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This paper investigates stochastic resonance in parallel arrays of uncoupled saturating devices. The Fisher
information is used to demonstrate the possibility of noise improved parameter estimation for arbitrary para-
metric signals. Especially, it is shown that improvement by noise always occurs in these arrays, for any
configuration of the input signal, even in optimal configuration. The results contribute to establish stochastic
resonance in parallel uncoupled arrays as a general mechanism of enhancement by noise, which can occur in
wide classes of nonlinearities and for various information processing tasks. It can supplement other mecha-
nisms of stochastic resonance that take place in isolated nonlinearities but generally in restricted configurations
of the input signal.
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I. INTRODUCTION

An important index to assess the measurement of a signal
in noise is provided by the Fisher information �1�. This index
offers a quantification of the amount of information con-
tained in a noisy measurement about the value of a parameter
attached to a given signal. The Fisher information can be
related in various ways to the fundamental process of physi-
cal measurement �2�. In particular, the reciprocal Fisher in-
formation acts in a lower bound limiting the efficacy of any
conceivable estimator of the parameter from the measure-
ment. In general, the larger the Fisher information the more
accurately can the parameter be estimated. In the limit of a
large number of independent measurements, the reciprocal
Fisher information constitutes the mean squared estimation
error achieved by a very common and convenient estimator:
the maximum likelihood estimator. This relation to the maxi-
mum likelihood estimator provides a direct practical signifi-
cance to the Fisher information.

For these reasons, the Fisher information has been ex-
ploited as a fundamental measure suitable to investigate the
phenomenon of stochastic resonance �3–5�. Stochastic reso-
nance designates situations where a noise and a signal inter-
act with a system to produce a nonlinear effect of improve-
ment by noise measured by a some meaningful index of
performance �for instance see �6,7� for overviews and �8–10�
for very recent specific studies�. Many studies on stochastic
resonance relied on nonlinear systems with thresholds or po-
tential barriers, in which various forms of noise-improved
signal transmission were demonstrated. This was done for a
periodic signal assessed by a noise-enhanced signal-to-noise
ratio in the frequency domain, for aperiodic and for random
signals assessed by cross-correlation measures or Shannon
mutual information �6,7�. Noise-enhanced Fisher information
was also demonstrated for these nonlinear systems, with sig-
nificance for signal estimation �3–5�. In these forms of sto-
chastic resonance, the beneficial action of the noise essen-
tially is to assist a small input signal in overcoming a
threshold or potential barrier in the response, whence the
improved transmission. Less frequently, stochastic resonance
has been reported in threshold-free or barrier-free nonlineari-
ties �11–13�. Also, �14� for isolated saturating nonlinearities,

shows stochastic resonance with improvement by noise of a
signal-to-noise ratio, or a cross-correlation measure, or a
Shannon mutual information. More recently, �15� establishes
the possibility of a noise-enhanced Fisher information in soft
nonlinearities with saturations. In such systems, the mecha-
nism of improvement is that, in the presence of a nonopti-
mally positioned input �for instance an input evolving in the
saturation of a nonlinearity�, the noise has the ability to dis-
place the operating zone of the nonlinearity into a region
more favorable to the signal. Such studies are useful as they
extend the applicability of stochastic resonance to wider
classes of nonlinearities, not restricted to the threshold of
barrier nonlinearities.

Also recently, another distinct mechanism of stochastic
resonance has been shown possible when nonlinearities are
replicated into an uncoupled parallel array. This form of sto-
chastic resonance in arrays was introduced under the name of
suprathreshold stochastic resonance in �16,17� for two-state
threshold comparators. Improvement by noise was registered
in Refs. �16–19� for the transmission by threshold compara-
tors of a noise-free random input with arbitrary �not neces-
sarily subthreshold� amplitude. This form of stochastic reso-
nance was later applied to process a signal-noise mixture as
the input to the array of threshold comparators �20�. Gradu-
ally, it is becoming apparent that this form of “suprathresh-
old” stochastic resonance in arrays, is in fact not restricted to
the threshold nonlinearities. Enhancement by noise of the
transmission of a periodic signal assessed by a signal-to-
noise ratio, has been shown possible in arrays of soft
threshold-free power-law nonlinearities �21�, and also re-
cently in arrays of saturating sensors �22�. In the present
paper, we will consider the same type of arrays of saturating
sensors as in �22�. We will demonstrate that improvement by
noise of the Fisher information is possible in this type of
array. Also, we will show that the two mechanisms of im-
provement by noise evoked above can operate in conjunc-
tion, one in isolated nonlinearities but requiring ill-
positioned inputs, and one as a nonlinear-array effect taking
place for any inputs. The present study contributes to estab-
lish stochastic resonance in arrays as a general mechanism of
enhancement by noise, which can occur in wide classes of
�threshold-free� nonlinearities, and which can be assessed by
different measures of efficacy, with significance for various
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signal-processing tasks, for instance signal estimation as
considered here.

II. FISHER INFORMATION FOR NONLINEAR ARRAYS

A random signal x�t� is dependent upon an unknown pa-
rameter a, the value of which we seek to estimate. This input
signal x�t� is applied onto a parallel array of N identical
uncoupled sensors, conforming to the architecture also con-
sidered in �16,23,24�. Each sensor of the array is endowed
with the same input-output characteristic, modeled by the
static or memoryless function g�·�. A noise �i�t�, independent
of x�t�, can be added to x�t� at each sensor i, so as to produce
the output

yi�t� = g�x�t� + �i�t��, i = 1,2, . . . N . �1�

The N noises �i�t� are white, mutually independent, and
identically distributed �i.i.d.� with cumulative distribution
function F��u�, probability density f��u�=dF��u� /du, and
standard deviation ��. The response y�t� of the array is ob-
tained by averaging the outputs of all the sensors, as follows:

y�t� =
1

N
�
i=1

N

yi�t� . �2�

Observations are performed on the array output y�t� in
order to estimate the parameter a. The Fisher information Jy
contained in y�t� about a is expressible as follows �1�:

Jy = �
−�

+� 1

py�y�� �

�a
py�y��2

dy , �3�

where py�y� is the �a-dependent� probability density function
of y�t�.

For a fixed given value x of the input, the resulting prob-
ability density for each yi�t� in Eq. �1� is denoted pyi	x�y ,x�.
This density pyi	x�y ,x� is usually accessible, at fixed x, from
the density f��u� of the noise �i�t� as transformed by g�·�.
For instance, when the characteristic g�·� is invertible, one
obtains

pyi	x�y,x� =
f��g−1�y� − x�

g��g−1�y��
. �4�

When g�·� is noninvertible and maps continuous domains of
finite probabilities into discrete points, then in the density
pyi	x�y ,x� these probabilities will weight Dirac delta func-
tions located at these discrete points.

It is also possible to express separately various statistical
moments of the density pyi	x�y ,x�. From Eq. �1�, one for in-
stance has the expectations

E�yi�t�	x� = �
−�

+�

g�x + u�f��u�du , �5�

and

E�yi
2�t�	x� = �

−�

+�

g2�x + u�f��u�du . �6�

Next, we denote as py	x�y ,x� the probability density of
y�t� in Eq. �2� at fixed x. Since the noises �i�t� are i.i.d., so
are the outputs yi�t� from Eq. �1�, and py	x�y ,x� is therefore
obtainable through an N-fold convolution of pyi	x�y ,x�. The
density py	x�y ,x� is then averaged over the probability den-
sity fx�x� for x, so as to yield the unconditional density py�y�
needed in Eq. �3� to express Fisher information Jy.

For the sake of definiteness, concerning the parametric
dependence of x�t� on a, we shall consider in the sequel the
broad class of processes where x�t� is formed by the additive
mixture x�t�=��t�+sa�t�. The signal ��t� is a random noise,
white, independent of the �i’s and of a, with cumulative
distribution function F��u�, probability density f��u�
=dF��u� /du, and standard deviation ��. The signal sa�t� is
deterministic and contains the parameter a. For instance, a
can be the value of a constant sa�t�
a, or the amplitude or
frequency of a periodic sa�t�, or any other parameter entering
the specification of the deterministic sa�t�. We then have the
density fx�x�= f��x−sa�t��, and

py�y� = �
−�

+�

py	x�y,x�f��x − sa�t��dx , �7�

and for the derivative with respect to a,

�

�a
py�y� = −

�sa�t�
�a

�
−�

+�

py	x�y,x�f���x − sa�t��dx . �8�

The above equations expose the formal relation between the
unknown parameter a to be estimated and the Fisher infor-
mation Jy at the output of the array. This allows, in principle,
the study of the evolution of Jy �reflecting the estimation
efficacy� in various configurations of the array, for instance
concerning the choice for the sensor characteristic g�·� and
the impact of the added noises �i�t�. The study of �20� con-
siders the special case where the sensors are two-state thresh-
old comparators, and it shows possibilities of improving Jy
thanks to the action of the added array noises �i�t�. In the
present paper, instead of threshold comparators as in �20�, we
will consider a characteristic g�·� modeling sensors which are
linear for small inputs and saturate for large inputs. This is a
common behavior for sensors, and we will investigate here,
through the study of Jy, the impact of the added array noises
�i�t� on the estimation performance from these arrays.

III. FISHER INFORMATION FOR SATURATING ARRAYS

We now consider the characteristic g�·� with saturation,
under the form

g�u� = �− � for u � − � ,

u for − � � u � � ,

� for u 	 � .
� �9�

The simple form of g�·� in Eq. �9� in particular authorizes
the explicit evaluation of the integrals �5� and �6� as follows:
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E�yi�t�	x� = � + �− � − x�F��− � − x� − �� − x�F��� − x�

− G��− � − x� + G��� − x� , �10�

and

E�yi
2�t�	x� = �2 + ��2 − x2��F��− � − x� − F��� − x��

− 2x�G��− � − x� − G��� − x�� − H��− � − x�

+ H��� − x� , �11�

with the functions G��u�=−�
u vf��v�dv and H��u�

=−�
u v2f��v�dv.
Beyond the conditional moments E�yi�t� 	x� and

E�yi
2�t� 	x� of Eqs. �10� and �11�, it is the complete condi-

tional probability density pyi	x�y ,x� which is needed in the
first place, so as to deduce the density py	x�y ,x�, and then
through Eq. �7� the density py�y� giving way to Jy of Eq. �3�.
The whole process of calculating the density py�y� and then
Jy, can rarely be worked out completely analytically. A dif-
ficulty in the process lies in the completion of the N-fold
convolution of pyi	x�y ,x� to obtain py	x�y ,x�. In the sequel, we
will examine conditions that make this convolution tractable,
and that subsequently provide insight into the behavior of Jy.
Namely, we will consider the case N=1 where the need for
this convolution vanishes, the case N=2 where the convolu-
tion can be performed explicitly analytically, and the case of
large N where py	x�y ,x� is directly accessible through the
central limit theorem without the need to explicitly perform
the convolution.

A. Case N=1

In the simple case where N=1, the array degenerates into
a single isolated sensor, with output y�t�=y1�t�=g�sa�t�
+��t�+�1�t��. This case is much similar to the one treated in
�15�. We introduce p1�u� the probability density of ��t�
+�1�t�, which is the convolution p1�u�= f��u�� f��u�, associ-
ated to the cumulative distribution F1�u�=−�

u p1�v�dv. The
output density py�y� then follows:

py�y� = F1�− � − sa�t��
�y + �� + p̄1�y − sa�t��

+ �1 − F1�� − sa�t���
�y − �� , �12�

where p̄1�y−sa�t�� coincides with p1�y−sa�t�� for y
� �−� ,�� and is zero for y elsewhere. The resulting output
Fisher information Jy defined in Eq. �3�, and as also found in
�15�, is

Jy = � �sa�t�
�a

�2

� � p1
2�− � − sa�t��

F1�− � − sa�t��
+ �

−�

� p�1
2�y − sa�t��

p1�y − sa�t��
dy

+
p1

2�� − sa�t��
1 − F1�� − sa�t��� . �13�

For instance, in the important case where ��t� is zero-
mean Gaussian with variance ��

2, if �1�t� is also zero-mean
Gaussian with variance ��

2 , then the density p1�u� is zero-
mean Gaussian with variance ��

2+��
2; for arbitrary f��u�, if

�1�t� is uniform over �−b ,b�, then p1�u�= �F��u+b�−F��u
−b�� / �2b�.

B. Case N=2

For the array size N=2, at fixed x, one has y1�t�=g�x
+�1�t�� and y2�t�=g�x+�2�t�� which both distribute accord-
ing to the conditional density

pyi	x�y,x� = F��− � − x�
�y + �� + f̄��y − x�

+ �1 − F��� − x��
�y − �� , �14�

where f̄��y−x� coincides with f��y−x� for y� �−� ,�� and is
zero for y elsewhere. The conditional density py	x�y ,x� of the
output y�t�= �y1�t�+y2�t�� /2 will result through a y-wise con-
volution pyi	x�y ,x�� pyi	x�y ,x� of the density of Eq. �14� fol-
lowed by the rescaling corresponding to the factor 1 /N
=1/2. This density py	x�y ,x� will be zero for y outside
�−� ,��; it will have a probability mass with weight F�

2�−�
−x� at y=−�, a probability mass with weight 2F��−�−x��1
−F���−x�� at y=0, and a probability mass with weight �1
−F���−x��2 at y=�. In addition, for y� �−� ,0� one has

py	x�y,x� = 4F��− � − x�f��2y + � − x�

+ 2�
−�

�+2y

f��u − x�f��2y − u − x�du , �15�

and for y� �0,��,

py	x�y,x� = 4�1 − F��� − x��f��2y − � − x�

+ 2�
−�+2y

�

f��u − x�f��2y − u − x�du . �16�

The integrals in the right-hand side of Eqs. �15� and �16� are
computable analytically in standard cases where f��u� is
Gaussian, or uniform as we will consider later.

Once py	x�y ,x� is known, the integrals on x of Eqs. �7� and
�8� are perfomed �usually numerically�, and then the output
Fisher information Jy results from Eq. �3�.

C. Case of N large

When N is large, thanks to the central limit theorem, the
conditional density py	x�y ,x� can be approximated as follows.
At this place we will assume that the density f��u� is uniform
over �−b ,b�, with standard deviation ��=b /�3. This is a
convenient choice that simplifies the calculations; it also
bears on the status of the noises �i�t� which can be viewed as
noises “freely” chosen and added for the operation of the
array, meanwhile the input noise ��t� should rather be con-
sidered as imposed by the physical world.

At fixed x verifying x�−�−b, for any i one has x
+�i�t��−� since �i�t� fluctuates in �−b ,b�. In this case,
yi�t�=g�x+�i�t�� saturates at −�, for any i, and the average
of Eq. �2� yields y=−�. Especially, in such x one has
E�y 	x�=−� and var�y 	x�=0 since all the yi�t� stick at −�.

In a similar way, at fixed x verifying x	�+b, for any i
one has x+�i�t�	� since �i�t� fluctuates in �−b ,b�. In this
case, yi�t�=g�x+�i�t�� saturates at �, for any i, and the aver-
age of Eq. �2� yields y=�. Especially, in such x one has
E�y 	x�=� and var�y 	x�=0 since all the yi�t� stick at �.
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In between, when −�−b�x��+b, the yi’s distribute in
�−� ,�� with for each yi a nonzero probability of avoiding
both ±�. Therefore, their average y of Eq. �2�, thanks to the
central limit theorem, gets normally distributed with mean
E�y 	x�� �−� ,�� and variance var�y 	x��0, i.e., according to
the Gaussian

�y,x� =
1

�2� var�y	x�
exp�−

�y − E�y	x��2

2 var�y	x� � . �17�

From Eq. �2� one also has E�y 	x�=E�yi 	x�, and var�y 	x�
=var�yi 	x� /N with var�yi 	x�=E�yi

2 	x�−E2�yi 	x�, which are
both known through Eqs. �10� and �11�.

The conditional density py	x�y ,x� can therefore be ex-
pressed

py	x�y,x� = �
�y + �� for x � − � − b ,

�y,x� for − � − b � x � � + b ,


�y − �� for x 	 � + b .
� �18�

Performing on Eq. �18� the integration of Eq. �7� leads to

py�y� = F��− � − b − sa�t��
�y + �� + ��y� + �1 − F��� + b

− sa�t���
�y − �� , �19�

with the function ��y� defined

��y� = �
−�−b

�+b

�y,x�f��x − sa�t��dx . �20�

This function ��y� is nonzero essentially over a support lim-
ited to y� �−� ,��, and ��y� rapidly vanishes when y departs
outside �−� ,��. This is due to the Gaussian integrand �y ,x�
in Eq. �20�, which, for any x� �−�−b ,�+b�, concentrates
over a domain in y centered at E�y 	x�� �−� ,�� with an ex-
tension measured by var�y 	x� which is small at large N.

The Fisher information Jy defined in Eq. �3� then follows
as such:

Jy = � �sa�t�
�a

�2

� � f�
2�− � − b − sa�t��

F��− � − b − sa�t��
+ �

−�

� ����y�/�sa�2

��y�
dy

+
f�

2�� + b − sa�t��
1 − F��� + b − sa�t��� . �21�

Before explicitly studying the evolutions of the Fisher in-
formation Jy in various conditions of operation of the array, it
is interesting to visualize specific behaviors of Jy in some
special limit conditions.

D. Limit behaviors

At the limit where the array noises �i�t� vanish, then at
given x the dispersion var�y 	x� goes to zero and y tends to
exactly match E�y 	x� to give

y = E�y	x� = �− � for x � − � ,

x for − � � x � � ,

� for x 	 � ,
� �22�

and a conditional density py	x�y ,x�=
�y−E�y 	x��. The den-
sity py�y� resulting from Eq. �7� is then

py�y� = F��− � − sa�t��
�y + �� + f̄��y − sa�t�� + �1 − F���

− sa�t���
�y − �� , �23�

where f̄��y−sa�t�� coincides with f��y−sa�t�� for y� �−� ,��
and is zero for y elsewhere. The resulting output Fisher in-
formation Jy defined in Eq. �3� is

Jy = � �sa�t�
�a

�2

� � f�
2�− � − sa�t��

F��− � − sa�t��
+ �

−�

� f��
2�y − sa�t��

f��y − sa�t��
dy

+
f�

2�� − sa�t��
1 − F��� − sa�t��� . �24�

Equation �24� can be found both as the limit of Eq. �21�
when b→0 or as the limit of Eq. �13� as p1�u�→ f��u� when
��→0. Equation �24� is independent of the type of the array
noises �i�t� which vanish, and also independent of the size N
of the array, since with no array noises �i�t� all the sensors in
the array respond in unison as a single one. The limit of the
array behavior expressed by Eq. �24� in fact recaps the Fisher
information at the output of a single sensor when input with
sa�t�+��t� and no added noise.

Another interesting limit is at nonzero �� when N→�. In
this condition, the width var�y 	x�=var�yi 	x� /N goes to zero
and �y ,x� of Eq. �17� tends to the Dirac delta 
�y
−E�y 	x��. The resulting change in ��y� of Eq. �20� then
impacts Fisher information Jy of Eq. �21� in which the cen-
tral integral in the right-hand side becomes

�
−�

� ����y�/�sa�2

��y�
dy = �

−�−b

�+b f��
2�u − sa�t��

f��u − sa�t��
du , �25�

all the rest in Jy of Eq. �21� being unchanged.
The three special configurations �i� N=1 at any �� where

Jy is given by Eq. �13�, �ii� ��=0 at any N where Jy is given
by Eq. �24�, �iii� N=� at any �� where Jy is given by Eqs.
�25� and �21�, are three configurations where the dispersion
var�y 	x� in the array vanishes identically. As a result, for
given x, the output y becomes the deterministic function y
=E�y 	x�=E�yi 	x� as given by Eq. �5�, returning a determin-
istic value y� �−� ,�� for any x. Moreover, for any g�u� in
Eq. �5� that saturates at ±� when u→ ±�, this deterministic
function E�y 	x�=E�yi 	x� also saturates at ±� when x→ ±�.
Because of this deterministic dependence y=E�y 	x� at the
array output with zero dispersion var�y 	x�, the added array
noises �i�t� no longer play a role in dispersing the response
y. The array as a whole behaves as a deterministic device,
with a deterministic transfer characteristic given by y
=E�y 	x�, with its saturations at ±�. We are back to the case
of a deterministic sensor characteristic with saturation, as
considered in �15�. In this case, for the same reasons as given
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in �15�, by inspection of Eqs. �13�, �24�, �25�, and �21�, what
matters for the Fisher information Jy is the position in the
sensor characteristic of the saturations at ±�, but not the
smooth evolution of the characteristic between the satura-
tions. In other words, the value of Jy will be the same for any
saturating characteristic g�·� provided the saturations of g�u�
occur at the same levels ±� for the same values of the input
argument u. The smooth part of g�·� between the saturations,
be it linear as in Eq. �9� or arbitrary curvilinear as in �15�,
will not affect Jy. On the contrary, in configurations differing
from the three above, with nonvanishing dispersion var�y 	x�,
it is expected that Jy, for instance as it will result from Eq.
�21�, will not be independent of the shape of the smooth part
of the sensor characteristic between its saturations.

IV. NOISE-ENHANCED FISHER INFORMATION

We are now in a position to study the evolutions of the
Fisher information Jy at the output of the array. We will
consider the task of estimating the amplitude a of a sinu-
soidal input of known period Ts, i.e., sa�t�=a sin�2�t /Ts�.
This input signal sa�t� is embedded in zero-mean Gaussian
input noise ��t�. The resulting array output y�t� is observed at
M distinct times tj, for j=1 to M. Since all the noises ��t�
and �i�t� are white, it results that the M data points y�tj�
=yj are independent. In this case the Fisher information is
additive �1�, and the total Fisher information about a con-
tained in the complete data set y= �y1 ,y2 , . . .yM�, call it Jy, is
the sum of the Fisher information Jyj

contained in every in-
dividual observation yj, i.e., Jy=� j=1

M Jyj
. Figure 1 presents

evolutions of the Fisher information Jy for arrays of various
sizes N.

In the conditions of Fig. 1, the input sinusoidal signal
sa�t�=a sin�2�t /Ts� is centered in the linear part of the char-

acteristic g�·� of Eq. �9�; also sa�t� has a large amplitude a
��, and it operates �on occasion� the characteristic g�·� in its
saturating part. As a result of the centering of sa�t� in the
linear part of g�·�, with a single sensor �at N=1 in Fig. 1�
there is no benefit gained by adding noise. This is shown in
Fig. 1 by the monotonic decay of the Fisher information Jy as
the level �� of the array noise is raised, at N=1. This behav-
ior of the Fisher information was previously reported in �15�
for isolated saturating sensors. It is in fact characteristic of a
standard form of stochastic resonance, where improvement
by noise occurs for a signal which is ill-positioned in relation
to an isolated transmitting nonlinearity. The added noise,
somehow, serves to displace the input signal into a more
favorable operating zone of the nonlinearity. In Fig. 1 at N
=1, the input signal sa�t� centered in the linear part of g�·� is
not in an ill position that would allow improvement by the
addition of noise, and stochastic resonance does not arise.
However, the picture is quite different in a genuine array at
N�1. In this case in Fig. 1, the same input signal sa�t� op-
timally centered in the linear part of g�·� can benefit from the
addition of noise in the array. This is expressed in Fig. 1 at
N�1, by the nonmonotonic evolutions of the Fisher infor-
mation Jy as the level �� of the array noises �i�t� is raised,
with Jy culminating at a maximum for a nonzero optimal
level of the added array noises. As soon as an array size N
	2, the Fisher information Jy is always increased by addi-
tion of the array noises �i�t� above its value with no array
noises at ��=0 in Fig. 1. The improvement by the added
array noises gets more efficient as the array size N increases,
as visible in Fig. 1. This is here a distinct mechanism of
stochastic resonance or improvement by noise. It does not
require an ill-positioned input signal in relation to a transmit-
ting nonlinearity. It operates with optimally positioned sig-
nals at the input. The benefit brought in by the added noises
is specifically an array effect, which does not take place un-
der this form in isolated nonlinearities, and whose efficacy
increases with the array size. This array effect, qualitatively,
can be related to increased variability producing enhanced
representation capability, when the sensors are replicated into
an array with added noises. With no added noises �i�t� in the
array, all the sensors deliver an identical output yi�t� in re-
sponse to a common input x�t�, and the array is therefore
equivalent to a single isolated sensor. The added array noises
�i�t� force each sensor to deliver a distinct output yi�t� in
response to a common input x�t�, and this increased variabil-
ity translates into a possibility of enhancement of the Fisher
information at the array output, as demonstrated here.

Figure 2 presents a similar situation with the sinusoidal
input sa�t�=a sin�2�t /Ts� centered in the linear part of g�·�
but with an amplitude a which is only slightly above the
saturation level � that saturates g�·� of Eq. �9�. In Fig. 2 the
important behaviors observed in Fig. 1 are preserved: im-
provement by addition of the array noises �i�t� does not
occur in an isolated sensor �N=1�, but always takes place in
arrays at N�1.

Further, Fig. 3 shows a situation qualitatively distinct in
that the input sinusoid sa�t�=a sin�2�t /Ts� permanently
evolves in the linear part of the sensor g�·� thanks to its
amplitude a��. Figure 3 shows that in this case also, im-
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=10�t with �t=Ts / �M +1�.
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provement by noise of the Fisher information Jy is possible
in the array at N�1, and not possible in the isolated sensor
at N=1. Although here a��, the input signal-noise mixture
a sin�2�t /Ts�+��t� still operates on occasion, because of
��t�, the nonlinearity g�·� in its saturating part. This nonlinear
behavior is sufficient for the stochastic resonance to take
place, as revealed in Fig. 3. But still some form of nonlin-
earity is required, because strictly linear sensors, obtained for
instance as �→� in Eq. �9�, would lead to the array output
y�t�=sa�t�+��t�+N−1�i=1

N �i�t�, a purely additive signal-noise
mixture allowing no possibility of improvement by noise of
Jy.

As the amplitude a of the input sinusoid sa�t� is further
reduced below �, Fig. 4 shows that the same type of stochas-
tic resonance still takes place, with Jy improved by noise in
genuine arrays at N�1 and not in an isolated sensor at N
=1. However, as a is being reduced in relation to �, the
nonlinear saturating effect of the sensors gets less and less

pronounced. As a consequence, the nonlinear effect of sto-
chastic resonance, giving way to improvement by noise of Jy,
is also less and less pronounced, as visible in the sequence of
Figs. 1–4.

For the input signal-noise mixture x�t�=sa�t�+��t�, it is
possible to compute the input Fisher information Jx con-
tained in x�t� about a. This is done through a definition simi-
lar to Eq. �3� with the probability density py�y� replaced by
the density px�x�= f��x−sa�t��, giving

Jx = � �sa�t�
�a

�2�
−�

+� f��
2�u − sa�t��

f��u − sa�t��
du . �26�

For the conditions of Figs. 1–4, with Gaussian input noise
��t� and sa�t�=a sin�2�t /Ts�, Eq. �26� yields Jx

=sin2�2�t /Ts� /��
2 for a single measurement at time t on x�t�.

For the M independent measurements x�tj�=xj, the total
Fisher information in the data x= �x1 ,x2 , . . .xM� is the sum
Jx=� j=1

M Jxj
=� j=1

M sin2�2�tj /Ts� /��
2. This gives Jx=5.5 in the

conditions of Figs. 1–4. This Jx is the Fisher information that
would be accessible if the input x�t�=sa�t�+��t� were di-
rectly �linearly� observable, or observable through an invert-
ible �possibly nonlinear� sensor characteristic, because as
shown for instance in �15� an invertible characteristic con-
serves the Fisher information. However, here we assume that
x�t� has to be observed through sensors with a noninvertible
saturation modeled by g�·� of Eq. �9�. In this case, a single
sensor with no added array noise, provides an output Fisher
information Jy which is always below the input Fisher infor-
mation Jx, as visible in Figs. 1–4 at ��=0. This is due to the
noninvertible nature of the sensor characteristic g�·� of Eq.
�9� which inherently entails a loss of Fisher information. This
loss of information, seen in Figs. 1–4 at ��=0, gets more
and more important as the input signal sa�t�=a sin�2�t /Ts�,
with increasing a, operates more and more the nonlinearity
g�·� in its saturating part. The interesting property is that the
array with added noises �i�t� allows one to recover this loss
of Fisher information. In large arrays, as visible at large N in
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FIG. 2. Same as in Fig. 1 except for a=1.1.
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Figs. 1–4, it is even possible to recover completely the whole
input Fisher information Jx. At N→�, the output Fisher in-
formation Jy behaves according to Eq. �25�, and in this con-
dition, for a sufficient level of the added noises �i�t� �for b
large in Eq. �25��, the output Fisher information Jy from Eqs.
�21� and �25� tends to the input Fisher information Jx of Eq.
�26�. So when saturating sensors like Eq. �9� have to be used
to observe a signal, when used in isolation such sensors al-
ways entail a loss of Fisher information, but replication of
them into a parallel array allows one to recover, possibly
completely, this loss of Fisher information, thanks to the ac-
tion of added noises.

V. TWO MECHANISMS OF ENHANCEMENT BY NOISE

The previous section addressed the case of a periodic in-
put signal sa�t� which is by itself exactly centered in the
linear part of the saturating characteristic g�·� of Eq. �9�,
sometimes with excursion at some t into the saturations of
g�·� at ±� as in Figs. 1 and 2, or sometimes completely
maintained for all t inside the linear part of g�·� as in Figs. 3
and 4. In this configuration of sa�t�, it was shown that im-
provement by noise of the Fisher information always takes
place in genuine arrays at N�1 and does not occur in iso-
lated sensors at N=1.

We now consider the case of a periodic input signal sa�t�
which by itself permanently evolves completely in the satu-
ration region of the sensor g�·� of Eq. �9�. This is for instance
achieved by sa�t�=S0+a sin�2�t /Ts� with an offset S0 which
is high enough to realize S0−a��. In such a configuration,
the periodic modulation of sa�t� around S0 �the amplitude a
of which modulation we seek to estimate� is completely in-
visible at the output of the sensor. In this case, the Fisher
information Jy contained in the sensor output about a is
strictly zero. Then, with an isolated sensor, noise which may
add to sa�t� will have the ability to provoke excursions of the
signal-plus-noise mixture back into the linear part of the sen-
sor. This will make the periodic modulation visible at the
sensor output, and will translate into an output Fisher infor-
mation Jy raising above zero, thanks to the presence of the
noise. This form of stochastic resonance in isolated saturat-
ing sensors has been reported and analyzed in �15�. It is also
visible here in Fig. 5 at N=1. With no added array noise
�1�t�, at ��=0 in Fig. 5 at N=1, it is the presence of the
input noise ��t� which renders the input signal sa�t� visible at
the sensor output. This leads to a nonzero output Fisher in-
formation Jy at ��=0 in Fig. 5 at N=1. When the input noise
��t� is not at its optimal level of efficacy, the added array
noise �1�t� cooperates with ��t� to further enhance the sto-
chastic resonance effect. This leads, in Fig. 5 at N=1, to an
output Fisher information Jy which increases as �� is raised
above zero, up to a maximum of Jy when the optimal amount
of the noise ��t�+�1�t� is reached.

The type of enhancement by noise observed in Fig. 5 at
N=1 resorts to a classic form of stochastic resonance, where
an input signal, ill-positioned in relation to a transmitting
nonlinearity, receives assistance from noise for a more effi-
cient transmission by the isolated sensor. Yet, this form of

stochastic resonance in isolated sensors, can be supple-
mented by another form, when the sensors are replicated into
parallel arrays. This is what is shown in Fig. 5 at N�1. The
output Fisher information Jy can be further enhanced in ar-
rays by addition of the array noises �i�t�. This is the distinct
form of stochastic resonance at N�1, also reported in Sec.
IV, but which here coexists with the classic form at N=1.
Two distinct mechanisms of improvement by noise are thus
at work in Fig. 5, characterizing two possible forms of sto-
chastic resonance.

VI. ESTIMATION ON NONSINUSOIDAL SIGNAL

Many reported examples of stochastic resonance involve
a sinusoid in noise, which motivated here the analysis of the
behavior of the Fisher information in this circumstance.
However, the theoretical derivation of Secs. II and III is not
restricted to a sinusoidal sa�t�, and it applies equally to any
type of input signal sa�t�, with any parametric dependence on
a.

For illustration, we consider the array of saturating sen-
sors for estimation of a parameter of an exponential pulse.
Figure 6 shows results for estimation of the amplitude a of
the exponential pulse sa�t�=a exp�−t /Ts� for t	0 with
known time constant Ts, while Fig. 7 shows results for esti-
mation of the damping exponent a of the exponential pulse
sa�t�=A exp�−at� for t	0 with known amplitude A. The re-
sults of both Figs. 6 and 7 confirm that the performance in
estimation measured by the Fisher information Jy can always
be enhanced by addition of noise in arrays of size N�1. In
Figs. 6 and 7 noise enhancement of Jy takes place for a pulse
amplitude both above or below �, i.e., for an exponential
pulse falling in the linear or in the saturating part of the
sensors. Moreover in Figs. 6 and 7 at N=63 at the optimal
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level of the array noises �i�t�, the maximum of Jy is close to
the input Fisher information Jx, and it can in principle be
made arbitrarily close to Jx by increasing the array size N as
in Figs. 1–5.

Application of the present theory shows that the stochastic
resonance in the saturating arrays is largely preserved for any
type of parameter estimation on any sa�t�. This outcome can
be attributed to the form of the Fisher information Jy exhib-
ited for instance in Eq. �21�. In Jy, from Eq. �21�, the influ-
ence of the specific type of sa�t� is essentially conveyed by
the prefactor ��sa�t� /�a�2. Meanwhile, the influence of the
added noises �i�t� in the nonlinear array �those are respon-
sible for the stochastic resonance� is conveyed by the second
factor of the right-hand side of Eq. �21�, in which factor sa�t�
has a role reduced to a fixed constant. For this reason, im-
provement of the Fisher information by the noises �i�t�, as
governed by the second factor of Eq. �21�, can be expected to
take place in a comparable way, irrespective of the type of
sa�t�.

In view of the results of Figs. 6 and 7, it is plausible that
multiple parameter estimation from the output of the array of
saturating sensors could also be enhanced by addition of the
array noises �i�t�. This could be addressed through the com-
putation of the Fisher information matrix for a measure of
estimation efficacy �1,2�, in a multidimensional extension of
the derivation of Secs. II and III.

VII. DISCUSSION

We have applied the theory derived in Secs. II and III to
demonstrate the enhancement by noise of the Fisher informa-
tion in arrays of saturating nonlinearities. For illustration in
Secs. IV and V, this was done for the Fisher information
related to the amplitude of a sinusoidal input signal. This
condition authorizes a comparison of the present results with
those of �22� which deal with the behavior of the signal-to-
noise ratio of a sinusoidal signal transmitted by similar ar-
rays of saturating sensors with added noises. For a sinusoidal
signal, the signal-to-noise ratio of �22� characterizes the ef-
ficacy in the detection of the sinusoid that could be made in
the frequency domain by a narrow bandpass filter for in-
stance; the Fisher information here, fundamentally, charac-
terizes the efficacy in the estimation of the amplitude of the
sinusoid. These are two distinct signal processing tasks, as-
sessed by two specific measures, but when signals are pro-
cessed through saturating sensors like g�·� of Eq. �9�, both
measures can always be enhanced by the replication of the
sensors into parallel arrays with added noises. This confirms
the general character of stochastic resonance in arrays.

Yet, a significant difference exists with the results of �22�.
The signal-to-noise ratio in �22� of a sinusoid in Gaussian
noise, can be increased by the parallel array of saturations,
above the signal-to-noise ratio that would be afforded by the
direct linear measurement of the input signal-noise mixture,
in place of its measurement constrained to occur through the
saturating sensors. Achievement in �22� of the maximum am-
plification of the signal-to-noise ratio however, requires a
tunable array, with a specific � matched to the amplitude of
the sinusoidal input. By contrast here, the Fisher information
Jy at the output of the array of saturations can always be
increased above the Fisher information at the output of a
single saturating sensor, but Jy cannot be increased above the
input Fisher information Jx that would be afforded by the
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direct linear measurement of the input signal-noise mixture
x�t�=sa�t�+��t�. At best, as seen in Figs. 1–5, Jy reaches Jx in
large arrays, but never exceeds Jx. Achievement here of this
best performance however, does not require any specific tun-
ing of the array and is reachable at arbitrary � by using
sufficiently large arrays at sufficiently large levels of the
added noises. For the Fisher information, the action of the
arrays with added noises can in fact be viewed as to trans-
form sensors with inherent unavoidable saturations into an
equivalent purely linear sensing device with infinite input
range.

Another important point to discuss is the noninvertible
nature of the sensor characteristic g�·� considered here. Non-
invertibility is required for the stochastic resonance mea-
sured by the Fisher information to arise; and it does not arise
with invertible devices. This is the same with isolated sen-
sors, as already pointed out in �15�, and with arrays as con-
sidered here. The reason is that the integral, of the form of
Eq. �3�, defining the Fisher information, is invariant under
any invertible change of variable. However, for sensors with
saturation, which is a common behavior in practice, the mod-
eling with an invertible saturation may be a somewhat formal
hypothesis not always reflecting correctly the physical be-
havior of the device. Let us consider an invertible saturation
model under the form g�u�=� tanh�u /�� in place of the non-
invertible model of Eq. �9�, fed at its input by an offset
sinusoid sa�t�=S0+a sin�2�t /Ts� as in Fig. 5. With S0��
�a, the input sinusoid is at the output completely
“squashed” in the vicinity of �. The input sinusoidal modu-
lation is then completely squeezed on the output about �,
over an arbitrarily small interval as the offset S0 grows. At
some point, in practice, the sinusoidal modulation will be-
come invisible on the output. However, when the saturation
is modeled as invertible, the Fisher information for the
modulation amplitude a is unaffected in the process, and it
keeps the same value at the input and at the output, whatever
the position of the offset S0. In practice, there will always be
a physical limit of resolution on the output, enabling one to
distinguish or not, a small sinusoidal modulation about the
saturation level �. The invertible model of saturation is un-
able to represent this inherent resolution limit, and the un-
avoidable loss of information associated with it. Meanwhile,
the noninvertible model of Eq. �9� offers a natural represen-

tation of this resolution limit, and for this it may constitute a
more appropriate physical model for sensors with saturation.
With this choice, the reduction of the Fisher information is
captured when the sensors operate in the region of the satu-
ration, and our present results show that this reduction of
information can always be compensated by replicating the
sensors into arrays with added noises.

The present results show that the improvement by noise
of the Fisher information, and hence of the estimation effi-
cacy, can occur in the array for any position of the input
signal in relation to the sensor characteristic. In particular,
the input signal can be optimally centered in relation to the
nonlinear sensor characteristic, and even in this configura-
tion, replication of the sensors into an array with added noise
always leads to an improvement. This is in marked contrast
with stochastic resonance in isolated nonlinearities, where
improvement by noise generally occurs only for ill-
positioned inputs, for instance an input lying below a thresh-
old as in �25� or masked by a saturation as in �15�. In fact,
one can view at the root two distinct mechanisms of im-
provement by noise, one mechanism specifically applies to
assist ill-positioned inputs, the other is a nonlinear-array ef-
fect based qualitatively on enriched representation and that
can occur for any input signal. In appropriate configurations,
both mechanisms can take place in conjunction, as illustrated
by Fig. 5. Also, one can note that the present arrays, like
those of �16,17,24�, are uncoupled arrays, where no coupling
is necessary between the nonlinear devices in order to yield
improvement of the collective response from the added array
noises. This is in contrast with other forms of stochastic reso-
nance in arrays, with other types of nonlinear devices, where
coupling between devices, under various forms, is an essen-
tial ingredient of the process �8–10,26–31�.

Beyond the context of physical sensors, the present results
can also bear significance for signal processing by neurons.
Neurons inherently display saturation in their output activity,
parallel arrays are a common organization in neural struc-
tures, and they are commonly exposed to various sources of
noise or external or internal origins. The present form of
stochastic resonance in the saturating arrays we studied here,
could constitute an additional form of stochastic resonance
available in neuronal processes for noise-assisted informa-
tion processing.
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