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Noisy quantum metrology with the assistance of indefinite causal order
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A generic qubit unitary operator affected by depolarizing noise is duplicated and inserted in a quantum switch
process, realizing a superposition of causal orders. The characterization of the resulting switched quantum
channel is worked out for its action on the joint state of the probe-control qubit pair. The switched channel
is then specifically investigated for the important metrological task of phase estimation on the noisy unitary
operator, with the performance assessed by the Fisher information, classical or quantum. A comparison is made
with conventional techniques of estimation where the noisy unitary is directly probed in a one-stage or two-stage
cascade with definite order or several uses of them with two or more qubits. In the switched channel with
indefinite order, specific properties are reported, meaningful for estimation and not present with conventional
techniques. It is shown that the control qubit, although it never directly interacts with the unitary, can nevertheless
be measured alone for effective estimation, while discarding the probe qubit that interacts with the unitary.
Also, measurement of the control qubit maintains the possibility of efficient estimation in difficult conditions
where conventional estimation becomes less efficient, as for instance with ill-configured input probes, or in blind
situations when the axis of the unitary is unknown. Effective estimation by measuring the control qubit remains
possible even when the input probe tends to align with the axis of the unitary, or with a fully depolarized input
probe, while in these conditions conventional estimation becomes inoperative. Measurement of the probe qubit
of the switched channel is also analyzed and shown to add useful capabilities for phase estimation. The results
contribute to the ongoing identification and analysis of the properties and capabilities of switched quantum
channels with indefinite order for information processing and uncover new possibilities for quantum estimation
and qubit metrology.
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I. INTRODUCTION

Quantum channels can be viewed as building blocks for
performing quantum information processing by transforming
quantum states or signals, much like in classical systems and
signals theory. Two quantum channels (1) and (2) can be
combined or cascaded, in the order (1)–(2) or (2)–(1), under
the control of a quantum switch signal realized, for instance,
by the two basis states of a qubit. Such a control qubit can
be placed in an arbitrary superposition of its two basis states,
and as a result, the two individual channels get cascaded in an
arbitrary superposition of the two classical orders, (1)–(2) or
(2)–(1). This realizes a switched quantum channel formed by
the two individual channels simultaneously cascaded in the
two alternative orders, or with indefinite causal order. Such
switched quantum channels with indefinite causal order are
specifically quantum devices, grounded on quantum superpo-
sition, and with no classical analog. Their principle has been
described recently in Refs. [1,2] and their physical implemen-
tation is addressed in Refs. [2–7]. For information processing,
it is found that switched quantum channels with indefinite
causal order can specifically offer useful capabilities, not ac-
cessible with channels combined in definite causal orders.
Such specific capabilities from switched indefinite causal or-

der have been reported with various channels and information
processing tasks, assessed by appropriate efficiency metrics.

For instance, Refs. [8–11] address a task of quantum
communication of information, where typically isolated com-
munication channels with limited capacity, when inserted in
a quantum switch process, give rise to a switched quantum
channel with enhanced capacity to transmit information. The
task in Refs. [12,13] is quantum channel discrimination; in
Ref. [12] two channels that when associated in definite order
are never perfectly distinguishable become so with indefi-
nite order; in Ref. [13], for distinguishing whether or not a
qubit has been affected by a given unitary transformation in
the presence of noise, the probability of discrimination error
is shown improvable by the quantum switch process. Very
recently, switched channels with indefinite order have been
extended to quantum metrological tasks involving parameter
estimation from measurements [14–16]. It has been shown
that a one-parameter quantum channel can be identified or
estimated more efficiently when it is involved in a switch pro-
cess, for a qudit depolarizing channel in Ref. [14] and a qubit
thermalization channel in Ref. [15]. In Ref. [16], to estimate
the product of two average displacements in a continuous-
variable quantum system, it is shown that the estimation error
can be reduced by the switch process.
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Quantum switching with indefinite causal order is a
phenomenon of recent introduction, and its properties and
capabilities for information processing are still being inven-
toried and analyzed. In the present paper, we will extend the
investigation of switched causal orders for quantum metrol-
ogy, applied here to new quantum processes or channels and
in different conditions. We will address the important task of
quantum metrology consisting in parameter estimation on a
unitary transformation in the presence of noise [17–19]. For
quantum metrology, the switched processes considered here
are different from those of Refs. [14–16], and the presence of
noise is a significant specificity here. The Fisher information
will be used to assess the performance for estimation, as
in Refs. [14–16], because the Fisher information is a fun-
damental reference metric in metrology, often employed for
characterization of and fixing the best conceivable perfor-
mance [20,21].

In this paper, we will first briefly review the principle of
the quantum switch of elementary channels. Then, from an
elementary channel formed by a generic qubit unitary operator
affected by depolarizing noise, we will carry out a complete
characterization of the transformation realized by the corre-
sponding switched quantum channel, especially by means of
the Bloch representation of the qubit density operator. We
will then concentrate on the important metrological task of
estimating the phase parameter of the unitary operator and
evaluate the Fisher information to assess the performance. We
will show the possibility of useful properties for the phase
estimation with indefinite causal order in the switched unitary
channel with noise. In particular, conditions will be reported
where the switched channel with indefinite order remains
efficient for estimation, while conventional techniques with
definite order become inoperative. The study in this way will
extend the analysis of switched channels with indefinite causal
order to the task of estimation on a noisy qubit unitary, and
will report possibilities to contribute to quantum estimation
and qubit metrology.

II. QUANTUM SWITCH OF TWO QUANTUM CHANNELS

As in Refs. [2,8], we consider, acting on quantum systems
with Hilbert space H, a quantum channel (1) with Kraus
operators {K(1)

k } and a second quantum channel (2) with Kraus
operators {K(2)

j }. The two channels are cascaded either in the
order (1)–(2) or (2)–(1), under the control of a qubit driv-
ing a quantum switch process as described, for instance, in
Refs. [2,8]. When the control qubit is in state |0〉 channel (1) is
traversed first, followed by channel (2); and when the control
qubit is in state |1〉 channel (2) is traversed first, followed by
channel (1), as depicted in Fig. 1.

The resulting “switched” quantum channel is described
[2,8] by the Kraus operators

K jk = K(2)
j K(1)

k ⊗ |0〉 〈0|c + K(1)
k K(2)

j ⊗ |1〉 〈1|c . (1)

When acting on a quantum state of H with density operator ρ

along with a control qubit in state ρc, the switched quantum
channel implements the bipartite quantum operation S defined

ρ

(1)

(2)

FIG. 1. Two quantum channels (1) and (2) can be cascaded either
in the order (1)–(2) (solid path) or (2)–(1) (dashed path) according to
the state respectively |0〉 or |1〉 of a control qubit.

[2,8] by the superoperator

S (ρ ⊗ ρc) =
∑

j,k

K jk (ρ ⊗ ρc)K†
jk . (2)

The quantum operation realized in Eq. (2) can be further
developed as

S (ρ ⊗ ρc) = S00(ρ) ⊗ 〈0|ρc|0〉 |0〉 〈0|c
+S01(ρ) ⊗ 〈0|ρc|1〉 |0〉 〈1|c
+S†

01(ρ) ⊗ 〈1|ρc|0〉 |1〉 〈0|c
+S11(ρ) ⊗ 〈1|ρc|1〉 |1〉 〈1|c , (3)

with the superoperators

S00(ρ) =
∑

j,k

K(2)
j K(1)

k ρK(1)†
k K(2)†

j , (4)

S01(ρ) =
∑

j,k

K(2)
j K(1)

k ρK(2)†
j K(1)†

k , (5)

S11(ρ) =
∑

j,k

K(1)
k K(2)

j ρK(2)†
j K(1)†

k . (6)

The superoperator S00(ρ) alone describes the quantum
operation realized by the standard cascade with the definite
causal order (1)–(2), and similarly with S11(ρ) for the cascade
(2)–(1). By contrast, the superoperator S01(ρ) is a coupling
term specific to the quantum switch process. In the joint state
S (ρ ⊗ ρc) of Eq. (3), if the control qubit were discarded
(unobserved) and traced out, the resulting quantum operation
on ρ would represent a classical probabilistic (convex) com-
bination of the two definite causal orders S00(ρ) and S11(ρ).
By contrast, if the control qubit is treated coherently with ρ, it
can give rise to specific, specifically quantum, behaviors from
the switched quantum channel, as we shall see.

An interesting and specifically quantum feature is that the
control qubit can be placed in the superposed state |ψc〉 =√

pc |0〉 + √
1 − pc |1〉, with pc ∈ [0, 1]. This produces in

Eqs. (2)–(3) a switched quantum channel representing a quan-
tum superposition of the two initial channels (1) and (2)
simultaneously cascaded in the two alternative orders, or with
indefinite causal order. With ρc = |ψc〉 〈ψc|, the quantum op-
eration resulting in Eq. (3) takes the form

S (ρ ⊗ ρc) = pcS00(ρ) ⊗ |0〉 〈0|c + (1 − pc)S11(ρ) ⊗ |1〉 〈1|c
+

√
(1 − pc)pc[S01(ρ) ⊗ |0〉 〈1|c

+S†
01(ρ) ⊗ |1〉 〈0|c] . (7)
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We will consider the situation where the quantum channels
(1) and (2) are qubit channels, under a form which is often
encountered in quantum metrology, and consisting in a unitary
operator Uξ affected by a quantum noise N (·).

III. A UNITARY QUBIT CHANNEL WITH NOISE

For qubits with two-dimensional Hilbert space H2, the
density operator is represented in Bloch representation [22]
under the form

ρ = 1
2 (I2 + �r · �σ ) , (8)

where I2 is the identity operator on H2 and �σ is a formal
vector assembling the three (traceless Hermitian unitary) Pauli
operators [σx, σy, σz] = �σ . The Bloch vector �r ∈ R3 charac-
terizing the density operator has norm ‖�r ‖ = 1 for a pure state
and ‖�r ‖ < 1 for a mixed state.

A qubit unitary operator Uξ is introduced with the general
parametrization [22]

Uξ = exp

(
−i

ξ

2
�n · �σ

)
= cos

(ξ

2

)
I2 − i sin

(ξ

2

)
�n · �σ , (9)

where �n = [nx, ny, nz]	 is a unit vector of R3 and ξ is a phase
angle in [0, 2π ).

From a qubit state ρ in Bloch representation as in Eq. (8),
the unitary Uξ produces the transformed state

Uξ ρU†
ξ = 1

2 (I2 + Uξ �r · �σ ) , (10)

which amounts to the transformation Uξ �r of the Bloch vector
�r in R3 experiencing a rotation around the axis �n by the angle
ξ via the 3 × 3 real matrix1

Uξ =
⎡
⎣ cos(ξ ) + [1 − cos(ξ )]n2

x [1 − cos(ξ )]nxny − sin(ξ )nz [1 − cos(ξ )]nxnz + sin(ξ )ny

[1 − cos(ξ )]nxny + sin(ξ )nz cos(ξ ) + [1 − cos(ξ )]n2
y [1 − cos(ξ )]nynz − sin(ξ )nx

[1 − cos(ξ )]nxnz − sin(ξ )ny [1 − cos(ξ )]nynz + sin(ξ )nx cos(ξ ) + [1 − cos(ξ )]n2
z

⎤
⎦. (11)

The qubit noise N (·) is introduced under the form of a
depolarizing noise [22] implementing the quantum operation
with Kraus representation

N (ρ) = (1 − p)ρ + p

3
(σxρσ †

x + σyρσ †
y + σzρσ †

z ) . (12)

The effect of the noise in Eq. (12) is to leave the qubit state
ρ unchanged with the probability 1 − p or to apply any one
of the three Pauli operators with equal probability p/3. Alter-
natively, the effect of the depolarizing noise can be described,
for the Bloch vector �r characterizing a qubit state in Eq. (8),
as the isotropic compression �r 
→ α�r with the compression
factor α = 1 − 4p/3. Equivalently, Eq. (12) is also

N (ρ) = αρ + (1 − α)
I2

2
, (13)

indicating that with the probability 1 − α, the noise replaces
the quantum state ρ by the maximally mixed state I2/2; at
the maximum compression when α = 0, the quantum state
is forced to I2/2 with probability 1 and the qubit gets com-
pletely depolarized. The depolarizing noise is an important
noise model often considered in quantum information [22].
It has no invariant subspace, and in this respect it represents
in some sense a worse-case noise and as such a conserva-
tive reference. Here, in addition, its isotropic character will
ease the theoretical derivations. However, this choice for the
type of noise is not critical for the main properties to be
reported here.

1We use the notation Uξ in upright font for the unitary operator
acting in the complex Hilbert space H2 of the qubit, while we
use the notation Uξ in italic font for the real matrix expressing the
action of the unitary operator in the Bloch representation of qubit
states in R3.

The quantum channel like (1) or (2) of Sec. II is formed
by cascading the unitary transformation Uξ of Eq. (9) and
the depolarizing noise N (·) of Eqs. (12) and (13), as depicted
in Fig. 2.

For the quantum channel of Fig. 2, four Kraus operators
like K(1)

k or K(2)
j of Sec. II result as {K0 = √

1 − pUξ , K1 =√
p/3σxUξ , K2=

√
p/3σyUξ , K3=

√
p/3σzUξ }. Equivalently,

for a qubit state ρ in Bloch representation as in Eq. (8), the
cascade of Uξ and then N (·) produces the transformed state

N (UξρU†
ξ ) = 1

2 (I2 + αUξ �r · �σ ) . (14)

We note that although the four Kraus operators K j above
generally do not commute between them, as a whole the
isotropic depolarizing noise N (·) here commutes with the
unitary Uξ in Fig. 2, so that N (Uξ ρU†

ξ ) in Eq. (14) coincides

with UξN (ρ)U†
ξ . The noise action N (·) is placed after Uξ in

Fig. 2, but it could as well take place before Uξ , or even part
before and part after Uξ and equivalently lumped into a single
action, as in Fig. 2.

IV. QUANTUM SWITCH OF TWO NOISY UNITARIES

Two such identical qubit channels formed by Uξ and N (·)
as in Fig. 2 are associated as in Fig. 1 through the quantum
switch process of Sec. II, however, with two independent
noise sources according to Eqs. (12) and (13) at a same noise

Uξ N (·)ρ

FIG. 2. A qubit channel formed by the unitary transformation Uξ

of Eq. (9) and the depolarizing noise N (·) of Eqs. (12) and (13). As
a whole, this channel is an instance of channel (1) or (2) considered
in Fig. 1.
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level p or α. For two identical channels (1) and (2), one
has S00(ρ) = S11(ρ) in Eqs. (4) and (6), and also S†

01(ρ) =
S01(ρ) in Eq. (5). On the probe qubit in state ρ and control
qubit in state ρc = |ψc〉 〈ψc|, the switched quantum chan-
nel therefore realizes the two-qubit quantum operation from
Eq. (7), reading

S (ρ ⊗ ρc) = S00(ρ) ⊗ [pc |0〉 〈0|c + (1 − pc) |1〉 〈1|c]

+S01(ρ) ⊗
√

(1 − pc)pc

× (|0〉 〈1|c + |1〉 〈0|c). (15)

Furthermore, as already mentioned, from Eq. (4) it can
be verified that S00(ρ) [and S11(ρ) similarly] is simply the
quantum operation realized on ρ by directly traversing in
a standard cascade with definite order the two channels (1)
and then (2), which in Bloch representation via Eq. (14)
amounts to

S00(ρ) = 1
2

(
I2 + α2U 2

ξ �r · �σ
)

. (16)

For the superoperator S01(ρ) of Eq. (5), one has now

S01(ρ) = (1 − p)2W0 + (1 − p)
p

3

∑
�=x,y,z

(W� + W†
� ) +

( p

3

)2

× [(Wxy + W†
xy) + (Wyz + W†

yz ) + (Wzx + W†
zx )

+Wxx + Wyy + Wzz] , (17)

with the superoperators

W0(ρ) = U2
ξ ρU†2

ξ , (18)

W�(ρ) = σ�UξUξ ρU†
ξ σ

†
� U†

ξ , (19)

W��′ (ρ) = σ�Uξ σ�′Uξ ρU†
ξ σ

†
� U†

ξ σ
†
�′ , (20)

verifying that S01(ρ) = S†
01(ρ). In Eq. (19) and comparable

equations, σ� designates generically one of the three Pauli op-
erators σx, σy, or σz according to the value of �. What we want
to do next is to characterize the action of the superoperator
S01(ρ) of Eq. (17) by means of the Bloch representation, as in
Eq. (16). This can be carried out in two steps, by expressing
S01(I2) and S01(�r · �σ ). These derivations are developed in
Appendix A.

From Appendix A, Eq. (A12), we obtain

S01(I2) =
[

4

3
p

(
1 − 4

3
p

)
cos(ξ ) + 1 − 4

3
p
(

1 − p

3

)]
I2 ,

(21)
and from Eq. (A33),

S01(�r · �σ ) =
[
(1 − p)2Uξ + (1 − p)

p

3
2[I3 + L1(Uξ )]

+
( p

3

)2
[2L2(Uξ ) − 2I3 + L3(Uξ )]

]
Uξ �r · �σ . (22)

This completes the characterization of the joint two-qubit
state S (ρ ⊗ ρc) of Eq. (15) produced by the switched quan-
tum channel. It follows in particular that, when there is no
noise, at p = 0 in Eq. (12), the characterization leads to a
joint state reducing to S (ρ ⊗ ρc) = (U2

ξ ρU†2
ξ ) ⊗ ρc, indicat-

ing that the two qubits evolve separately. The probe qubit

in state ρ experiences the standard unitary cascade UξUξ ,
while the control qubit in state ρc remains unaffected. This
situation can be understood because with no noise the two
channels that are switched are two strictly identical unitaries
Uξ , so that the two switched orders UξUξ and UξUξ in Fig. 1
are identical and indistinguishable. The resulting switched
channel is indistinguishable from a standard cascade of two
unitaries Uξ . There is no superposition of two distinguishable
causal orders, but only a standard cascade with definite order.
By contrast, in the presence of noise, at p 
= 0 in Eq. (12),
the joint state S (ρ ⊗ ρc) of Eq. (15) is an entangled state,
expressing a coupling evolution of the probe-control qubit
pair. The two channels according to Fig. 2 engaged in the
switch process of Fig. 1 do not reduce to a standard cascade
of two indistinguishable channels. Indistinguishability of the
two switched channels in Fig. 1 can be attributed to their
Kraus operators, which do not commute, as in Ref. [8]. The
nonunitary noise process N (·) shown in Fig. 2, which occurs
in two independent realizations, involves in Eq. (12) Kraus
operators which do not commute, so that the Kraus operators
K(1)

k or K(2)
j of the two switched channels of Fig. 2 also do

not commute. This induces in Fig. 1 a superposition of two
distinguishable causal orders, and an entangling interaction of
the two qubits, mediated via a nontrivial coupling term S01(ρ)
in the joint state S (ρ ⊗ ρc) of Eq. (15).

We will now examine the exploitation of the joint state
S (ρ ⊗ ρc) of Eq. (15) characterizing the switched channel to
serve in a task of parameter estimation on the unitary Uξ .

V. MEASUREMENT

The probe qubit prepared in state ρ and the control qubit
prepared in state ρc get entangled by the action of the switched
quantum channel, and these two qubits together terminate in
the joint state S (ρ ⊗ ρc) of Eq. (15). To extract information
from the switched channel, a useful strategy (also adopted,
for instance, in Ref. [8]) is to measure the control qubit in the
Fourier basis {|+〉 , |−〉} of H2. The measurement can be de-
scribed by the two measurement operators {I2 ⊗ |+〉 〈+| , I2 ⊗
|−〉 〈−|} acting in the Hilbert space H2 ⊗ H2 of the probe-
control qubit pair with state S (ρ ⊗ ρc). The measurement
randomly projects the control qubit either in state |+〉 or |−〉,
and it leaves the probe qubit in the unnormalized conditional
state

ρ±=c〈±|S (ρ ⊗ ρc)|±〉c = 1
2S00(ρ) ±

√
(1 − pc)pc S01(ρ) ,

(23)
the products involving |±〉c being defined on the control qubit.
The probabilities Pcon

± of the two measurement outcomes are
provided by the trace Pcon

± = tr(ρ±). When the probe qubit is
prepared in the state ρ of Eq. (8), one has

tr(ρ±) = 1

2
tr

[
1

2
S00(I2) ±

√
(1 − pc)pc S01(I2)

]
, (24)

since according to Eqs. (16) and (22) the terms S00(�r · �σ ) =
α2U 2

ξ �r · �σ and S01(�r · �σ ) are both linear combinations of the
three Pauli operators �σ and are therefore with zero trace. Via
Eq. (16) giving S00(I2) = I2 and Eq. (21) for S01(I2), one then
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obtains for the control qubit the measurement probabilities

Pcon
± = 1

2
±

√
(1 − pc)pc

[
4

3
p

(
1 − 4

3
p

)
cos(ξ )

+ 1 − 4

3
p
(

1 − p

3

)]
, (25)

which are conveniently rewritten as a function of the compres-
sion factor α of the depolarizing noise of Eq. (13) as

Pcon
± = tr(ρ±) = 1

2 ±
√

(1 − pc)pcQξ (α) , (26)

with the factor

Qξ (α) = (1 − α)α cos(ξ ) + 1
4 (1 + α)2 . (27)

In addition, after the measurement of the control qubit, the
probe qubit terminates in the (normalized conditional) state

ρ
post
± = 1

Pcon
±

ρ± = 1

2
(I2 + �r post

± · �σ ) , (28)

characterized by the postmeasurement Bloch vector

�r post
± = 1

Pcon
±

[
1

2
α2U 2

ξ ±
√

(1 − pc)pc S01

]
�r , (29)

with S01 being the 3 × 3 real matrix, quadratic function of
Uξ , defined from the superoperator S01(�r · �σ ) = S01�r · �σ via
Eq. (22).

For the control at pc = 0 or 1 there is no superposition of
switched orders in Fig. 1, but a standard cascade with definite
order of two copies of the noisy unitary channel of Fig. 2 and
Eq. (14), yielding Pcon

± = 1/2 in Eq. (26) and �r post
± = α2U 2

ξ �r in
Eq. (29). By contrast, for any pc ∈ (0, 1), some superposition
is present in the control signal |ψc〉 and therefore in the two
causal orders, inducing in Eq. (26) a dependence of Pcon

± via
Qξ (α) with the phase ξ .

This is an important property: The probabilities Pcon
± of

Eq. (26), upon measuring the control qubit, are in general
dependent on the phase ξ . By measuring the control qubit,
information can therefore be obtained on the phase ξ and can
serve for an estimation of ξ . It is the probe qubit that directly
interacts with the unitary Uξ characterized by the phase ξ

and not the control qubit. However, in the switch process, the
type of coupling between these two qubits in the joint state
S (ρ ⊗ ρc) of Eq. (15) causes a transfer of information from
the probe to the control qubit concerning the phase ξ .

Another important property observed with Eq. (26) is that
the measurement probabilities Pcon

± are independent of the
Bloch vector �r characterizing the input probe qubit. Accord-
ingly, Pcon

± are able to sense the phase ξ in the same way
whatever the configuration �r of the input probe, even with a
completely depolarized probe with �r = �0.

In a comparable way, the measurement probabilities Pcon
±

of Eq. (26) are unaffected by the orientation �n of the rotation
implemented by Uξ . In this respect, Pcon

± can be exploited to
estimate the rotation angle ξ equally, even with an unknown or
an ill-positioned axis �n relative to the probe �r. This would not
be the case in a conventional (with no superposition of causal
orders) approach of measuring the probe qubit to estimate ξ ,
where efficient estimation of ξ would require us to know the

axis �n and to adjust the estimation conditions (especially the
probe �r 
= �0 ) to this �n, as we shall see more precisely below.

We now concentrate on the task of estimating the phase
ξ of the unitary Uξ . Phase estimation is an important task of
quantum metrology, useful for interferometry, magnetometry,
atomic clocks, frequency standards, and many other high-
precision high-sensitivity physical measurements [17,19,23–
26]. A useful tool for assessing and comparing the efficiency
of different estimation strategies for the phase ξ is provided
by the Fisher information, which we now address.

VI. PERFORMANCE ASSESSMENT BY THE FISHER
INFORMATION

Statistical estimation theory [27,28] stipulates that, from
data dependent upon a parameter ξ , any conceivable estimator
ξ̂ for ξ is endowed with a mean-squared error 〈(̂ξ − ξ )2〉
which is lower bounded by the Cramér-Rao bound involving
the reciprocal of the classical Fisher information Fc(ξ ). Larger
Fisher information Fc(ξ ) means the estimation can be more
efficient. The maximum likelihood estimator [28] is known
to achieve the best efficiency dictated by the Cramér-Rao
bound and Fisher information Fc(ξ ), at least in the asymptotic
regime of a large number of independent data points. The
classical Fisher information Fc(ξ ) stands in this respect as a
fundamental metric quantifying the best achievable efficiency
in estimation. When the data are distributed according to
the ξ -dependent probability distribution Pm(ξ ), the classical
Fisher information is defined as

Fc(ξ ) =
∑

m

[∂ξ Pm(ξ )]2

Pm(ξ )
. (30)

For estimation from a ξ -dependent qubit state ρξ of Bloch
vector �rξ , a useful approach is to perform a spin measurement,
which amounts to measuring the observable �ω · �σ character-
ized by the unit vector �ω ∈ R3. Two measurement outcomes
follow with the ξ -dependent probabilities

P±(ξ ) = 1
2 (1 ± �ω �rξ ) , (31)

controlled by the scalar inner product �ω �rξ in R3. The classical
Fisher information of Eq. (30) then follows as

Fc(ξ ) = (�ω ∂ξ �rξ )2

1 − (�ω �rξ )2 . (32)

It is also possible to obtain further assessment of the perfor-
mance in quantum estimation, without referring to an explicit
measurement protocol or measurement vector �ω. This can be
accomplished with the quantum Fisher information [20,21].
The quantum Fisher information is universally used for per-
formance assessment in many areas of quantum metrology,
with finite-dimensional, infinite-dimensional, or continuous
quantum states [29–33]. For a ξ -dependent qubit state ρξ of
Bloch vector �rξ , the quantum Fisher information relative to
the parameter ξ can be expressed [34] as

Fq(ξ ) = (�rξ ∂ξ �rξ )2

1 − �r 2
ξ

+ (∂ξ �rξ )2 , (33)
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for the general case of a mixed state ρξ , while it reduces to

Fq(ξ ) = (∂ξ �rξ )
2

for the special case of a pure state ρξ . The
quantum Fisher information Fq(ξ ) is intrinsic to the relation
of the quantum state ρξ to the parameter ξ and does not
refer to any measurement performed on ρξ but depends only
on the functional dependence of ρξ on ξ , as visible from
Eq. (33). By contrast, the classical Fisher information Fc(ξ ) is
determined by the probability distribution of the measurement
outcomes, as visible in Eq. (30), and is therefore tied to a spe-
cific quantum measurement. The usefulness of Fq(ξ ) is that it
constitutes an upper bound to Fc(ξ ), imposing Fc(ξ ) � Fq(ξ ).
There might not always exist a fixed ξ -independent measure-
ment protocol to achieve Fc(ξ ) = Fq(ξ ); however, iterative
strategies implementing adaptive measurements [20,35–39]
are accessible to achieve Fc(ξ ) = Fq(ξ ). The quantum Fisher
information Fq(ξ ) is therefore a meaningful metric to charac-
terize the overall best performance for estimation.

A. For the control qubit of the switched channel

For estimating the phase ξ through the measurement of the
control qubit displaying the two outcomes characterized by
the probabilities Pcon

± of Eq. (26), the classical Fisher infor-
mation of Eq. (30) is

F con
c (ξ ) = (∂ξ Pcon

+ )2

(1 − Pcon
+ )Pcon

+
. (34)

This form related to Eq. (26) shows that the most favorable
condition to maximize F con

c (ξ ) of Eq. (34) is to choose pc =
1/2, which amounts to preparing the control qubit in the state
|ψc〉 = |+〉, and places the switched channel in a maximally
indefinite causal order; we shall stick to this favorable con-
dition pc = 1/2 in the sequel. From Eqs. (26) and (27), the
Fisher information of Eq. (34) then follows as

F con
c (ξ ) = [∂ξ Qξ (α)]2

1 − Q2
ξ (α)

(35)

= [(1 − α)α sin(ξ )]2

1 − [
(1 − α)α cos(ξ ) + 1

4 (1 + α)2
]2 . (36)

As already anticipated from Eq. (26), the performance
F con

c (ξ ) in Eq. (36) upon measuring the control qubit is inde-
pendent of the rotation axis �n and of the situation of the input
probe �r especially in relation to �n ; it is obtained uniformly
for any probe �r and axis �n. This would not be the case upon
measuring a probe qubit in a conventional approach, as we are
going to see in the next section.

Further assessment of the estimation performance is pro-
vided by the quantum Fisher information of Eq. (33). When
the control qubit is measured for estimating the phase ξ while
the probe qubit is left untouched or unobserved, it is possible
to assign a ξ -dependent state ρcon

ξ to the control qubit by
tracing over the probe qubit in the joint probe-control state
S (ρ ⊗ ρc) of Eq. (15), yielding

ρcon
ξ = trprobe[S (ρ ⊗ ρc)]

= tr[S00(ρ)] [pc |0〉 〈0|c + (1 − pc) |1〉 〈1|c]

+ tr[S01(ρ)]
√

(1 − pc)pc(|0〉 〈1|c + |1〉 〈0|c). (37)

From Eq. (16), one has tr[S00(ρ)] = 1. From Eq. (22) one has
tr[S01(�r · �σ )] = 0, so that tr[S01(ρ)] = tr[S01(I2)/2] = Qξ (α)
by virtue of Eqs. (21) and (25)–(27).

The state of the control qubit follows as

ρcon
ξ = pc |0〉 〈0|c + (1 − pc) |1〉 〈1|c

+ Qξ (α)
√

(1 − pc)pc(|0〉 〈1|c + |1〉 〈0|c) , (38)

which represents the qubit state characterized by the Bloch
vector �r con

ξ = [2
√

(1 − pc)pcQξ (α), 0, 2pc − 1]
	

. The mea-
surement in the Fourier basis {|+〉 , |−〉} of the control
qubit is equivalent to a spin measurement with vector �ωc =
�ex = [1, 0, 0]	 acting on �r con

ξ via Eq. (31) to deliver the
probabilities Pcon

± of Eq. (26). In addition, with the deriva-

tive ∂ξ �r con
ξ = [2

√
(1 − pc)pc∂ξ Qξ (α), 0, 0]

	
, Eq. (33) readily

provides the quantum Fisher information F con
q (ξ ) associated

with the control qubit. It can then be verified that this F con
q (ξ )

is maximized at pc = 1/2, which provides an additional moti-
vation to this favorable configuration for preparing the control
qubit. Then at pc = 1/2, one has �r con

ξ = [Qξ (α), 0, 0]	 and
∂ξ �r con

ξ = [∂ξ Qξ (α), 0, 0]	, and Eq. (33) gives for the control
qubit the quantum Fisher information

F con
q (ξ ) = [Qξ (α)∂ξ Qξ (α)]2

1 − Q2
ξ (α)

+ [∂ξ Qξ (α)]2 (39)

= [∂ξ Qξ (α)]2

1 − Q2
ξ (α)

, (40)

which coincides with the classical Fisher information F con
c (ξ )

of Eqs. (35)–(36). This indicates that the measurement pro-
tocol chosen for the control qubit, which achieves F con

c (ξ ) =
F con

q (ξ ), represents the most efficiency strategy for estimating
the phase ξ from the control qubit.

A typical evolution of the Fisher information F con
c (ξ ) =

F con
q (ξ ) from Eq. (36) is presented in Fig. 3, especially as

a function of the level of the depolarizing noise quantified
by the compression factor α. At maximum compression at
α = 0, the noise N (·) in Eq. (13) completely depolarizes the
probe qubit, the measurement probabilities Pcon

± in Eq. (26)
for the control qubit become independent of the phase ξ ,
and the Fisher information F con

c (ξ ) = F con
q (ξ ) in Eq. (36)

vanishes, indicating that at maximum noise the control qubit
can no longer serve to estimate ξ . But also, when there is
no noise, at α = 1, Eq. (26) shows that the measurement
probabilities Pcon

± no longer depend on the phase ξ , and this
entails a vanishing Fisher information F con

c (ξ ) = F con
q (ξ ) in

Eq. (36). This relates to the observation made at the end of
Sec. IV, that with no noise the control qubit does not get
coupled to the probe, remains independent of the phase ξ ,
and cannot serve to its estimation. In between, for interme-
diate levels of noise with α ∈ (0, 1), phase estimation from
the control qubit is possible, as indicated by a nonvanishing
Fisher information F con

c (ξ ) = F con
q (ξ ) in Eq. (36). In addition,

as illustrated in Fig. 3, there exists an optimal value of the
noise compression factor α, strictly between 0 and 1 (around
α ≈ 0.6 in Fig. 3), that maximizes the Fisher information
F con

c (ξ ) = F con
q (ξ ) of Eq. (36). This indicates that there is in

general an optimal nonzero amount of noise to maximize the
efficiency of estimating the phase ξ from the control qubit of
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FIG. 3. The unitary transformation Uξ of Eq. (9) is with axis �n = [1, 0, 1]	/
√

2 and phase angle ξ = π/2. As a function of the compression
factor α of the depolarizing noise of Eq. (13), the solid line is the Fisher information F con

c (ξ ) = F con
q (ξ ) from Eq. (36) upon measuring the

control qubit of the switched quantum channel. The dotted line is the classical Fisher information Fc(ξ ) of Eq. (42) upon measuring a probe
qubit after a one-stage standard cascade as in Fig. 2 with measurement Bloch vector �ω = �ex , which is upper-bounded by the quantum Fisher
information Fq(ξ ) of Eq. (43) represented by the dashed line. In (a) the input probe of Eq. (8) is in the pure state ρ with unit Bloch vector
�r = [1, 0, 0]	 = �ex; in (b), the input probe is in the mixed state ρ with �r = [0.5, 0, 0]	 = �ex/2.

the switched channel. This is reminiscent of the phenomenon
of stochastic resonance, which characterizes situations where
maximum efficiency for information processing is obtained at
a nonzero level of noise and which in the quantum context
assigns a beneficial role to decoherence [40–46] and relates at
a broader level to nontrivial interactions among information,
fluctuations, and noise [47,48].

B. Comparison with a standard probe qubit

A useful reference is the classical Fisher information for
estimating the phase ξ from the measurement of a probe
qubit that would interact with the noisy unitary channel in a
conventional one-stage cascade as in Fig. 2, with no quantum
switch of the channel. For the probe qubit prepared in the
state ρ of Eq. (8), one pass through this channel of Fig. 2 is
described by the quantum operation of Eq. (14), and it leaves
the qubit in a state characterized by the Bloch vector

�r1(ξ ) = αUξ �r . (41)

Moreover, for a qubit experiencing the quantum process of
Eqs. (14) and (41), Ref. [34] shows that the derivative ∂ξ �r1 =
�n × �r1. Therefore, with �r1(ξ ) ≡ �rξ placed in Eq. (32), one
obtains the Fisher information

Fc(ξ ) = [�ω(�n × �r1)]2

1 − (�ω�r1)2 = α2[�ω(�n × Uξ �r )]2

1 − α2(�ωUξ �r )2 , (42)

upon measuring the qubit spin observable �ω · �σ .
Equation (42) shows that the Fisher information Fc(ξ ),

and therefore the maximum performance in estimating ξ , is
strongly dependent on the situation in R3 of the input probe
�r and of the measurement vector �ω in relation to the rotation
axis �n. As analyzed, for instance, in Ref. [34], maximizing
the Fisher information Fc(ξ ) of Eq. (42) requires a pure input
probe with �r orthogonal to the rotation axis �n ; in addition, it
requires a measurement vector �ω orthogonal to both the axis �n

and the rotated Bloch vector �r1(ξ ). When these conditions are
satisfied, Eq. (42) reaches the overall maximum F max

c (ξ ) =
α2. This maximum can hardly be generally reached in practice
since in particular satisfying �ω ⊥ �r1(ξ ) would require us to
know the rotation angle ξ under estimation. By contrast, the
control qubit of the switched channel uniformly reaches the
performance F con

c (ξ ) of Eq. (36), for any input probe �r (pure
or mixed) and with a fixed measurement vector �ωc = �ex.

A typical evolution of the classical Fisher information
Fc(ξ ) of Eq. (42) is shown in Fig. 3, in a configuration where
�r and �ω are not optimized as orthogonal to �n (supposedly be-
cause �n is not precisely known), and for comparison with the
situation of the control qubit of Eq. (36), which is insensitive
to �n.

For a qubit experiencing the quantum process of Eq. (14),
as indicated above, one has ∂ξ �rξ = �n × �rξ so that �rξ ∂ξ �rξ = 0;
with �rξ ≡ �r1(ξ ) from Eq. (41), the quantum Fisher informa-
tion of Eq. (33) then reduces to

Fq(ξ ) = (∂ξ �rξ )2 = α2(�n × �r )2 . (43)

The overall maximum F max
q (ξ ) = α2 is achieved in Eq. (43)

with a unit-norm input Bloch vector �r orthogonal to the ro-
tation axis �n. A typical evolution of Fq(ξ ) of Eq. (43) is also
presented in Fig. 3.

When the Bloch vector �r of the input probe tends to align
with the rotation axis �n, Eq. (43) shows that the quantum
Fisher information Fq(ξ ) tends to vanish, and so does any clas-
sical Fisher information Fc(ξ ) attached to any measurement
protocol of the probe qubit (even generalized measurements).
In this circumstance, measurement of the probe qubit involved
in the conventional approach of Eqs. (14) and (41) becomes
inefficient to estimate the rotation angle ξ . By contrast, as with
the measurement probabilities Pcon

± of Eq. (26), the Fisher in-
formation F con

c (ξ ) = F con
q (ξ ) of Eq. (36) for the control qubit

of the switched channel is unaffected by the Bloch vector �r of
the input probe and the axis �n of the unitary Uξ . As a result,
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measurement of the control qubit of the switched channel
keeps the same estimation efficiency of Eq. (36) irrespective
of the situation of the input Bloch vector �r in relation to
the rotation axis �n. The rotation by ξ can even take place
on a probe vector �r parallel to the rotation axis �n, and with
�r//�n the control qubit keeps the same estimation efficiency of
Eq. (36), while the conventional approach of Eqs. (14) and
(41) becomes inoperative.

In a comparable way, when the input probe depolarizes as
‖�r ‖ → 0, the conventional approach of Eqs. (14) and (41)
gradually loses its efficiency for estimating the phase ξ , as
marked by Fq(ξ ) in Eq. (43), which vanishes as ‖�r ‖ → 0. By
contrast, the switched channel via its control qubit keeps the
same estimation efficiency as in Eq. (36), for any ‖�r ‖. Even at
‖�r ‖ = 0, when probing with a fully depolarized input probe
in the maximally mixed state ρ = I2/2 in Eq. (8), the control
qubit of the switched channel remains equally efficient for
estimation, while the conventional approach of Eqs. (14) and
(41) becomes inoperative.

Figure 3 illustrates in particular the impact of an input
probe �r not orthogonal to the rotation axis �n. At low noise,
when the compression factor α is close to 1 in Fig. 3, direct
estimation from the standard cascade is more efficient. Yet, as
the level of noise increases when α approaches 0, the perfor-
mance of the control qubit of the switched channel quantified
by F con

c (ξ ) = F con
q (ξ ) of Eq. (36) gradually outperforms both

Fc(ξ ) and then Fq(ξ ), characterizing the standard cascade of
Fig. 2 in conventional estimation. With decreasing ‖�r ‖, when
passing from a pure input probe in Fig. 3(a) to a mixed input
probe in Fig. 3(b), the performance of the control qubit is
unaffected, while the performance of the standard cascade is
reduced. This advantage of the control qubit would get more
pronounced and would occur earlier (for α closer to 1) as the
input probe �r approaches the axis �n or shrinks as ‖�r ‖ → 0,
as explained above. This illustrates the regime of interest for
qubit metrology, with an ill-configured input probe �r or for
blind estimation with an unknown axis �n, when the control
qubit of the switched channel maintains a uniform unaffected
efficiency, while conventional estimation in the standard cas-
cade becomes less efficient.

C. Comparison with a two-stage standard cascade

Although the control qubit never directly interacts with the
unitary Uξ under estimation, the switched channel involves
two passes of its probe qubit across the unitary Uξ , and it
may be compared with a two-stage cascade of a conventional
estimation. Equation (42) also gives access to the characteri-
zation of a two-stage cascading of the noisy unitary channel
involved in Eq. (41), in a standard way with definite causal or-
der. Instead of the one-stage cascade acting as �r 
→ αUξ �r via
Eq. (41), the two-stage cascade acts as �r 
→ α2U 2

ξ �r = α2U2ξ �r
and is therefore equivalent to a one-stage cascade with the ro-
tation angle 2ξ instead of ξ at a noise compression α2 instead
of α. Through these two changes, if the one-stage classical
Fisher information of Eq. (42) is denoted Fc(ξ, α), then the
two-stage cascade is characterized by the Fisher information
Fc(2ξ, α2). The one-stage cascade can provide an estimation
of the angle ξ with a minimal root-mean squared (rms) error
evolving as ∼1/

√
Fc(ξ, α); meanwhile, the two-stage cascade

can provide an estimation of the angle 2ξ with a minimal rms
error evolving as ∼1/

√
Fc(2ξ, α2), which provides an estima-

tion for ξ with the halved rms error ∼1/[2
√

Fc(2ξ, α2)]. For
an assessment of a conventional estimation of ξ , it is therefore
meaningful to confront Fc(ξ, α) and 4Fc(2ξ, α2): For a given
ξ and a given noise compression α, one measurement of the
probe qubit after the one-stage cascade delivers about ξ Fisher
information Fc(ξ, α), while one measurement of the probe
qubit after the two-stage cascade delivers about ξ Fisher in-
formation 4Fc(2ξ, α2). The two-stage cascade amplifies by 2
the parameter ξ to be estimated, entailing a reduced error, but
is also more exposed to the noise than the one-stage cascade.
As a result, typically, it can be observed that 4Fc(2ξ, α2)
is superior to Fc(ξ, α) at small compression with α close
to 1, indicating that the two-stage cascade is more efficient
for estimating ξ at low noise level; meanwhile, Fc(ξ, α) is
superior to 4Fc(2ξ, α2) at large compression with α close to
0, indicating that the one-stage cascade is more efficient for
estimating ξ at high noise level. A similar picture is con-
veyed by the quantum Fisher information Fq(ξ ) of Eq. (43),
with Fq(ξ, α) = α2(�n × �r )2 for the one-stage cascade, to
be confronted with 4Fq(2ξ, α2) = 4α4(�n × �r )2 for the two-
stage cascade, with the first superior at high noise level
(small α) and used for comparison with the switched channel
in Figs. 6 and 7.

D. Phase-averaged performance

The classical Fisher information, Fc(ξ ), for a standard
probe qubit in Eq. (42), or F con

c (ξ ) for the control qubit of the
switched quantum channel in Eq. (36), is dependent on the
phase angle ξ . This is a common property, often observed for
quantum phase estimation in the presence of noise, implying
a performance varying according to the range of the phase
ξ to be estimated. A measurement result depending on ξ is
necessary to enable estimation of ξ by such measurement.
Commonly, this entails also a measurement performance de-
pending on ξ and related here to the geometric configuration
of the rotated Bloch vector Uξ �r in R3. For assessing the
performance, it can be meaningful to consider the aver-
aged Fisher information F c = ∫ 2π

0 Fc(ξ )dξ/(2π ), reflecting
the average performance for values of ξ uniformly covering
the interval [0, 2π ). In particular, for the Fisher information
F con

c (ξ ) in Eq. (36) of the control qubit of the switched chan-
nel, the integral over ξ can be worked out explicitly to give

F
con
c = 1 −

√
3

8
(1 − α)

√
(1 − α)(3 + 5α)

− 1

8

√
(5 + 6α − 3α2)(5 − 2α + 5α2) . (44)

The average Fisher information in Eq. (44) especially satisfies
F

con
c (α = 0) = F

con
c (α = 1) = 0 as expected. It is repre-

sented and compared in Fig. 4 in conditions where the control
qubit of the switched channel offers useful specific capabili-
ties for estimation, with an input probe �r tending to align with
the axis �n or with a mixed input probe of ‖�r ‖ < 1.

The average Fisher information F
con
c , in the conditions of

Fig. 4, illustrates that on average over the whole range [0, 2π )
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FIG. 4. The unitary transformation Uξ of Eq. (9) is with axis
�n = [0.8, 0, 0.2]	/

√
0.68. As a function of the compression factor

α of the depolarizing noise of Eq. (13), the solid line is the Fisher
information F

con
c of Eq. (44) after averaging over ξ of F con

c (ξ ) =
F con

q (ξ ) of Eq. (36) for the control qubit of the switched channel. The
dashed line is the quantum Fisher information Fq(ξ ) of Eq. (43) for a
one-stage standard cascade as in Fig. 2 and when the input probe in
Eq. (8) is in the pure state with unit Bloch vector �r = [1, 0, 0]	 = �ex;
the dotted line is Fq(ξ ) of Eq. (43) for the mixed input probe with
�r = [0.5, 0, 0]	 = �ex/2.

of the phase ξ , the control qubit of the switched channel
can offer, as the level of noise increases, higher efficiency
for estimation compared with the standard cascade of Fig. 2,
which has to operate with a nonoptimized input probe. This
advantage would get more pronounced as the input probe �r
continues to approach the axis �n or further depolarizes as
‖�r ‖ → 0.

E. Comparison with two qubits in conventional estimation

So far, in the switched channel, measurement of the con-
trol qubit, which never directly interacts with the unitary Uξ

under estimation, has been compared with measurement of
a qubit involved in a conventional estimation process, in a
one-stage or two-stage interaction with the unitary Uξ . This
amounts to comparing, for estimation, protocols performing
a single measurement on a single qubit, in the switched
channel or in a conventional setting. It can also be consid-
ered that the switched channel is a two-qubit process, with a
control qubit and a probe qubit, so that a comparison with
two qubits involved in conventional estimation could offer
another meaningful reference. We essentially show below that
when estimation has to cope with ill-configured input probes,
measurement of the control qubit of the switched channel still
displays its useful specificities compared with conventional
techniques involving two or more qubits.

If two independent qubits are measured when repeating
the conventional estimation of Sec. VI B, then the Fisher
information Fc(ξ ) and Fq(ξ ) is additive. In particular, from
Eq. (43), the quantum Fisher information while measuring
two such independent probe qubits is F (2)

q (ξ ) = 2α2(�n × �r )2.
As previously, F (2)

q (ξ ) = 2α2(�n × �r )2 is maximized when the
input probe qubits are prepared in a pure state with ‖�r ‖ = 1.

For an input probe with �r tending to align with the axis �n
of the unitary Uξ , the conventional estimation measuring two
qubits becomes inoperative with F (2)

q (ξ ) → 0, while a single
measurement of the control qubit of the switched channel
keeps the same efficiency as in Eq. (36) or (40), irrespective
of the orientation of the input probe. In a similar way, for
a depolarized input probe with ‖�r ‖ → 0, the conventional
estimation measuring two qubits becomes inoperative with
F (2)

q (ξ ) → 0, while a single measurement of the control qubit
keeps the same efficiency as in Eq. (36) or (40), unaffected by
the depolarization of the probe.

More generally, a two-qubit conventional estimation can
use a two-qubit probe prepared in an entangled state ρ, and
operate according to the various schemes inventoried for in-
stance in [49]. For such two-qubit schemes, the quantum
Fisher information F (2)

q (ξ ), due to its general convexity prop-
erty [31,32], is again maximized by a pure input probe state
ρ = |ψ〉 〈ψ |. A direct interaction of two entangled probe
qubits in state ρ with the unitary Uξ under estimation would
involve the transformation ρ 
→ U(2)

ξ ρU(2)†
ξ , with the two-

qubit unitary U(2)
ξ = Uξ ⊗ Uξ for two active qubits in the

probe, or U(2)
ξ = Uξ ⊗ I2 for one inactive ancilla qubit in

the probe. If the qubit unitary under estimation in Eq. (9) is
written Uξ = exp(−iξG), with the Hermitian generator G =
�n · �σ/2, then the resulting two-qubit unitary can be put under
the form U(2)

ξ = exp(−iξG2), with the Hermitian generator
G2 = G ⊗ I2 + I2 ⊗ G for two active probe qubits, or G2 =
G ⊗ I2 for one inactive ancilla qubit in the probe. In the noise-
free case, with a pure two-qubit input probe ρ = |ψ〉 〈ψ |, the
quantum Fisher information can be expressed [21,50] as

F (2)
q (ξ ) = 4(〈ψ |G2

2|ψ〉 − 〈ψ |G2|ψ〉2) = 4 〈ψ |�G2
2|ψ〉 ,

(45)
with the Hermitian variation operator �G2 = G2 −
〈ψ |G2|ψ〉 I2 ⊗ I2. In the presence of the noise N (·) affecting
the unitary Uξ as in Fig. 2, the quantum Fisher information
is upper bounded [21,50] as F (2)

q (ξ ) � 4 〈ψ |�G2
2|ψ〉. As a

result, when the state |ψ〉 ∈ H2 ⊗ H2 of the two-qubit input
probe approaches one of the eigenstates of the Hermitian
generator G2 (which are the same as the eigenstates of
the two-qubit unitary U(2)

ξ ), the Fisher information F (2)
q (ξ )

tends to vanish, as its upper limit 4 〈ψ |�G2
2|ψ〉 does. This

condition encompasses entangled states |ψ〉 of the two-qubit
input probe. The Hermitian generator G = �n · �σ/2 has the
two eigenvalues ±1/2 associated with the two eigenstates
|u±〉 determined by �n. It results that Uξ = exp(−iξG) has the
two eigenvalues exp(±iξ/2) associated with the same two
eigenstates |u±〉. As a consequence, U⊗2

ξ has the four eigen-

states {|u+〉 ⊗ |u+〉 , |u−〉 ⊗ |u−〉 , |u+〉 ⊗ |u−〉 , |u−〉 ⊗ |u+〉}
associated respectively with the four eigenvalues
{eiξ , e−iξ ,+1,+1}. Because of the degeneracy of the
eigenvalue +1, the two states |w±〉 = (|u+〉 ⊗ |u−〉 ± |u−〉 ⊗
|u+〉)/

√
2 are two eigenstates of U⊗2

ξ with eigenvalue +1
and are two entangled states of the two qubits. Any linear
combination of |w+〉 and |w−〉 will also in general represent
an entangled eigenstate of U⊗2

ξ with the eigenvalue +1. This

represents a two-dimensional subspace of H⊗2
2 . When such

two-qubit entangled states are used to probe the unitary Uξ (or
when the two-qubit state tends to align with such subspace),
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they also become inoperative for conventional estimation.
These configurations stand as the two-qubit analog of the
one-qubit probe, tending to align with the axis �n of the unitary
Uξ . With such two-qubit input probes tending to align with
Uξ in this sense, the conventional estimation measuring two
qubits becomes inoperative with F (2)

q (ξ ) → 0, while again
a single measurement of the control qubit of the switched
channel keeps the same efficiency as in Eqs. (36) or (40),
irrespective of the configuration of the input probe.

In addition, a fully depolarized two-qubit input probe
ρ = I2 ⊗ I2/4 gives the interaction U(2)

ξ ρU(2)†
ξ = I2 ⊗ I2/4,

leaving the probe invariant and insensitive to the phase ξ .
The corresponding Fisher information is F (2)

q (ξ ) = 0, and
the conventional estimation measuring two qubits becomes
inoperative with such a depolarized input probe, while again
a single measurement of the control qubit of the switched
channel keeps the same efficiency as in Eqs. (36) or (40),
unaffected by the depolarization of the probe.

Two-qubit conventional estimation can also be considered
with only one depolarized qubit in the two-qubit probe. The
switched channel uses a coherent control qubit that does not
directly interact with the unitary Uξ but gets entangled to
the probe qubit interacting with Uξ . In this respect, we can
consider conventional estimation with an input qubit pair of
an active qubit and an inactive qubit, prepared in an arbi-
trary entangled (possibly optimized in some way) state. Then,
before it can interact with the unitary Uξ to probe it, we
consider that the active qubit gets (or tends to be) completely
depolarized, by some noise affecting the preparation, and so
as to place it in the situation of the completely depolarized
probe qubit of the switched channel; meanwhile, the entangled
inactive qubit remains untouched and unaffected by the depo-
larization. Then, in this condition also, the two-qubit probe
becomes completely inoperative for conventional estimation.
This follows directly from the action of Uξ on a fully de-
polarized qubit, leaving its state invariant and insensitive to
the phase ξ ; or also by explicit evaluation of the quantum
Fisher information obtained for instance from Ref. [32] for
this two-qubit estimation scheme. Meanwhile, as indicated,
a single measurement of the control qubit of the switched
channel remains operative for estimation when probing with a
fully depolarized probe qubit.

The above features related to conventional estimation carry
over with additional ξ -independent unitaries intervening in
the processing of the two qubits, and also with conventional
techniques employing and measuring more than two qubits,
active or inactive, for multiple probing of the unitary Uξ . With
a multiple-qubit input probe tending to align with the unitary
or approaching a fully depolarized preparation, measurement
of the multiple qubits becomes inoperative in conventional es-
timation of ξ , while a single measurement of the control qubit
of the switched channel keeps the same estimation efficiency
as in Eqs. (36) or (40).

Of course, this does not alter the fact that conventional es-
timation, especially with multiple qubits, remains useful in its
own right, especially in controlled conditions where it can be
optimized. This, in particular, usually requires the knowledge
of the axis �n of the unitary Uξ under estimation, with well-
controlled probing inputs, and conditions exist, especially in
the presence of noise, where the optimal configurations are

also dependent on the unknown phase itself and therefore
inaccessible in practice [20,34]. As a complement, in other
distinct yet meaningful conditions that we report here, the
switched channel can bring additional capabilities for esti-
mation, via the approach of switched indefinite causal order
shown here to be applicable for qubit phase estimation.

F. For the probe qubit of the switched channel

In the switched quantum channel, after measurement of the
control qubit, the probe qubit gets placed in the conditional
state ρ

post
± of Eqs. (28) and (29), which in general also depends

on the phase ξ . Measuring ρ
post
± can therefore provide useful

additional information to estimate ξ . For an assessment, it
is possible to evaluate the Fisher information, classical or
quantum, in the state ρ

post
± about ξ . For a viewpoint not at-

tached to a specific measurement protocol of ρ
post
± , one can

turn to the quantum Fisher information of Eq. (33) applied
to the Bloch vector �r post

± (ξ ) ≡ �rξ from Eq. (29). For this
purpose, �r post

± (ξ ) in Eq. (29) especially involves a quadratic
function of the matrix Uξ , and from Eq. (29) it is feasible to
analytically compute the derivative ∂ξ �r post

± (ξ ), noting that for
two ξ -dependent matrices Aξ and Bξ one has the derivative
∂ξ (Aξ Bξ ) = (∂ξ Aξ )Bξ + Aξ (∂ξ Bξ ). It is in this way feasible to
obtain an analytical expression for the quantum Fisher infor-
mation F swi

q (ξ ) for the probe qubit of the switched channel,

from Eq. (33), when �rξ ≡ �r post
± (ξ ) from Eq. (29); but this

expression is rather bulky and we will not write it here.
It is observed with the switched channel that in general the

Fisher information F swi
q (ξ ) of the probe states ρ

post
+ and ρ

post
−

does depend on both ξ and �n, and also on the input probe
�r. As the input probe depolarizes, with ‖�r ‖ → 0, Eq. (29)
shows that �r post

± (ξ ) both vanish and so does the correspond-
ing Fisher information F swi

q (ξ ). Therefore, in contrast to the
control qubit, the probe qubit of the switched channel be-
comes inoperative for estimation with a fully depolarized
input probe. However, like the control qubit, the estimation
efficiency of the probe qubit assessed by F swi

q (ξ ) does not
uniformly vanish for an input probe �r parallel to the rotation
axis �n. This is a specific property of the switched channel for
estimation, accessible both by measuring either the control
qubit or the probe qubit, enabling us to perform estimation
of the phase angle ξ even with an input probe �r parallel to
the axis �n of the unitary Uξ . This property is not present in
conventional estimation, as addressed in Secs. VI B and VI C,
even when repeated on multiple qubits, as in Sec. VI E. This
specific property of the probe qubit of the switched channel
is illustrated in Fig. 5, showing a nonzero Fisher information
F swi

q (ξ ) with an input probe �r parallel to the axis �n of the
unitary Uξ , while in such condition the Fisher information of
conventional estimation is expected to be zero, as addressed
in Secs. VI B, VI C, and VI E.

Figure 5 illustrates specific conditions, when �r//�n, where
the probe qubit of the switched channel can offer an advantage
over conventional estimation. Beyond that, the performance
of both approaches to estimation will vary much with the
conditions, the configuration of the input probe �r, pure or
mixed, in relation to the axis �n, the range of the parameter ξ ,
the level of noise, and the number of passes or repetitions for
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FIG. 5. The unitary transformation Uξ of Eq. (9) is with axis �n = [1, 0, 0]	 = �ex , the input probe in Eq. (8) is in the pure state with unit
Bloch vector �r = �n, and in abscissa is the compression factor α of the depolarizing noise of Eq. (13). For the probe qubit of the switched
channel, the quantum Fisher information F swi

q (ξ ) from Eq. (33) associated with the state ρ
post
+ (solid line) and ρ

post
− (dotted line). The phase

angle is ξ = π/2 in panel (a) and ξ = π/4 in panel (b).

conventional techniques. For further quantitative illustration,
the performance for estimation upon measuring the probe
qubit of the switched channel is compared below with con-
ventional estimation upon measuring also a single qubit, as
in Secs. VI B and VI C, especially to show other conditions
where the switched channel can bring a useful contribution.

For a unit input probe �r nonparallel and nonorthogonal to
the rotation axis �n, Fig. 6(a) shows that the quantum Fisher
information F swi

q (ξ ) associated with the probe state ρ
post
+ can

surpass the quantum Fisher information Fq(ξ ) associated with
one- and a two-stage standard cascades from Fig. 2. This
occurs for some range of the phase ξ around π/2 in Fig. 6(a),
while in the range of ξ around π/4 Fig. 6(b) shows that it is
F swi

q (ξ ) of ρ
post
− that can dominate. The efficiency quantified

by the Fisher information F swi
q (ξ ) in Fig. 6, of measuring for

estimation of the state ρ
post
+ or the state ρ

post
− , is determined by

the geometric configuration of their respective Bloch vector
�r post
+ or �r post

− in R3, as it results from Eq. (29) to act in Eq. (33).
As observed in Fig. 6, depending on the conditions, �r post

+ and

�r post
− change according to Eq. (29), and consequently ρ

post
+

or ρ
post
− present more efficient configurations for estimation.

Also, the advantage of the switched channel observed in Fig. 6
would get more pronounced as the input probe �r tends to align
with the axis �n.

A comparable picture is obtained when the quantum Fisher
information F swi

q (ξ ) from the probe state ρ
post
± is averaged as

F q
swi over the phase ξ uniform in [0, 2π ), as illustrated in

Fig. 7.
In Fig. 7, it can be observed that the phase-averaged quan-

tum Fisher information F q
swi of the probe qubit from the

switched channel can still surpass the Fisher information from
the standard cascade of Fig. 2, either one stage as Fq(ξ, α) =
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FIG. 6. As in Fig. 4, the unitary transformation Uξ of Eq. (9) is with axis �n = [0.8, 0, 0.2]	/
√

0.68, the input probe in Eq. (8) is in the
pure state with unit Bloch vector �r = [1, 0, 0]	 = �ex , and in abscissa is the compression factor α of the depolarizing noise of Eq. (13). For the
probe qubit of the switched channel, the quantum Fisher information F swi

q (ξ ) from Eq. (33) is associated with the states ρ
post
+ (solid line) and

ρ
post
− (dotted line). From Eq. (43), the dashed line is the quantum Fisher information Fq(ξ, α) = α2(�n × �r )2 for a one-stage standard cascade

as in Fig. 2, while the dash-dotted line is 4Fq(2ξ, α2) = 4α4(�n × �r )2 for a two-stage standard cascade. The phase angle is ξ = π/2 in panel
(a) and ξ = π/4 in panel (b).
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FIG. 7. The input probe in Eq. (8) is in the pure state with unit Bloch vector �r = [1, 0, 0]	 = �ex , and in abscissa is the compression factor
α of the depolarizing noise of Eq. (13). For the probe qubit of the switched channel, the quantum Fisher information F swi

q (ξ ) from Eq. (33) is

associated with the state ρ
post
+ (solid line) and ρ

post
− (dotted line), after it has been averaged over the phase ξ uniform in [0, 2π ). From Eq. (43),

the dashed line is the quantum Fisher information Fq(ξ, α) = α2(�n × �r )2 for a one-stage standard cascade as in Fig. 2, while the dash-dotted
line is 4Fq(2ξ, α2) = 4α4(�n × �r )2 for a two-stage standard cascade. The unitary transformation Uξ of Eq. (9) is with axis �n = [0, 0, 1]	 = �ez

in panel (a) and �n = [0.8, 0, 0.2]	/
√

0.68 in panel (b).

α2(�n × �r )2 or two stage as 4Fq(2ξ, α2) = 4α4(�n × �r )2. This
advantage is even observed with an optimal unit input probe
�r orthogonal to the axis �n as shown in Fig. 7(a), and it gets in
some respect more pronounced as �r approaches �n as illustrated
in Fig. 7(b).

When characterizing the estimation performance in the
switched channel by means of the quantum Fisher information
F swi

q (ξ ) upon measuring the probe qubit state ρ
post
± as done in

Figs. 5–7, we have to keep in mind that ρ
post
± represent two

conditional states occurring according to the probabilities Pcon
±

of Eq. (26). So the corresponding performance assessed by
F swi

q (ξ ) attached to ρ
post
+ or ρ

post
− applies also conditionally,

with the probabilistic weights Pcon
± . At the favorable setting

pc = 1/2, where we are, it follows from Eq. (26) that Pcon
+

always stays above Pcon
− for any α ∈ [0, 1], and Pcon

+ goes
to 1 at low noise when α → 1 while Pcon

+ approaches Pcon
−

but stays above it at large noise when α → 0. So the post-
measurement state ρ

post
+ for the probe qubit is always more

probable, and almost certain at low noise when α → 1. The
evolutions of F swi

q (ξ ) for ρ
post
± , as exemplified in Figs. 5–7,

although they have to be probabilistically weighted for their
interpretation, nevertheless reveal useful capabilities accessi-
ble by measuring the probe qubit of the switched channel for
phase estimation.

For estimating the phase ξ with the switched quantum
channel, if one resorts to measuring the probe qubit as well
as the control qubit, then an a priori more efficient approach
would be to envisage a joint measurement of the qubit pair
in the entangled state S (ρ ⊗ ρc) of Eq. (15). The measure-
ment results will generally be governed by a ξ -dependent
probability distribution. From there, an estimator, such as
the maximum likelihood estimator, could be conceived for
ξ , along with the associated Fisher information for an as-
sessment of the performance. This approach is made possible
based on the complete characterization of the joint state
S (ρ ⊗ ρc) worked out in Sec. IV. A joint measurement of the
two qubits, control and probe, of the switched channel could

naturally be compared with conventional estimation schemes
measuring two qubits, active or ancilla, as in Ref. [49] and
in Sec. VI E here. Such joint estimation involving the two
qubits of the switched channel, however, is more complicated
to characterize analytically and depends on the choice of the
joint measurement involved. We leave it as an open perspec-
tive to come after the present work that has demonstrated
potentialities of the switched quantum channel with indefi-
nite causal order for contributing to parameter estimation and
metrology.

VII. DISCUSSION AND CONCLUSION

In the present work, we have considered a noisy unitary
channel according to Fig. 2, when two copies of this channel
are interconnected in indefinite causal order by a quantum
switch process as in Fig. 1. An original contribution of the
present work is, for a generic qubit unitary operator Uξ af-
fected by a depolarizing noise, the characterization of the
transformation realized by the switched quantum channel of
Fig. 1 and worked out in Sec. IV. This characterization lies
essentially in the quantum operation S (ρ ⊗ ρc) of Eq. (15)
acting on the joint state of the probe-control qubit pair. We
have fully characterized this action in Bloch representation
via the superoperator S00(ρ) of Eq. (16), and—for the most
substantial part—the superoperator S01(ρ) of Eq. (17) de-
termined by S01(I2) in Eq. (21) and S01(�r · �σ ) in Eq. (22).
This theoretical characterization of Sec. IV then enabled us in
Secs. V and VI to realize an analysis of the switched channel
and its performance for a task of phase estimation on the
unitary operator Uξ with depolarizing noise. A comparison
has also been made with conventional techniques of estima-
tion where the noisy unitary is directly probed in a one-stage
or two-stage cascade with definite order, or several uses of
them with two or more qubits. In particular, the analysis
has demonstrated three specific properties of the switched
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channel, meaningful for estimation and not present with con-
ventional techniques.

The first significant property is that the control qubit of
the switched channel, although it never directly interacts with
the unitary Uξ , can nevertheless be measured for the phase
estimation on Uξ , and it can be measured alone, while dis-
carding the probe qubit that interacts with the unitary Uξ

under estimation. This possibility results from the specific
entanglement realized between the control and probe qubits
by the interaction of the quantum switch process character-
ized in Sec. IV. This control-probe entangled qubit pair in
the switched channel presents some similarity with conven-
tional strategies as, for instance, analyzed in Ref. [49], where
active probing qubits can receive assistance for estimation
from passive ancilla qubits not directly interacting with the
process under estimation. However, there exists an essential
difference in that in such conventional estimation strategies,
the inactive ancilla qubits must be jointly measured with the
active probing qubits to be of some use, and the ancilla qubits
measured alone are inoperative for estimation. By contrast,
in the switched channel here, the control qubit alone can be
measured for estimation.

The second significant property is that the control qubit of
the switched channel maintains a uniform efficiency for esti-
mation, even when the input probe qubit of switched channel
tends to align and becomes parallel with the axis �n of the uni-
tary Uξ . In a standard interaction with the qubit unitary Uξ , as
in Eq. (41), rotation of a probe qubit �r parallel to the rotation
axis �n issues no physical effect or information enabling any
access to the rotation angle ξ . This mechanism of rotating
an isolated qubit does not hold with the switched quantum
channel, which rather acts on a probe-control entangled qubit
pair in the specific way characterized in Sec. IV, enabling
estimation even with an input probe with �r//�n.

The third significant property is that the control qubit of the
switched channel also maintains a uniform efficiency for esti-
mation, even when the input probe qubit of switched channel
tends to depolarize or even becomes completely depolarized
when ‖�r ‖ = 0. Conventional techniques based on the qubit
interaction ρ 
→ Uξ ρU†

ξ have no effect on the completely de-
polarized input probe ρ = I2/2, which remains invariant and
insensitive to the phase ξ and thus inoperative for estimating
ξ . By contrast, the specific interaction in the switched channel
with indefinite order we characterized in Sec. IV makes it
possible to use a fully depolarized input probe for estimation.

Conventional estimation techniques, as addressed in
Secs. VI B, VI C, and VI E, although useful in their own
right, do not share these properties of the switched chan-
nel, and they become gradually inoperative when the input
probe tends to align with the unitary Uξ under estimation or
progressively depolarizes. These three properties relevant to
estimation are essentially contributed by the control qubit of
the switched channel, and they manifest specific and unusual
capabilities for quantum information processing observable
in channels with coherent control of indefinite causal order,
as also observed, for instance, in Ref. [8]. We have also
analyzed in Sec. VI F the measurement of the probe qubit
of the switched channel and showed it can add useful ca-
pabilities for phase estimation. These specific and unusual

properties of the switched channel for estimation, and es-
pecially the capabilities of its control qubit, stem from the
specific interaction entangling the two qubits in the joint state
S (ρ ⊗ ρc) of Eq. (15) characterized in Sec. IV. An essential
ingredient is the qubit superoperator S01(·) of Eqs. (5) and
(17), which is a specific interaction term following from the
coherent superposition of causal orders implemented by the
switch process according to Eqs. (1) and (2). This interaction
term S01(·) acts in the joint state S (ρ ⊗ ρc) of Eq. (15) only
when there exists an effective coherent superposition of or-
ders, at pc 
= 0, 1 for the control qubit. The switch process of
Eqs. (1) and (2) then mixes two elementary channels having
Kraus operators that do not commute, as explained at the
end of Sec. IV. Their combinations in S01(·) of Eqs. (5) and
(17) superpose various paths across the operators determin-
ing the transmission by the composite switched channel. In
particular, these combinations of paths in Eqs. (5) and (17)
lead for the interaction term to S01(I2) 
= I2, as expressed by
Eq. (21), which has a direct impact for the transmission of
the fully depolarized input probe ρ = I2/2, and also more
generally of the generic input probe ρ of Eq. (8). With the
generic input probe of Eq. (8), this specific interaction in the
switched channel via the superoperator S01(ρ) of Eq. (17)
leads to a control qubit in the state ρcon

ξ of Eqs. (37) and
(38), which is unaffected by �r but sensitive to ξ , essentially
by way of tr[S01(ρ)] = tr[S01(I2)/2] = Qξ (α) 
= 1, for any
�r. As a result, measurement of the control qubit in the state
ρcon

ξ , as governed by the probabilities Pcon
± of Eqs. (25) and

(26), is unaffected by �r but remains sensitive to ξ , even when
�r//�n and ‖�r ‖ = 0, affording estimation capabilities in these
conditions.

The characterization of S (ρ ⊗ ρc) carried out in Sec. IV,
with the important reference formed by the depolarizing noise,
could be extended to other qubit noise models. Arbitrary
Pauli noises could be incorporated with three distinct prob-
abilities px, py, pz for the three Pauli operators in Eq. (12)
instead of the common probability p/3. Then the derivation
of Sec. IV could proceed in a similar way, except at the stage
where relations like Eqs. (A4) and (A9) would have to be
incorporated into Eq. (17) in accordance with the specific
probabilistic weights px, py, or pz and similarly for Eq. (A19)
and Eqs. (A28)–(A30). This would lead to more bulky expres-
sions, but useful capabilities of the switched channel can be
expected to be preserved. We have explicitly tested a bit-flip
noise and a phase-flip noise and verified that both preserve the
essential capabilities of the switched channel with indefinite
causal order useful to estimation yet with added variability in
the detailed performance especially depending on the angle
between the privileged axis of the noise and the orientation �n
of the unitary Uξ .

This robustness with various noise models is also an
interesting feature to robustly preserve the capabilities for
estimation from the switched channel in concrete physical
implementations. Also, as observed in Sec. VI, a defective
preparation (pure or mixed) of the input probe qubit will have
no effect on the efficiency for estimation from the control
qubit. In addition, as observed in Sec. V, an indefinite su-
perposition of causal orders robustly takes place for any pc ∈
(0, 1) in the preparation of the control qubit |ψc〉 = √

pc |0〉 +
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√
1 − pc |1〉. From these properties, it can be expected that

the capabilities useful to estimation of the switched channel
will be robustly preserved in physical implementations with
experimental imperfections.

Previous works on quantum switched channels with indefi-
nite order concentrated first on communication of information
[8–11] and more recently on parameter estimation yet in
significantly distinct processes and conditions [14–16]. By
comparison, specificities of our study are that it considers a
qubit system experiencing a generic qubit unitary operator Uξ

characterized by an unknown parameter ξ to be estimated.
Parameter estimation on a qubit unitary process represents an
important reference task for quantum metrology, which is in-
vestigated here in quantum switched channels with indefinite
order. In addition, in the estimation task, the realistic condition
where noise is present is taken into account as a significant
specificity.

The capability of the switched channel for estimation with
a fully depolarized input probe is reminiscent of the situ-
ation of the quantum communication channel analyzed, for
instance, in Ref. [8] as evoked in the introduction. In Ref. [8],
an isolated communication channel is by itself fully depolariz-
ing and unable to transmit any useful information, with a zero
Holevo information or information capacity. When duplicated
and inserted in a quantum switch process as in Fig. 1 with
indefinite causal order, it gives rise to a quantum channel with
nonzero information capacity, enabling effective transmission
of information. We observe a comparable behavior here, for
an estimation task rather than a communication task, assessed
by the Fisher information instead of the information capacity.
The effect in Ref. [8] is observed with a coherent control
to superpose two depolarizing channels in indefinite causal
order. In a recent study [51] related to Ref. [8], a comparable
effect is observed with no indefinite causal order but instead
with a coherent control to determine which of the two depolar-
izing channels is traversed. These are two distinct phenomena,
which can be observed separately as in Refs. [8,51] and which
are further discussed in Ref. [52]. The effects for estimation
in our study occur in the presence of coherent control of
indefinite causal order, as in Ref. [8]. Examining if the effects

we observe would occur or not in the setting of Ref. [51],
having coherent control but no indefinite causal order, could
possibly help to disentangle the respective roles of coherent
control and indefinite order. Such an extension would con-
tribute to the exploration of the properties and capabilities of
coherent quantum superposition of processing channels, with
the structure of either Ref. [8] or Ref. [51].

The specific capabilities uncovered here for estimation
will be practically accessible at the cost of physically im-
plementing the quantum switch process. In this respect,
techniques have been proposed that are particularly appealing
for photonic implementations, as in Ref. [3], for instance,
with an interferometric setup, by combining a spatial mode
of a photon for the control with its polarization for the
probe. Employing such setups for estimation could render
practically accessible the useful properties of the switched
process in photon metrology and interferometry, where qubit
phase estimation is an essential operation, at the root of
many applications such as high-sensitivity and high-precision
measurements, atomic clocks, and frequency standards
[17,19,23–26].

In this way, the present study contributes to the identifica-
tion and analysis of the properties and capabilities of switched
quantum channels with indefinite causal order for quantum
signal and information processing, along with new possibili-
ties useful to quantum estimation and qubit metrology.

APPENDIX A

In this Appendix, we work out the Bloch representation for
S01(I2) and S01(�r · �σ ) characterizing the superoperator S01(ρ)
of Eq. (17).

1. For S01(I2)

By unitarity of Uξ , in Eq. (18) one has W0(I2) = I2. In
Eq. (19), one has W�(I2) = σ�Uξ σ�U

†
ξ . Terms comparable to

σ�Uξ can be evaluated via Eq. (9) and the standard behavior
of products of Pauli operators. One obtains, for Wx(I2) for
instance,

σxUξ = cos(ξ/2)σx + sin(ξ/2)(−nzσy + nyσz − inxI2) (A1)

and

σxU
†
ξ = cos(ξ/2)σx + sin(ξ/2)(nzσy − nyσz + inxI2) , (A2)

which gives

σxUξ σxU
†
ξ =

(
1 − 2 sin2

(ξ

2

)(
1 − n2

x

))
I2 + i2 sin

(ξ

2

)⎛
⎝cos

(ξ

2

)⎡
⎣ 0

ny

nz

⎤
⎦ + sin

(ξ

2

)
nx

⎡
⎣ 0

−nz

ny

⎤
⎦

⎞
⎠ · �σ , (A3)

resulting in

(Wx + W†
x )(I2) = 2

[
1 − 2 sin2(ξ/2)

(
1 − n2

x

)]
I2 . (A4)

Similar relations can be obtained for Wy(I2) and Wz(I2) and their adjoints, and due to the isotropic action of the depolarizing
noise in R3, they add up uniformly in Eq. (17) so as to give∑

�=x,y,z

(W� + W†
� )(I2) = 2[3 − 4 sin2(ξ/2)]I2 . (A5)
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For W��′ (I2) in Eq. (20), one has, for instance, Wxy(I2) = σxUξ σyσxU
†
ξ σy = −iσxUξ σzU

†
ξ σy. Via the circular permutation

behavior among Pauli operators and their products, relations analogous to Eqs. (A1) and (A2) readily follow, for instance, as

σzU
†
ξ = cos(ξ/2)σz + sin(ξ/2)(nyσx − nxσy + inzI2) . (A6)

From Eqs. (A1) and (A6), one has

σxUξ σzU
†
ξ = −i cos2(ξ/2)σy + 2 cos(ξ/2) sin(ξ/2)(nyI2 − inxσz )

+ sin2(ξ/2)
[
2nxnzI2 + i

(
1 − 2n2

z

)
σy + i2nynzσz

]
, (A7)

and by right multiplying by −iσy one obtains

Wxy(I2) = [− cos2(ξ/2) + sin2(ξ/2)
(
1 − 2n2

z

)]
I2

+ i2[cos(ξ/2) sin(ξ/2)(nxσx − nyσy) − sin2(ξ/2)nz(nyσx + nxσy)] , (A8)

yielding

(Wxy + W†
xy)(I2) = 2

[−1 + 2 sin2(ξ/2)
(
1 − n2

z

)]
I2 . (A9)

Two other relations similar to Eq. (A9) can be obtained, which again, due to the isotropic action of the depolarizing noise in R3,
add up uniformly in Eq. (17) to provide

[(Wxy + W†
xy) + (Wyz + W†

yz ) + (Wzx + W†
zx )](I2) = 2[−3 + 4 sin2(ξ/2)]I2 . (A10)

Meanwhile, W��(I2) = I2 for each � = x, y, z. Finally, by gathering the pieces, in Eq. (17) one obtains

S01(I2) = (1 − p)2I2 + (1 − p)
p

3
2[3 − 4 sin2(ξ/2)]I2 +

( p

3

)2
[−3 + 8 sin2(ξ/2)]I2 (A11)

=
[

4

3
p

(
1 − 4

3
p

)
cos(ξ ) + 1 − 4

3
p
(

1 − p

3

)]
I2 , (A12)

with Eq. (A12), which is returned to the main text as Eq. (21).

2. For S01(�r ·�σ )

In Eq. (18), one has W0(�r · �σ ) = U 2
ξ �r · �σ . In Eq. (19), one

has W�(�r · �σ ) = σ�Uξ (Uξ �r · �σ )σ�U
†
ξ . To further handle such

an equation, it is useful to characterize, for a generic Bloch
vector �r ∈ R3, operators of the form σ�(�r · �σ ) or (�r · �σ )σ�. For
instance, one has

σx(�r · �σ ) = rxI2 + iryσz − irzσy . (A13)

Such relation can usefully be written in matrix notation as

σx(�r · �σ ) = [�r ]xI2 + iSx�r · �σ , (A14)

with the 3 × 3 real matrix Sx defined in Eq. (B1) of Appendix
B and [·]x, which represents the x component of a vector in
R3. The matrix notation makes transparent the way a relation
such as Eq. (A14) extends to σ�(�r · �σ ), or to (�r · �σ )σ� by
conjugate transposition, for � = x, y, z. In this way, one has
the chain transformations

W�(�r · �σ ) = σ�Uξ (Uξ �r · �σ )σ�U
†
ξ (A15)

= σ�Uξ

(
[Uξ �r ]�I2 − iS�Uξ �r · �σ

)
U†

ξ (A16)

= σ�

(
[Uξ �r ]�I2 − iUξ S�Uξ �r · �σ

)
(A17)

= [Uξ �r ]�σ� − i[Uξ S�Uξ �r ]�I2 + S�Uξ S�Uξ �r · �σ .

(A18)

For Eq. (17), one therefore obtains

(W� + W†
� )(�r · �σ ) = 2(M�Uξ + S�Uξ S�Uξ )�r · �σ , (A19)

with the three 3 × 3 projection matrices M� having as entries
0 everywhere except a single 1 at row � and column �, for
� = x, y, z. By the isotropy of the depolarizing noise in R3, the
terms similar to Eq. (A19), for � = x, y, z, add up uniformly in
Eq. (17). Since Mx + My + Mz = I3, the 3 × 3 identity matrix
on R3, this leads to∑

�=x,y,z

(W� + W†
� )(�r · �σ ) = 2

(
I3 +

∑
�=x,y,z

S�Uξ S�

)
Uξ �r · �σ .

(A20)
We now turn in Eq. (20) to W��′ (�r · �σ ) = σ�Uξ σ�′Uξ (�r ·

�σ )U†
ξ σ�U

†
ξ σ�′ . Here, it is useful to characterize, for a generic

Bloch vector �r ∈ R3, operators of the form σ�(�r · �σ )σ�′ for
� 
= �′. For instance, from Eq. (A14) one further obtains

σx(�r · �σ )σy = [�r ]xσy + i[Sx�r ]yI2 + SySx�r · �σ , (A21)

= (Myx + SySx )�r · �σ + i[Sx�r ]yI2 , (A22)

where we have defined [�r ]�σ�′ = M�′��r · �σ for a generic Bloch
vector �r ∈ R3, with the 3 × 3 real matrix M�′� having as
entries 0 everywhere except a single 1 at row �′ and column
� (and M�� is like M� above). The three matrices S� defined
by Eqs. (B1)–(B3) of Appendix B satisfy S�S�′ = M�′� for
any � 
= �′. We also define the 3 × 3 real symmetric matrix
T��′ = M��′ + M�′� for any �, �′ = x, y, z. As an extension to
Eq. (A22) follows for � 
= �′ the generic relation

σ�(�r · �σ )σ�′ = T��′ �r · �σ + i[S��r ]�′I2 . (A23)
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One now has the chain transformations

W��′ (�r · �σ ) = σ�Uξ σ�′ (Uξ �r · �σ )σ�U
†
ξ σ�′ (A24)

= σ�Uξ (T��′Uξ �r · �σ + i[S�′Uξ �r ]�I2)U†
ξ σ�′ (A25)

= σ�(Uξ T��′Uξ �r · �σ + i[S�′Uξ �r ]�I2)σ�′ (A26)

= T��′Uξ T��′Uξ �r · �σ + i[S�Uξ T��′Uξ �r ]�′I2 + i[S�′Uξ �r ]�σ�σ�′ . (A27)

The last term i[S�′Uξ �r ]�σ�σ�′ in Eq. (A27) evaluates as fol-
lows. When ��′ = xy, it is −[SyUξ �r ]xσz = −MzxSyUξ �r · �σ =
−MzUξ �r · �σ , in a similar way when ��′ = yz it is −MxUξ �r · �σ ,
and when ��′ = zx it is −MyUξ �r · �σ .

For Eq. (17), this leads to

(Wxy + W†
xy)(�r · �σ ) = 2(TxyUξ Txy − Mz )Uξ �r · �σ , (A28)

(Wyz + W†
yz )(�r · �σ ) = 2(TyzUξ Tyz − Mx )Uξ �r · �σ , (A29)

(Wzx + W†
zx )(�r · �σ ) = 2(TzxUξ Tzx − My)Uξ �r · �σ , (A30)

with these three terms summing uniformly by the isotropy of
the depolarizing noise, to give

2(TxyUξ Txy + TyzUξ Tyz + TzxUξ Tzx − I3)Uξ �r · �σ . (A31)

For Eq. (17), for the three terms W��(�r · �σ ) resulting
from Eq. (20), one has Wxx(�r · �σ ) = (XUξ )2�r · �σ , as well
as Wyy(�r · �σ ) = (YUξ )2�r · �σ and Wzz(�r · �σ ) = (ZUξ )2�r · �σ ,
with the three 3 × 3 real matrices X , Y , and Z defined by
Eqs. (B4)–(B6) of Appendix B.

By gathering the pieces, one obtains with Eq. (17),

S01(�r · �σ )

= (1 − p)2U 2
ξ �r · �σ + (1 − p)

p

3
2

(
I3 +

∑
�=x,y,z

S�Uξ S�

)

×Uξ �r · �σ +
( p

3

)2
[2(TxyUξ Txy + TyzUξ Tyz + TzxUξ Tzx

− I3)Uξ �r · �σ + (XUξ X + YUξY + ZUξ Z )Uξ �r · �σ ],

(A32)

which can also be written as

S01(�r · �σ ) =
[
(1 − p)2Uξ + (1 − p)

p

3
2[I3 + L1(Uξ )] +

( p

3

)2

× [2L2(Uξ ) − 2I3 + L3(Uξ )]
]
Uξ �r · �σ , (A33)

where we have defined the three fixed linear transformations
of the 3 × 3 matrix Uξ as

L1(Uξ ) = SxUξ Sx + SyUξ Sy + SzUξ Sz , (A34)

L2(Uξ ) = TxyUξ Txy + TyzUξ Tyz + TzxUξ Tzx , (A35)

L3(Uξ ) = XUξ X + YUξY + ZUξ Z . (A36)

The final characterization of Eq. (A33) is returned to the main
text as Eq. (22).

APPENDIX B

We define the 3 × 3 real matrices

Sx =
⎡
⎣0 0 0

0 0 −1
0 1 0

⎤
⎦ , (B1)

Sy =
⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦ , (B2)

Sz =
⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ , (B3)

and the three diagonal matrices

X =
⎡
⎣1 0 0

0 −1 0
0 0 −1

⎤
⎦ , (B4)

Y =
⎡
⎣−1 0 0

0 1 0
0 0 −1

⎤
⎦ , (B5)

Z =
⎡
⎣−1 0 0

0 −1 0
0 0 1

⎤
⎦ , (B6)

useful for the derivations of Sec. IV.
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