), (19), and (21) which are not in [20]. It is for
instance interesting to observe from Eq. (19) that the quantum
Fisher information Fq(ξ ) depends on the properties of the
quantum states only through the probe ρ0 via its Bloch vector
�r0, and is independent of the phase ξ . Equation (19) renders
limpid the issue of optimizing the input probe ρ0 in order
to maximize the quantum Fisher information Fq(ξ ). From
Eq. (19), to maximize Fq(ξ ), the optimal input probe ρ0 has to
be chosen as a pure state (i.e., satisfying ‖�r0‖ = 1), with a unit
Bloch vector �r0 orthogonal to the rotation axis �n, to achieve the
overall maximum of Fq(ξ ) which is F max

q = 1, uniformly for
any ξ . The next step then, is to devise a quantum measurement
protocol capable of reaching this maximal Fisher information
F max

q = 1.

B. Optimizing the quantum measurement

We envisage a generalized quantum measurement on the
qubit, by means of a positive operator valued measure (POVM)
[24]. For the qubit, a measurement operator indexed by k can
be expressed in Bloch representation as Mk = bkI2 + �ak · �σ .
The determinant is det(Mk) = b2

k − �a 2
k , and Mk has the two

eigenvalues bk ±
√

�a 2
k with the two projectors in H2 on
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the two associated eigenvectors reading (I2 ± �ak · �σ/

√
�a 2
k )/2.

Such an Mk is Hermitian if and only if (bk,�ak) are real,

giving
√

�a 2
k = ‖�ak‖ real; moreover it satisfies 0 � Mk if

and only if 0 � bk − ‖�ak‖, and Mk � I2 if and only if
bk + ‖�ak‖ � 1. Under these conditions, assembling a set of K

positive {Mk,k = 1, . . . K} forms a valid POVM if and only
if

∑K
k=1 �ak = �0 and

∑K
k=1 bk = 1, so as to realize

∑K
k=1 Mk =

I2. A qubit in state ρξ as in Eq. (12), when measured by such
a POVM, leads in Bloch representation to

ρξMk = 1
2 [(bk + �rξ �ak)I2 + (bk�rξ + �ak + i�rξ × �ak) · �σ ],

(22)
yielding the probability of measuring Mk as

P (k; ξ ) = tr(ρξMk) = bk + �rξ �ak. (23)

When the measurement outcomes are then processed for
estimating ξ , the best achievable performance is controlled by
the classical Fisher information defined as [21,22]

Fc(ξ ) =
K∑

k=1

1

P (k; ξ )
(∂ξP (k; ξ ))2. (24)

From Eq. (23), one has the derivative ∂ξP (k; ξ ) = �ak∂ξ �rξ ,
giving access to the classical Fisher information associated
with the POVM {Mk,k = 1, . . . K}, as

Fc(ξ ) =
K∑

k=1

(�ak∂ξ �rξ )2

bk + �ak�rξ

. (25)

For phase estimation, with the geometric characterization of
the derivative in Eq. (20), the classical Fisher information
becomes

Fc(ξ ) =
K∑

k=1

[�ak(�n × �rξ )]2

bk + �ak�rξ

. (26)

Since any POVM is constrained by the quantum Cramér-
Rao inequality Fc(ξ ) � Fq(ξ ), the task to maximize the
performance is to seek a POVM achieving Fc(ξ ) = Fq(ξ ),
and this especially when Fq(ξ ) is at its maximum F max

q = 1
realized by employing an optimal pure probe ρ0 with a unit
Bloch vector �r0 orthogonal to the rotation axis �n, as seen at the
end of Sec. III A. We now show that this can be accomplished
by a POVM with K = 2 elements.

A valid POVM with K = 2 elements is defined by the two
measurement operators M± = (I2 ± �a · �σ )/2, with ‖�a ‖ = 1,
forming two projectors on two orthogonal directions inH2, i.e.,
a von Neumann projective measurement. This is equivalent to
measuring on the qubit the spin observable 	 = �a · �σ with
eigenvalues ±‖�a ‖ = ±1, and we are going to show that there
always exists an optimal spin observable 	 = �a · �σ to achieve
Fc(ξ ) = F max

q = 1 for phase estimation on the qubit. The
classical Fisher information of Eq. (26) follows as

Fc(ξ ) = [�a (�n × �rξ )]2

1 − (�a �rξ )2
. (27)

With the optimal pure probe of unit �r0 orthogonal to �n,
the rotated Bloch vector �rξ is also orthogonal to �n and with
unit norm. In another orthonormal basis {�n,�n⊥ = �rξ ,�n ′

⊥ =
�n × �n⊥} of R3, we introduce for the real unit vector �a the three

coordinates �a = [a1,a2,a3]�, with a2
1 + a2

2 + a2
3 = 1, leading

for Eq. (27) to

Fc(ξ ) = a2
3

a2
1 + a2

3

. (28)

By taking a1 = 0, the classical Fisher information Fc(ξ ) of
Eq. (28) is thus maximized at F max

c = F max
q = 1, for any

(a2,a3). Therefore, any pair of orthogonal projectors, or any
spin observable 	 = �a · �σ , defined by a unit vector �a chosen
in the plane orthogonal to the rotation axis �n, realizes an
optimal measurement capable of reaching the maximal perfor-
mance Fc(ξ ) = F max

c = F max
q = 1 uniformly for any unknown

phase ξ .
It can be noted that [23] also proposes a general char-

acterization of an optimal measurement, under the form of
one-dimensional projectors onto a complete set of orthonormal
eigenstates of the quantum score Lξ , i.e., the score Lξ as an
optimal observable to measure. However, the quantum score
Lξ is defined, via Eq. (2), from the quantum state ρξ carrying
the dependence with the unknown parameter ξ to be estimated.
As a result, in general, the score Lξ , and its eigenstates,
are expected to depend on the unknown parameter ξ . This
is remarked for instance in [7], that in general a projector
on the eigenstates of the score Lξ represents a ξ -dependent
measurement and therefore is unaccessible as a realizable
solution since ξ in unknown. Moreover, as also remarked
in [20], its derivation shows that the inequality Fc(ξ ) �
Fq(ξ ) applies only to ξ -independent measurements. Here, the
analytical expression of Eq. (21) allows us to explicitly perform
the eigendecomposition of the quantum score Lξ . From
Eq. (21) we deduce that Lξ has generally two real eigenvalues
±‖�n × �rξ‖ = ±‖�n × �r0‖, reducing to ±1 for the optimal
probe with a unit �r0 orthogonal to the rotation axis �n. Also from
Eq. (21), the two projectors on the two orthogonal eigenvectors
of Lξ read (I2 ± �aξ · �σ )/2, forming two projectors defined by
the unit Bloch vector �aξ = �n × �rξ /‖�n × �rξ‖ which generally
depend on the unknown angle ξ via the direction of �rξ in
R3. For the optimal probe with unit �r0 ⊥ �n, then �aξ = �n × �rξ

is also in the plane orthogonal to �n and in this plane �aξ

makes an angle ξ + π/2 with �r0. The measurement formed
by the projectors on the eigenstates of Lξ , equivalent to the
spin observable 	 = �aξ · �σ , thus represents a ξ -dependent
measurement, therefore not practically realizable. Meanwhile,
our optimization above has shown that any spin observable
	 = �a · �σ with unit �a ⊥ �n is optimal, not necessarily with
the ξ -dependent �a = �aξ = �n × �rξ , and it offers in this way
a ξ -independent optimal measurement protocol. It remains
now to find an optimal estimator with a mean-squared error
saturating the classical Cramér-Rao inequality controlled by
Fc(ξ ).

C. Optimizing the estimator

For constructing an efficacious estimator for the phase ξ ,
we turn to the maximum likelihood method [22]. A measure-
ment performed with the optimal protocol or optimal spin
observable 	 = �a · �σ , defined at the end of Sec. III B, has two
outcomes that we denote by ±1, of probabilities expressible
as P (±1) = (1 ± s)/2 with the auxiliary scalar parameter s =
s(ξ ) = �a �rξ = 〈	〉. In practice, a sequence of N independent
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measurements is performed from N identical copies of the
qubit in state ρξ , leading to N+ measurement outcomes at +1
and N − N+ measurement outcomes at −1. Estimating s is
similar to estimating the parameter of a binomial distribution,
and with the likelihood L(s) = [(1 + s)/2]N+ [(1 − s)/2]N−N+

the maximum likelihood estimator for s is known to be

ŝML = 2
N+
N

− 1. (29)

Based on the expectation 〈N+〉 = N (1 + s)/2 and vari-
ance var(N+) = N (1 − s2)/4, it is also known that 〈̂sML〉 =
s so that ŝML is an unbiased estimator of s for any
N , with the mean-squared error 〈(̂sML − s)2〉 = var(̂sML) =
4var(N+)/N2 = (1 − s2)/N . From Eq. (24), the clas-
sical Fisher information for estimating s is known
to be Fc(s) = [∂sP (+1)]2/P (+1) + [∂sP (−1)]2/P (−1) =
1/(1 − s2) establishing the known result that 〈(̂sML − s)2〉 =
var(̂sML) = 1/[NFc(s)] = (1 − s2)/N expressing that ŝML of
Eq. (29) is a (maximally) efficient estimator of s, for any N .

Next, from these known standard results for estimating
the auxiliary parameter s from a binomial distribution, we
must go back to our specific problem of constructing an
efficacious estimator for the quantum phase ξ . Based on the
behavior of the likelihood for a transformed parameter [22],
determining the maximum likelihood estimator ξ̂ML for ξ

can be accomplished by inverting the relation ŝML = s (̂ξML)
with s(ξ ) = �a �rξ specific to our quantum phase estimation
problem. For an angular parameter ξ , the relation s(ξ ) = �a �rξ

is usually nonlinear. This usually prevents ξ̂ML from being
an unbiased estimator of ξ for any N , since ŝML is always
an unbiased estimator for s, and the expectation 〈·〉 and
nonlinear s(·) in general do not commute. However, as N

increases, commutation is restored with 〈̂sML〉 = s(〈̂ξML〉)
entailing 〈̂ξML〉 = ξ , as expected for a maximum likelihood
estimator, which is always guaranteed asymptotically unbiased
[22].

For the variance of ξ̂ML, we use the theory of error
propagation as in [25] to obtain var(̂sML) = (∂s/∂ξ )2var(̂ξML).
We have ∂s/∂ξ = �a ∂ξ �rξ = �a(�n × �rξ ), and since var(̂sML) =
(1 − s2)/N we obtain

var(̂ξML) = 〈(̂ξML − ξ )2〉 = 1 − (�a �rξ )2

[�a (�n × �rξ )]2

1

N
. (30)

Comparing with Eq. (27), we observe that, in the regime of
large N , the mean-squared error 〈(̂ξML − ξ )2〉 = 1/[NFc(ξ )],
i.e., ξ̂ML, saturates the classical Cramér-Rao inequality, and
is thus an efficient estimator as expected from a maxi-
mum likelihood estimator [22]. Since Fc(s) = 1/(1 − s2),
by confronting with Eq. (27) we also verify that Fc(ξ ) =
(∂s/∂ξ )2Fc(s) consistently with the definition of the classical
Fisher information from Eq. (24). Also, since 	2 = I2, for
Eq. (30) one has var(̂ξML) = N−1(〈	2〉 − 〈	〉2)/|∂〈	〉/∂ξ |2.

It now remains to write an operative expression for the
phase estimator ξ̂ML by explicitly inverting ŝML = s (̂ξML) with
s(ξ ) = �a �rξ . To simplify this inversion, we have the faculty, as
seen at the end of Sec. III B, to choose the measurement vector
�a anywhere in the plane orthogonal to the rotation axis �n, in the
presence of a pure probe with unit �r0 ⊥ �n so as to ensure the
conditions of maximal estimation performance. A convenient
choice is to fix the unit vector �a identical to the probe vector �r0.

In such configuration one has s(ξ ) = �a �rξ = cos(ξ ), providing
via Eq. (29) the explicit phase estimator

ξ̂ML = arccos(̂sML) = arccos

(
2
N+
N

− 1

)
, (31)

achieving the ultimate best performance 〈(̂ξML − ξ )2〉 =
1/[NF max

q ] = 1/N .
Strictly speaking, the optimal estimator of Eq. (31) returns

a value for the phase ξ in [0,π ]. This is due to the two-element
POVM or spin observable preceding this estimator, which
conveys information on ξ only through the inner product
s(ξ ) = �a �rξ = cos(ξ ) according to Eq. (23). If one wants a
broader determination of ξ in [0,2π ), then no spin observable
suffices, and one needs to resort to a generalized measurement
through a POVM with at least K = 3 elements. Nevertheless,
as we shall demonstrate in Secs. IV C and IV D, at any K � 3
there always exist an optimal POVM and optimal estimator
achieving the ultimate best performance uniformly for any
ξ ∈ [0,2π ), just as the solution of Eq. (31) does for ξ ∈ [0,π ].

IV. ESTIMATION WITH NOISE

A. General quantum noise

We now consider the situation where the quantum state ρξ ,
before it becomes accessible to measurement for estimation, is
affected by quantum noise. The general derivations of Sec. II A
still apply for any noisy quantum state ρξ . With quantum noise
however, the conditions of Sec. II B defining the dependence
of ρξ on ξ need to be modified. As in Sec. II B, we consider an
input probe state ρ0 experiencing the unitary transformation
Uξ of Eq. (7), but this time to yield an intermediate quantum
state ρ1(ξ ) = Uξρ0U

†
ξ . And then ρ1(ξ ) is subjected to quantum

noise to deliver the state ρξ accessible to measurement for
estimation, and ruled by Sec. II A. The action of the noise can
generally be represented by a quantum operation under the
Kraus form [24]

ρξ =
∑

�

��ρ1(ξ )�†
�, (32)

with the Kraus operators �� satisfying
∑

� �
†
��� = ID , the

identity operator of HD , in order for Eq. (32) to realize a
completely positive trace-preserving linear map. The operator-
sum representation of Eq. (32) is a modeling choice for the
noise which is often adopted in quantum information [24].
It provides an end-to-end modeling of a change of state, and
requires a limited amount of modeling resources since any state
transformation can always be described with a maximum of D2

Kraus operators for quantum states in D dimension, whatever
the complexity of the underlying detailed processes. Such an
end-to-end transformation is well suited for our estimation task
where essentially a description of the noisy state at the time and
stage of the quantum measurement is needed. Alternatively, the
noise could be modeled by a Lindblad equation describing
the evolution of a quantum state in continuous time with
a differential equation [24]. This would however require to
specify Lindblad operators for each of the underlying physical
process to be taken into account, possibly allowing more
detailed control, although this is not necessary for obtaining
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a general characterization of the performance in qubit phase
estimation as will follow.

The noise model of Eq. (32) provides direct access to the
derivative ∂ξρξ intervening in the quantum score and quantum
Fisher information of Sec. II A, as, for any ξ -independent
noise,

∂ξρξ =
∑

�

��∂ξρ1(ξ )�†
�, (33)

with ∂ξρ1 = i[ρ1,G] = iUξ [ρ0,G]U †
ξ as in Sec. II B. Next,

in the noisy case, the noise on the quantum system should
be further specified before one can obtain useful expressions
extending those of Sec. II B.

In the line of Sec. III, we now address the case of the
qubit, with noise. When the general expressions of Sec. II A
are specified to a qubit state ρξ characterized by the Bloch
vector �rξ as in Eq. (12), they give rise to Eqs. (13)–(16) which
are general for any (noisy) qubit state with any dependence on
ξ . On a qubit state ρ1(ξ ) with Bloch vector �r1(ξ ), the action
of the quantum noise expressed by Eq. (32) can always be
described as an affine transformation on the Bloch vectors
reading [20,24,26]

�rξ = A�r1(ξ ) + �c, (34)

with A a 3 × 3 real matrix and �c a real vector in R3 together
characterizing the noise, and realizing a mapping of the Bloch
ball of R3 onto itself. We then obtain ∂ξ �rξ = A∂ξ �r1(ξ ).

For phase estimation now, as in Sec. III, the probe state ρ0

is characterized by the Bloch vector �r0, the intermediate qubit
state ρ1(ξ ) by the Bloch vector �r1(ξ ) which is �r0 rotated by
the angle ξ around the axis �n. We still have as in Eq. (20) the
useful geometric characterization ∂ξ �r1(ξ ) = �n × �r1(ξ ). With
this specification of the dependence on ξ as a phase on a
noisy qubit, the expressions of Eqs. (13) and (14) can be
further specified, leading in particular to the quantum Fisher
information

Fq(ξ ) = [(A�r1 + �c )A(�n × �r1)]2

1 − (A�r1 + �c )2
+ [A(�n × �r1)]2, (35)

especially matching Eq. (19) when there is no noise, i.e.,
A = I3 and �c = �0, since always ‖�n × �r1‖ = ‖�n × �r0‖.

As for qubit phase estimation in the noise-free case of
Sec. III A, it is possible in the noisy case to address the issue of
optimizing the input probe ρ0 to maximize the quantum Fisher
information Fq(ξ ) of Eq. (35). When seen as a function of �r1,
the Fisher information Fq(ξ ) of Eq. (35) takes its maximum
at ‖�r1‖ = 1, and the vectors A�r1 and �c with an acute angle
(otherwise by reversing �r0 into −�r0 reverses �r1 into −�r1 and
would increase Fq(ξ ), which is not feasible at the maximum).
The condition ‖�r1‖ = 1 is obtainable only through ‖�r0‖ = 1,
i.e., again with a pure input probe ρ0. We conclude in the noisy
case as in the noise-free case of Sec. III A, that the maximum
of the quantum Fisher information Fq(ξ ) of Eq. (35) is realized
necessarily by a pure input probe ρ0.

In general it is known that the quantum Fisher information
Fq(ξ ) ≡ Fq(ξ ; ρξ ) when seen as a functional of the density
operator ρξ is a convex (∪) functional of ρξ [27,28]. This
convexity property implies that, when there is no constraint
on ρξ , the Fisher information Fq(ξ ) is maximized by a pure

state ρξ [27]. Here ρξ is constrained by the constitutive
transformation ρ0 → ρξ which includes the action of the noise
that usually results in ρξ being forced to be a mixed state. Yet,
the linearity of the map ρ0 → ρξ ensures that the quantum
Fisher information Fq(ξ ) when seen as a functional of the input
probe ρ0 is also a convex functional of ρ0. This convexity in
ρ0 also implies that Fq(ξ ) is maximized by a pure input probe
ρ0. Here, our theoretical expressions of Eqs. (35) and (19) for
the Fisher information Fq(ξ ) based on a geometric picture of
qubit Bloch vectors in R3 offers an alternative proof of the
optimality of a pure input probe ρ0 not resorting to a convexity
argument. Furthermore, this geometric picture will allow us
here to characterize, through its Bloch vector �r0, which pure
state ρ0 precisely is optimal.

Beyond, in the noisy case, with a pure probe ρ0, it does not
suit in general to take a unit �r0 orthogonal to �n to maximize
Fq(ξ ) of Eq. (35). On the contrary, in general, the direction
of the optimal �r0 has to specifically match the geometric
properties of (A,�c ) characterizing the noise inR3. The optimal
unit vector �r1 maximizing Fq(ξ ) of Eq. (35) is conveniently
referred to an orthonormal basis {�n,�n⊥,�n ′

⊥ = �n × �n⊥} of R3

as in Sec. III, and in this basis �r1 is specified by a coelevation
angle θ1 with �n and an azimuth angle ϕ1 in the plane (�n⊥,�n ′

⊥)
orthogonal to �n. Then the maximum of Fq(ξ ) in Eq. (35)
will occur at some optimal point �r1 = �r opt

1 characterized by
(‖�r1‖ = 1,θ

opt
1 ,ϕ

opt
1 ) determined by the geometry of (A,�c )

and �n. Such optimal conditions have been explicitly worked
out in [20] for different noise models (A,�c ) relevant to
the qubit. Moreover, the optimal �r opt

1 = (‖�r1‖ = 1,θ
opt
1 ,ϕ

opt
1 )

determines the optimal input probe ρ
opt
0 before the rotation by

ξ via �r opt
0 = (‖�r0‖ = 1,θ

opt
0 = θ

opt
1 ,ϕ

opt
0 = ϕ

opt
1 − ξ ), by virtue

of referring to the basis {�n,�n⊥,�n ′
⊥}. This demonstrates that in

general the optimal pure input probe ρ
opt
0 maximizing Fq(ξ )

of Eq. (35) is specifically determined by the noise via (A,�c )
and by the rotation axis �n, but also that ρ

opt
0 can usually be

expected to depend on the unknown phase ξ via its azimuth
ϕ

opt
0 = ϕ

opt
1 − ξ , when ϕ

opt
1 is determined by (A,�c ) and �n. This

is especially what is verified in [20], where feedback adaptive
methods or Bayesian approaches are envisaged to handle such
situations of a ξ -dependent solution and obtain an optimized
input probe. Only in the special conditions where Fq(ξ ) of
Eq. (35) could remain at its maximum in θ

opt
1 for any ϕ1, could

one obtain a ξ -independent optimal probe ρ
opt
0 ; but this can

only occur for special noises with specific geometry for (A,�c )
inR3 and matched to special orientations of the rotation axis �n.

In the presence of an arbitrary noise, the program of Sec. III
is thus no longer feasible in general, which would allow us
to determine a ξ -independent optimal strategy combining an
input probe, quantum measurement, and estimator capable of
reaching uniformly for any unknown phase ξ the ultimate
best performance for estimation fixed by the maximum of
the quantum Fisher information in Eq. (35). Instead, adaptive
techniques with feedback have to be employed to iteratively
construct an efficient ξ -dependent estimation strategy, as
performed for instance in [7,17,18,29–31]. There is however
a specific noise, highly relevant for the qubit, where the
maximization of the quantum Fisher information Fq(ξ ) of
Eq. (35) is not limited by a ξ -dependent solution. This is the
case of the depolarizing noise, which we now address.
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B. Optimizing the quantum Fisher information with
depolarizing noise

The depolarizing noise [24] implements a quantum opera-
tion of Eq. (32) taking the form

ρξ = (1 − p)ρ1 + p

3
(σxρ1σ

†
x + σyρ1σ

†
y + σzρ1σ

†
z ), (36)

where the action of the noise is to leave the qubit state
unchanged with the probability 1 − p and to apply any one
of the three Pauli operators with equal probability p/3.
This is equivalent in Eq. (34) for the Bloch vectors with
a matrix A = αI3 proportional to the identity matrix I3 of
R3 with α = 1 − 4p/3, and �c = �0. The depolarizing noise
is an important noise model often considered in quantum
information [24,32]; it also represents in some sense a worse-
case situation of quantum noise [32], and in this respect its
analysis provides a picture interpretable as a conservative
reference. Here we assume that the noise level, quantified by
p or α, is perfectly known, so that we address the reference
scenario of estimation of only the parameter of interest ξ with
no nuisance parameters. However, we show in the Appendix
that our approach can be applied as well to derive the optimal
strategy and performance for a separate estimation of the noise
level, simply by considering that the unitary transformation Uξ

is absent and only the depolarizing noise channel is present to
act on the input probe ρ0.

In Bloch representation, the action of the depolarizing
noise resulting from Eq. (36) is to isotropically compress the
Bloch vector �r1(ξ ) by the factor α to produce �rξ = α�r1(ξ ).
Geometrically in R3, this action preserves the orientation of
�r1(ξ ) unchanged in �rξ , and also preserves other interesting
geometric properties useful to the analysis. Since from Eq. (20)
we still have ∂ξ �r1(ξ ) = �n × �r1(ξ ), we therefore also have
∂ξ �rξ = �n × �rξ , entailing �rξ ∂ξ �rξ = 0 as in the noise-free case.
The quantum score of Eq. (13) then follows as

Lξ = (�n × �rξ ) · �σ = α(�n × �r1) · �σ , (37)

and the quantum Fisher information of Eq. (14) as

Fq(ξ ) = (�n × �rξ )2 = α2(�n × �r0)2, (38)

with Eq. (38) especially matching Eq. (19) when the depolar-
izing noise vanishes at p = 0 and α = 1. Equations (37) and
(38), like Eqs. (18), (19), and (21), with their concise geometric
forms, are not contained in [20]. Also, from its action in
Bloch representation it is visible that the depolarizing noise
commutes with the unitary Uξ , since the compression by α

and rotation by ξ commute in R3. So we model a noise which
can act equally before or after the unitary Uξ . The depolarizing
noise can even be distributed, with one part acting before Uξ

with a factor α1, and another part acting after Uξ with a factor
α2, with a net effect which can be lumped into a single noise
channel with a factor α = α1α2 as considered here. So the
modeling (and estimation in the Appendix) of a noise channel
with a single lumped parameter α can in practice represent
situations of several distributed noises.

Based on the simple form obtained for Eq. (38), the issue
of optimizing the input probe ρ0 is again readily solved,
so as to maximize the quantum Fisher information Fq(ξ )
for qubit phase estimation in the presence of depolarizing
noise. As in the noise-free case of Sec. III A, the optimal

input probe ρ0 has to be chosen as a pure state with a unit
Bloch vector �r0 orthogonal to the rotation axis �n; this to
achieve the overall maximum of Fq(ξ ) which is F max

q = α2.
This especially demonstrates the possibility of obtaining an
optimal input probe independent of the unknown phase ξ , that
represents as explained above a rather exceptional property
in the presence of noise, and that occurs here because of the
high symmetry (isotropy) of the depolarizing noise. The next
step then, as in the noise-free case of Sec. III B, is to examine
the possibility of a quantum measurement protocol capable of
reaching this maximal Fisher information F max

q = α2.

C. Optimizing the quantum measurement with
depolarizing noise

For implementing a quantum measurement on the noisy
qubit, we envisage a general POVM as described in the
beginning of Sec. III B. Such a general POVM is associated
with the classical Fisher information Fc(ξ ) defined by Eq. (25),
with a Bloch vector �rξ when measuring a noisy qubit which is
given by Eq. (34). For phase estimation ∂ξ �r1(ξ ) = �n × �r1(ξ ),
and with the depolarizing noise, we finally obtain the classical
Fisher information

Fc(ξ ) = α2
K∑

k=1

[�ak(�n × �r1)]2

bk + α�ak�r1
. (39)

In the line of Sec. III B, we seek an optimal POVM
reaching the overall maximal performance Fc(ξ ) = Fq(ξ )
when Fq(ξ ) = F max

q = α2 achieved by an optimal input probe
ρ0 with a unit �r0 orthogonal to the rotation axis �n. For this
goal, as in Sec. III B, we envisage a POVM with K = 2
elements, defined by the two measurement operators M± =
(I2 ± �a · �σ )/2, with ‖�a ‖ = 1, equivalent to measuring the
spin observable 	 = �a · �σ . The classical Fisher information
of Eq. (39) follows as

Fc(ξ ) = α2 [�a(�n × �r1)]2

1 − α2(�a �r1)2
, (40)

matching the noise-free case of Eq. (27) when α = 1.
With the optimal pure probe of unit �r0 orthogonal to �n, the

rotated Bloch vector �r1(ξ ) is also orthogonal to �n and with unit
norm. In the orthonormal basis {�n,�n⊥ = �r1,�n ′

⊥ = �n × �n⊥} of
R3, we introduce again for the real unit vector �a the three
coordinates �a = [a1,a2,a3]�, with a2

1 + a2
2 + a2

3 = 1, leading
for Eq. (40) to

Fc(ξ ) = α2 a2
3

1 − α2a2
2

. (41)

To maximize Eq. (41) it is necessary to set a1 = 0, then
1/Fc(ξ ) = 1 + (1 − α2)/(α2a2

3) is clearly minimized by a3 =
1, therefore Fc(ξ ) is maximized by (a1 = 0,a2 = 0,a3 = 1)
at F max

c = F max
q = α2. This is a necessary and sufficient

condition, in order to maximize Fc(ξ ) of Eq. (40) at F max
c =

F max
q = α2, to select �a in the plane orthogonal to �n and

also orthogonal to the rotated Bloch vector �r1(ξ ). This is a
ξ -dependent optimal solution. This means that, contrary to
the noise-free case of Sec. III B, with the depolarizing noise
there is no ξ -independent optimal POVM with two elements,
or optimal spin observable 	 = �a · �σ , that would be able to
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FIG. 1. Classical Fisher information Fc(ξ )/α2 from Eq. (42) normalized by the overall maximum dictated by the quantum Fisher information
F max

q = α2, as a function of the number K of POVM elements for the quantum measurement, for different values of the phase angle ξ to be

estimated: (◦) ξ = 0, (×) ξ = π/
√

2, (+) ξ = 3π/2. The depolarizing noise factor is α = 0.75 in (a), and α = 0.5 in (b).

realize the overall maximal performance Fc(ξ ) = F max
q = α2

uniformly for any ξ .
We can also explicitly exhibit, as done for the noise-free

case in the last paragraph of Sec. III B, the measurement
formed by the projectors on the eigenstates of the quantum
score Lξ . From Eq. (37), the score Lξ has generally two real
eigenvalues ±‖�n × �rξ‖ = ±α‖�n × �r0‖, reducing to ±α for the
optimal probe with a unit �r0 ⊥ �n. Also from Eq. (37), the two
projectors on the two orthogonal eigenvectors of Lξ are (I2 ±
�aξ · �σ )/2 with the unit Bloch vector �aξ = �n × �rξ /‖�n × �rξ‖ and
they generally depend on the unknown angle ξ via the direction
of �rξ , defining a ξ -dependent measurement through the spin
observable 	 = �aξ · �σ . For the optimal probe with unit �r0 ⊥ �n,
then �aξ = �n × �r1(ξ ) = �n × �rξ /α is also in the plane orthogonal
to �n and is orthogonal to �r1(ξ ) or equivalently making
an angle ξ + π/2 with �r0. Such a ξ -dependent observable
	 = �aξ · �σ coincides with our previous optimal solution found
above, and from our optimization above is now known to
be the only solution for an optimal measurement, when
measurements are restricted to spin observables. By contrast,
it was not the only solution in the noise-free case of Sec. III B,
where ξ -independent optimal observables 	 = �a · �σ were
characterized.

The analysis of Eq. (41) also shows that a spin observable
	 = �a · �σ with an �a approaching the configuration (a1 =
0,a2 = 1,a3 = 0), i.e., an �a approaching �r1(ξ ), would lead
to a classical Fisher information Fc(ξ ) approaching zero,
representing a quantum measurement completely inoperative
for estimating ξ . The blind selection of a fixed �a in the plane
orthogonal to �n is thus a rather hazardous issue, because this
plane contains both the best and the worse configurations
feasible for �a, both depending on the unknown value of the
phase ξ to be estimated. Selecting an �a outside this plane (with
a1 �= 0) does not solve the difficulty, which remains the same
for the selection of the projection of �a in the plane, and only
reduces the maximum feasible for Fc(ξ ) without avoiding the
risk of a zero Fc(ξ ).

Since we just found that there is no ξ -independent optimal
observable, when seeking a ξ -independent optimal measure-
ment we still have the possibility to turn to POVM with a
higher number K > 2 of elements. We consider a POVM

with K measurement operators Mk = (I2 + �ak · �σ )/K , with
‖�ak‖ = 1, each proportional to a projector in H2. To maximize
Fc(ξ ), based on Eq. (39) we know that each �ak is better
placed in the plane orthogonal to �n. The optimal pure input
probe ρ

opt
0 has also its unit Bloch vector �r opt

0 in this plane. In
the orthonormal basis {�r opt

0 ,�n × �r opt
0 } of this plane, each unit

vector �ak is taken with coordinates �ak = [cos(φk), sin(φk)]�,
with the azimuth angle φk , for k = 1 to K . This leads for the
classical Fisher information of Eq. (39) to

Fc(ξ ) = α2

K

K∑
k=1

sin2(φk − ξ )

1 + α cos(φk − ξ )
. (42)

When the phase angle ξ of the rotated Bloch vector �r1(ξ )
is fully unknown in the plane orthogonal to �n, there is no
motivation for a choice other than uniformly distributing the
K vectors �ak in this plane, with φk = 2π (k − 1)/K for k =
1 to K . With this choice, Fig. 1 shows the classical Fisher
information Fc(ξ ) from Eq. (42), as a function of the number
K of POVM elements, and for different values of the phase
angle ξ to be estimated.

In Fig. 1, it is observed that at small number K � 2
of POVM elements, there is a clear dependence of the
performance Fc(ξ ) on the unknown phase ξ . This is expected
when there is a small number K of measurement vectors �ak

to tract the rotated Bloch vector �r1(ξ ) at an angle ξ in the
plane orthogonal to �n. However, at sufficiently large K , around
K = 8 to 10 in Fig. 1, the uniform distribution in the plane of a
larger number K of �ak reduces the dependence on ξ , with Fc(ξ )
tending to stabilize at an asymptotic limiting value. At large
K , when the sum in Eq. (42) tends to an integral over [0,2π ),
the Fisher information Fc(ξ ) tends to the limit expressible as

F∞
c = α2

2π

∫ 2π

0

sin2(φ)

1 + α cos(φ)
dφ = 1 −

√
1 − α2, (43)

independent of the unknown phase ξ . In practice, K = 8 to 10
allows Fc(ξ ) of Eq. (42) to come close to F∞

c of Eq. (43) for
any ξ and α, since numerically, starting with K = 8, it is found
that Fc(ξ ) of Eq. (42) never drops below 0.9F∞

c .
It is a significant finding that the limit F∞

c of Eq. (43), as
visible in Fig. 1, does not reach the overall maximum dictated
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FIG. 2. Classical Fisher information F ∞
c = 1 − √

1 − α2 from
Eq. (43) at large number K of POVM elements (solid line), and
overall maximum dictated by the quantum Fisher information F max

q =
α2 (dashed line), as a function of the depolarizing noise factor α ∈
[−1/3,1].

by the quantum Fisher information F max
q = α2, but remains

generally below it. This is also illustrated by Fig. 2, confronting
the classical Fisher information F∞

c of Eq. (43) at large K ,
with the overall maximum dictated by the quantum Fisher
information F max

q = α2, over the whole range of feasible
values for the depolarizing noise factor α = 1 − 4p/3 ∈
[−1/3,1] related to Eq. (36) with a probability p ∈ [0,1].

For any noise factor α in Fig. 2, the performance F∞
c is

below the maximum F max
q , demonstrating that, in the presence

of depolarizing noise, even at the price of a large number K of
POVM elements, it is not possible to obtain a ξ -independent
measurement associated with a classical Fisher information
Fc(ξ ) reaching the maximum F max

q uniformly for all ξ . As we
saw above in this section, the optimal measurement achieving
Fc(ξ ) = F max

q is a ξ -dependent measurement, and our analysis
now shows that there is no ξ -independent generalized mea-
surement that can be as efficient as the optimal ξ -dependent
measurement precisely matched to the specific value of ξ

to be estimated. A ξ -independent optimal measurement was
however possible with no noise, as established in Sec. III B,
with this same conclusion also established by Fig. 2 at
the extreme point α = 1 of vanishing noise where locally
F∞

c = F max
q .

A concrete mechanism for this loss of estimation efficacy in
the presence of noise can be pictured in the following way. With
no noise, an optimal input probe with �r0 ⊥ �n is a pure state
|ψ0〉. The rotated state is |ψ1〉 = Uξ |ψ0〉 = cos(ξ/2) |ψ0〉 +
sin(ξ/2) |ψ⊥

0 〉, with |ψ⊥
0 〉 a vector of H2 orthogonal to |ψ0〉.

An optimal measurement is realized by the spin observable
	 = �r0 · �σ which projects |ψ1〉 on the orthonormal basis
{|ψ0〉 , |ψ⊥

0 〉}, allowing the ultimate estimation efficacy as we
now know. By contrast with depolarizing noise, the noisy
state to be measured is the pure state |ψ1〉 degraded by the
noise into the mixed state ρξ = (I2 + �rξ · �σ )/2 with Bloch
vector �rξ = α�r1(ξ ). By spectral decomposition ρξ has |ψ1〉
and |ψ⊥

1 〉 as eigenvectors, with respectively (1 + α)/2 and
(1 − α)/2 as eigenvalues, with |ψ⊥

1 〉 orthogonal to |ψ1〉. The
mixed state ρξ is thus equivalent to the statistical ensemble

{|ψ1〉 ,(1 + α)/2 ; |ψ⊥
1 〉 ,(1 − α)/2} of two probabilistically

weighted pure states. At low noise when α � 1, most of
the time the noisy state ρξ is seen by the measurement as
|ψ1〉 just as if there were no noise; but on some occasions,
with the small probability (1 − α)/2, the noisy state ρξ is
seen by the measurement as the orthogonal vector |ψ⊥

1 〉. It is
this possibility which inevitably degrades the performance in
estimation and renders ξ dependent the optimal measurement.
With no noise, only |ψ1〉 is presented to the measurement,
with for estimation the statistical performance ensuing from
the inherent probabilistic nature of quantum measurement.
With noise, on some random occasions |ψ⊥

1 〉 is presented
to the measurement instead of |ψ1〉, and this constitutes an
added source of equivocation which inevitably degrades the
statistical performance in estimation. Moreover, with no noise
the optimal measurement has to be optimal for measuring
the pure state |ψ1〉 alone, and this does not come with a
stringent ξ -dependent position of the measurement relative to
|ψ1〉 for optimality. With noise the optimal measurement has
to be optimal for measuring two orthogonal pure states |ψ1〉
and |ψ⊥

1 〉 occurring randomly, which is a more demanding
configuration, whence the reduced performance, and this
imposes a specific ξ -dependent position of the measurement
relative to |ψ1〉 and |ψ⊥

1 〉 for optimality.
One can also envisage, at any number K � 2 of POVM

elements, the averaging of Fc(ξ ) of Eq. (42) over the unknown
phase ξ uniformly distributed over [0,2π ), defining Fc =∫ 2π

0 Fc(ξ )dξ/2π . It is the same integral as in Eq. (43) which
is involved, yielding also Fc = 1 − √

1 − α2 = F∞
c , and this

is true for any K � 2, indicating that when averaged over the
unknown phase ξ , each number K of POVM elements leads to
the same average performance Fc = F∞

c , although with less
variability for Fc(ξ ) around Fc at larger K .

It is also interesting to study Eq. (42) at K = 2, when �a1 =
−�a2 and φ1 = 0 and φ2 = π , which corresponds to the case of a
two-element POVM as previously considered at the occasion
of Eq. (40). The classical Fisher information of Eq. (42) at
K = 2 becomes

Fc(ξ ) = α2 sin2(ξ )

1 − α2 cos2(ξ )
, (44)

and Fig. 3 represents this Fc(ξ ) at various values of the noise
factor α, which is useful to better understand the limit α → 1
at vanishing depolarizing noise.

With no noise at α = 1, the classical Fisher information
Fc(ξ ) of Eq. (44) is the constant Fc(ξ ) = F max

q = 1 indepen-
dent of the phase ξ . This is the noise-free case studied in
Sec. III B, where any unit vector �a in the plane orthogonal
to �n defines an optimal two-element POVM or optimal spin
observable 	 = �a · �σ . As soon as a small amount of noise
comes into play, with α � 1, a sharp and narrow dip of Fc(ξ )
down to zero appears in Fig. 3 around ξ = 0 and ξ = π .
At the same time, Fc(ξ ) takes a maximum Fc(ξ ) = F max

q =
α2 localized at ξ = π/2 and ξ = 3π/2, but this maximum
remains flat and broad for α close to 1, as visible in Fig. 3. This
expresses, as explained above while analyzing Eq. (40), that
strictly speaking, at α < 1, reaching the maximum Fc(ξ ) =
F max

q = α2 requires a specific ξ -dependent �a orthogonal to
�r1(ξ ), as marked by the maxima at ξ = π/2 and ξ = 3π/2
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FIG. 3. Classical Fisher information Fc(ξ ) from Eq. (44) for a
POVM with K = 2 elements, as a function of the phase angle ξ ∈
[0,2π ) to be estimated, and for various values of the depolarizing
noise factor α = 0.1, 0.5, 0.75, 0.9, and 0.99.

in Fig. 3; also, �a colinear to �r1(ξ ) realizes the minimum
Fc(ξ ) = 0, as it occurs at ξ = 0 and ξ = π in Fig. 3. However,
at α close to 1, the maximum at Fc(ξ ) = F max

q = α2 is flat and
broad, along ξ ∈ [0,2π ), while the minimum at Fc(ξ ) = 0 is
sharp and narrow, thus explaining how one gradually departs
from a ξ -independent optimal two-element POVM at α = 1
to jump to a ξ -dependent optimal two-element POVM as soon
as α < 1.

Relying on a two-element POVM, characterized by a fixed
vector �a lying in the plane orthogonal to �n, exposes one
to experience a very poor performance close to Fc(ξ ) = 0
for some values of the unknown phase ξ to be estimated
[associated with a rotated vector �r1(ξ ) quasicolinear to �a].
But with the same �a, the performance may be close to the
overall maximum Fc(ξ ) = F max

q = α2 for other values of ξ

[associated with a rotated vector �r1(ξ ) quasiorthogonal to
�a]. On average, when averaged over ξ uniform in [0,2π ),
the performance is Fc = 1 − √

1 − α2 � F max
q = α2, for any

�a in the plane orthogonal to �n, as visible in Fig. 2 since
Fc = F∞

c . A POVM with a larger number K of elements,
typically K = 8 to 10 from Fig. 1, allows one to reach the
same average performance Fc = 1 − √

1 − α2, yet with much
smaller deviation of Fc(ξ ) around Fc for various ξ , compared
to the two-element POVM which shares the same Fc but with
the most extreme possible deviation, between Fc(ξ ) = F max

q =
α2 and Fc(ξ ) = 0 according to ξ . With no noise at α = 1,
the K-element POVM illustrated in Fig. 1 always achieves
in Eq. (42) a classical Fisher information Fc(ξ ) = F max

q = 1
for any K � 2, meaning that any such POVM realizes a
ξ -independent optimal POVM for any K � 2. So if one is not
sure of the noise level α, a conservative choice can be a POVM
with large K around K = 8 to 10, achieving the ξ -independent
performance Fc(ξ ) = F∞

c = Fc at any noise level α, while
being also an optimal POVM reaching Fc(ξ ) = F max

q = 1 with
no noise at α = 1.

For constructing a ξ -independent POVM maximizing the
classical Fisher information Fc(ξ ), as we have just seen, the
K measurement operators Mk = (I2 + �ak · �σ )/K should have
their �ak in the plane orthogonal to �n, and there is no possibility

of a uniform performance better than that of the set of azimuth
angles φk = 2π (k − 1)/K for k = 1 to K . It however still
remains the latitude of considering nonunit vectors �ak . For
positivity of each Mk , one has only the option of ‖�ak‖ < 1.
Also, with an unknown phase ξ , there is no reason that could
motivate in the plane ⊥ �n a nonisotropic distribution of the
norms ‖�ak‖ for k = 1 to K . So, as for the azimuths φk ,
there is no motivation for a choice other than the uniform
constant ‖�ak‖ = a < 1 for k = 1 to K . This choice leads for
the classical Fisher information Fc(ξ ) of Eq. (39) to a form
similar to that of Eq. (42) but with the noise factor α replaced
by αa. With 0 < a < 1 the effect is just as if the estimation
process was accomplished at a higher noise level characterized
by a smaller noise factor, consistently reducing Fc(ξ ), so
that there is no benefit to be gained by selecting ‖�ak‖ < 1
since ‖�ak‖ = 1 is always more efficient. Taking measurement
vectors �ak nonorthogonal to �n is also similar to operating at
a higher noise level characterized by a smaller noise factor
reduced by the amount by which the components orthogonal to
�n of the �ak are reduced; so measurement vectors �ak orthogonal
to �n are generally better to maximize Fc(ξ ) of Eq. (39).

We can therefore conclude that, with quantum depolarizing
noise affecting the qubit, to construct a ξ -independent POVM
maximizing the classical Fisher information Fc(ξ ), it is
not possible to do better than the set of K measurement
operators Mk = (I2 + �ak · �σ )/K proportional to projectors in
H2, with the �ak in the plane orthogonal to �n at azimuths
φk = 2π (k − 1)/K for k = 1 to K . It is preferable to take
a large number K around K = 8 to 10 or larger, this allowing
to reach the ξ -independent performance Fc(ξ ) = F∞

c = Fc =
1 − √

1 − α2, and this similarly at any noise factor α. This
performance of Fc(ξ ) will usually remain below the overall
maximum F max

q = α2 as shown by Fig. 2 (except at vanishing
noise α = 1), but there exists no possibility of another POVM
doing better uniformly for any unknown phase ξ . For this
reason, we can qualify this approach as defining the ξ -
independent optimal POVM or measurement protocol. As in
the noise-free case of Sec. III, we are now interested in an
estimator with a performance matching the classical Fisher
information Fc(ξ ) = F∞

c set by this ξ -independent optimal
measurement protocol.

D. Optimizing the estimator with depolarizing noise

We know by principle that the targeted optimal performance
is realized by the maximum likelihood estimator for the phase
ξ , at least in the limit of a large number N of independent
measurements. With the ξ -independent optimal measurement
protocol determined in Sec. IV C, the probability for obtaining
the measurement outcome k corresponding to operator Mk =
(I2 + �ak · �σ )/K is, following Eq. (23),

P (k; ξ ) = 1

K
[1 + α�ak�r1(ξ )]. (45)

From N independent copies of the qubit state ρξ , a sequence
of N independent measurements are performed, yielding a
number Nk of outcomes k, for k = 1 to K .
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From such a sequence of N measurement outcomes, the
likelihood L(ξ ) for the parameter ξ follows as

L(ξ ) =
K∏

k=1

P (k; ξ )Nk = 1

KN

K∏
k=1

[1 + α�ak�r1(ξ )]Nk . (46)

We now seek the maximum likelihood estimator ξ̂ML as
that value of ξ maximizing L(ξ ) in Eq. (46). When seen
as a function of the K probabilities P (k; ξ ) from Eq. (45)
considered as free variables, it is known that the likelihood
L(ξ ) of Eq. (46) is maximized by P (k; ξ ) = Nk/N for k = 1
to K . This is a standard result known for estimation of the
probabilities of a multinomial distribution. However, this is
not quite what we seek for our specific task of estimating
the qubit phase ξ . The K variables P (k; ξ ) from Eq. (45),
constrained to sum to 1, form a set with dimension K − 1,
supported on a (K − 1)-dimensional hyperplane in RK . In
this (K − 1)-dimensional set, the variable ξ , through the
relations of Eq. (45) determined for the P (k; ξ ) by the
quantum measurement, defines a one-dimensional manifold. It
is over this one-dimensional manifold [and not over the whole
embedding (K − 1)-dimensional set] that the maximization
of L(ξ ) of Eq. (46) has to be accomplished for estimating the
phase ξ .

Due to the nonlinearities involved in Eq. (46), it is
usually not possible to obtain an analytical resolution of the
maximization ofL(ξ ) to yield a closed-form expression for the
phase estimator ξ̂ML. Nevertheless, the circumstance is quite
favorable for a numerical resolution. The one-dimensional
maximization of L(ξ ) has to be performed over a known
bounded domain ξ ∈ [0,2π ), with a suitable precision on ξ

determined by the root-mean-squared error (NF∞
c )−1/2 = σ∞

as set by the classical Fisher information F∞
c of Eq. (43). For

each sequence of N measurements, it is thus easy to compute
the resulting likelihood L(ξ ) of Eq. (46) over a fine grid
for ξ ∈ [0,2π ), so as to locate the maximum and maximizer
yielding the value of the estimate by ξ̂ML.

Figure 4 presents the results of a numerical simulation
which illustrates the operation of the maximum likelihood
estimator ξ̂ML with K = 10 POMV elements. The simulation
for the quantum measurement basically implements N inde-
pendent random draws according to the probability distribution
of Eq. (45), and it counts the resulting K measurement
outcomes Nk that next serve to the numerical maximization of
the likelihood of Eq. (46) delivering the value of the estimate
ξ̂ML. Two noise levels α are tested in Fig. 4 with N = 30
repeated measurements.

The results of Fig. 4 show a reasonable behavior for the
maximum likelihood estimator ξ̂ML derived here, and for
its performance. We especially observe an experimental rms
estimation error σexper in good agreement with the theoretical
prediction σ∞ = (NF∞

c )−1/2 from Eq. (43) based on the
analysis of the Fisher information.

In the noise-free case of Sec. III, to overcome the limitation
of the two-element POVM or spin observable associated with
the optimal estimator of Eq. (31) returning a value of ξ in
[0,π ], as explained at the end of Sec. III C, for a determination
of ξ in [0,2π ) one has to resort to a POVM with at least
K = 3 elements. Any such POVM at K � 3 when constructed
as described in Sec. IV C, is equally optimal as it achieves
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FIG. 4. Two values of the phase angle are successively used for
estimation, ξ = 0.51π with no noise at α = 1, and ξ = 1.39π with
noise at α = 0.75. Each of these two values of ξ is localized by a
thick horizontal line, each surrounded by two thin horizontal lines at
ordinates ξ ± σ∞, with σ∞ = (NF ∞

c )−1/2 the rms error theoretically
predicted from Eq. (43) for the best estimator, with for ξ = 0.51π and
α = 1 the value σ∞ ≈ 0.1826, and for ξ = 1.39π and α = 0.75 the
value σ∞ ≈ 0.3138. Each discrete data point represents an estimate
ξ̂ML computed from N = 30 independent copies of the qubit state ρξ

measured and followed by numerical maximization of the likelihood
of Eq. (46), this constituting one estimation experiment. For each
of the two values of ξ a total of 100 estimation experiments have
been repeated, as displayed in abscissa. Over these 100 repetitions,
the experimental rms error is σexper = 0.1890 when ξ = 0.51π , and
σexper = 0.3256 when ξ = 1.39π .

Fc(ξ ) = F max
q = 1 uniformly for any ξ , as we have seen in

Sec. IV C. At the same time, such a POVM will usually require
the above numerical maximization of the likelihood, in place
of the analytical expression of Eq. (31), to implement the
maximum likelihood estimator ξ̂ML.

V. SUMMARY AND CONCLUSION

The theory of parameter estimation from a quantum state
has been reviewed in Sec. II to obtain with Eqs. (3)–(6) general
expressions for the quantum score Lξ and quantum Fisher
information Fq(ξ ) determining the ultimate best performance
for this task. In Sec. III, these expressions for Lξ and Fq(ξ )
have been specified in Bloch representation for parameter
estimation on a qubit, with Eqs. (13)–(16) as previously
derived in [20]. Next, for estimation of the phase ξ acquired by
a qubit in a rotation around an arbitrary axis �n, the expressions
of Eqs. (13)–(16) for Lξ and Fq(ξ ) have been transformed to
concise geometric forms, with Eqs. (18), (19), (21), and (37)–
(38), not contained in [20]. Then this geometric formulation of
Eqs. (18), (19), (21), and (37)–(38) served here to characterize
the best strategies for qubit phase estimation, together with
their performance, consistently in terms of optimal probe,
optimal measurement, and optimal estimator, first with no
noise and then with noise. Comparatively, Ref. [20] essentially
concentrated on optimization of the input probe, for different
noise models.

With no noise, in Sec. III, it was established that the optimal
estimation strategy is to operate as follows. Choose an optimal
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pure probe ρ0 with unit Bloch vector �r0 orthogonal to the
rotation axis �n; implement an optimal quantum measurement
by measuring the spin observable 	 = �r0 · �σ ; use the optimal
estimator of Eq. (31). These are optimal steps allowing together
in succession to reach the ultimate best performance in qubit
phase estimation, with a minimal mean-squared estimation
error matching the least possible value of 1/(NF max

q ) = 1/N

when estimating from N independent measurements, at large
N . It is an important property that this strategy is a ξ -
independent solution, uniformly optimal for any unknown
phase ξ .

With quantum noise on the qubit, we have observed that
such parameter-independent optimal solutions are usually no
longer possible. For arbitrary quantum noise on the qubit,
it was argued in Sec. IV A that in general to achieve a
performance reaching the overall maximum of the quantum
Fisher information Fq(ξ ) requires a ξ -dependent strategy
and adaptive implementation. However, for an isotropic
depolarizing noise with compression factor α, we have shown
that the performance Fq(ξ ) can be raised to its maximum
F max

q = α2 by a ξ -independent pure input probe ρ0 with a unit
Bloch vector �r0 orthogonal to the rotation axis �n. There is
however no ξ -independent measurement protocol able to raise
the classical Fisher information Fc(ξ ) at the level F max

q = α2

of the maximal quantum Fisher information uniformly for
any unknown phase ξ . We have characterized in Sec. IV C a
ξ -independent optimal measurement protocol and the uniform
maximum F∞

c = 1 − √
1 − α2 � F max

q = α2 it can reach for
the classical Fisher information. This measurement protocol
is a generalized measurement with a large number K (starting
around 8 to 10) of POVM elements; and there is no spin
observable or von Neumann projective measurement that
would suffice to achieve this same performance. Finally,
a maximum likelihood estimator associated with this ξ -
independent optimal measurement is able to achieve the
minimal mean-squared estimation error saturating the classical
Cramér-Rao inequality, as analyzed in Sec. IV D.

In principle, a comparable approach examining in conjunc-
tion optimization of the input probe for maximum quantum
Fisher information, of the quantum measurement and of the
estimator, could be developed for estimation of multidimen-
sional parameters and/or estimation on quantum systems with
dimension higher than the dimension D = 2 of the qubit.
However, for multiple parameters generally optimality cannot
be achieved simultaneously for all parameters because the
optimal quantum measurements for them typically do not
commute and are therefore incompatible [7]. Also, in such
higher-dimensional conditions, the analytical characterization
of the optimal performances and strategies are generally much
more difficult to handle. By contrast, for the qubit which
is a fundamental system of quantum information, we have
seen here that the situation of single-parameter estimation
and its optimization is analytically tractable to a large extent,
especially with quantum noise on the qubit, and represents in
this respect a useful reference.

We have considered here the very common approach
to estimation which consists of gathering the results of N

independent measurements so as to collect more information
to serve the estimation task. This mode of operation is
especially convenient for practical implementation and for

analytical treatment. For classical estimation, when estimating
from N successive measurements, independent measurements
are generally preferable to correlated measurements, because
correlation tends to replace useful original information with
unhelpful repetition or redundancy. For quantum estimation,
this is no longer necessarily true, thanks to an unparalleled
type of correlation under the form of quantum entanglement.
Instead of reproducing the probe state ρ0 as N independent
copies forming the N -fold separable state ρ⊗N

0 , a composite
probe could be prepared in an N -fold entangled state. These
represent N -qubit composite states which are more difficult to
prepare and control experimentally, and to handle analytically.
Yet such entangled composite states can provide in definite
conditions enhanced performance, typically with a mean-
squared estimation error decreasing as 1/N2 (designated as
the Heisenberg limit) instead of 1/N with N independent
probes (the standard quantum limit) [25,33,34]. Such quantum
enhancement does not occur for all parametric dependence
[35], yet it can occur for estimation of parameters from unitary
transformations [25,33–35]. However, such quantum enhance-
ment is very fragile, and a small amount of depolarizing noise
as considered here is sufficient to ruin the 1/N2 performance
and return it to 1/N in the asymptotic limit of large N [35–37].
The analysis of quantum estimation with depolarizing noise
we have carried out here with N independent measurements
is thus an essential reference for estimation in realistic
noisy conditions. Intermediate configurations, with many
repetitions of measurements on composite quantum states
of finite size, may also provide interesting alternatives for
enhanced performance in estimation. Such proposals have
been investigated recently for instance in [38,39] for parameter
estimation from multiple-photon states. When quantum noise
is taken into account, such intermediate configurations can
be specially relevant. Since composite entangled states of
asymptotic size N are no longer capable of enhancing the
performance above the standard quantum limit of separable
states, maximal enhancement of the performance may possibly
be obtained with intermediate configurations of finite size.
Optimization of such intermediate configurations in noisy
conditions can be tackled with an approach similar to that
followed here, especially with the quantum and classical Fisher
information for setting the ultimate best performance, and it
remains open for further research.

APPENDIX: NOISE LEVEL ESTIMATION

We consider the situation where the unitary transformation
Uξ is absent and only the depolarizing noise channel is present
and acts on the input probe ρ0. We apply the approach of the
paper to derive the optimal strategy and its performance for
estimation of the depolarizing noise factor α which now plays
the role of the unknown parameter in place of ξ . The input
probe ρ0 is transformed by the depolarizing noise channel into
the output noisy state denoted ρα . From Eq. (14), in Bloch
representation, we now have for estimating α the quantum
Fisher information

Fq(α) = (�rα ∂α�rα)2

1 − �r 2
α

+ (∂α�rα)2. (A1)
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The noisy Bloch vector is �rα = α�r0, so that ∂α�rα = �r0, leading
in Eq. (A1) to

Fq(α) = ‖�r0‖2

1 − α2‖�r0‖2
. (A2)

Maximization of the quantum Fisher information Fq(α) of
Eq. (A2) is obtained simply by ‖�r0‖ = 1, i.e., by a pure input
probe ρ0 with an arbitrary orientation for �r0 in R3, to achieve
the maximum

F max
q = 1

1 − α2
(A3)

in Eq. (A2). To obtain an optimal measurement it is enough
to measure a spin observable 	 = �a · �σ . As in Sec. III B, the
resulting two measurement outcomes ±1 have probabilities

P (±1) = 1
2 (1 ± �rα�a) = 1

2 (1 ± α�r0�a), (A4)

associated, from Eq. (24), with the classical Fisher information

Fc(α) = [∂αP (+1)]2

P (+1)
+ [∂αP (−1)]2

P (−1)
= (�r0�a)2

1 − α2(�r0�a)2
.

(A5)
Maximization of the classical Fisher information Fc(α) of
Eq. (A5) is obtained by (�r0�a)2 = 1, i.e., by �a = ±�r0, achieving
for Fc(α) the maximum F max

q of Eq. (A3). This establishes
the observable 	 = �r0 · �σ (or 	 = −�r0 · �σ ) as an optimal
measurement, uniformly for any α.

For an optimal estimator for α, we turn to the maximum
likelihood estimator as in Sec. III C, which follows as

α̂ML = 2
N+
N

− 1, (A6)

unbiased and with mean-squared error 〈(̂αML − α)2〉 = (1 −
α2)/N = 1/[NFc(α)] = 1/[NF max

q ], proving that α̂ML of
Eq. (A6) is an optimal estimator for any number N of measure-
ments. This defines the optimal probe, optimal measurement,
and optimal estimator, with their maximal performance, for
the factor α of a qubit depolarizing noise.
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FRANÇOIS CHAPEAU-BLONDEAU PHYSICAL REVIEW A 94, 022334 (2016)

[30] A. Fujiwara, Strong consistency and asymptotic efficiency for
adaptive quantum estimation problems, J. Phys. A 39, 12489
(2006).

[31] R. Okamoto, M. Iefuji, S. Oyama, K. Yamagata, H. Imai,
A. Fujiwara, and S. Takeuchi, Experimental Demonstration
of Adaptive Quantum State Estimation, Phys. Rev. Lett. 109,
130404 (2012).

[32] M. M. Wilde, Quantum Information Theory (Cambridge Uni-
versity Press, Cambridge, England, 2013).

[33] G. M. D’Ariano, P. Lo Presti, and M. G. A. Paris, Using En-
tanglement Improves the Precision of Quantum Measurements,
Phys. Rev. Lett. 87, 270404 (2001).

[34] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum Metrology,
Phys. Rev. Lett. 96, 010401 (2006).

[35] Z. Ji, G. Wang, R. Duan, Y. Feng, and M. Ying, Parameter
estimation of quantum channels, IEEE Trans. Inf. Theory 54,
5172 (2008).

[36] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum
metrology, Nat. Photon. 5, 222 (2011).
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