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Fisher-information condition for enhanced signal detection via stochastic resonance
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Various situations where a signal is enhanced by noise through stochastic resonance are now known. This
paper contributes to determining general conditions under which improvement by noise can be a priori decided
as feasible or not. We focus on the detection of a known signal in additive white noise. Under the assumptions
of a weak signal and a sufficiently large sample size, it is proved, with an inequality based on the Fisher
information, that improvement by adding noise is never possible, generically, in these conditions. However,
under less restrictive conditions, an example of signal detection is shown with favorable action of adding noise.
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I. INTRODUCTION

Stochastic resonance (SR) is now a well-established cooper-
ative phenomenon wherein the response of a nonlinear system
to a weak signal can be optimized at a nonzero noise level
[1–11]. Briefly, SR emerged from the field of meteorology [1],
and the topic has flourished in physics [2–6] and neuroscience
[5–11]. Meanwhile, the promise of applying SR to nonlinear
signal processing has been studied over several decades. The
improvement of output signal-to-noise ratio of a nonlinear
system first attracted much attention [2–5,12–16], and later,
noise-enhanced detection was observed in dynamic [17–19]
and static nonlinearities [20–29]. An interesting idea explored
in Ref. [29] is that, in order to find an optimal processor in the
context of SR where injection of more noise into a given signal
is an available option, one can continuously update the optimal
processor according to the composite noise. Then, as shown
by examples in Refs. [27–29], optimal processors acting on
the output with added noise can emerge with an improved
performance over that of the original optimal processor on the
output without added noise.

In this context, it is then useful to seek to identify generic
conditions under which it is a priori possible to decide whether
or not addition of noise can be a favorable option for signal
detection.

In this paper we focus on the detection of known weak sig-
nals in additive white noise in the context of SR. This detection
problem can be viewed as a simple binary hypothesis testing.
Under assumptions of a weak signal and a sufficiently large
number of observation values, the performance of a locally
optimum (LO) detector is demonstrated to be asymptotically
optimum that its detection probability is maximized for a
desired false alarm probability [30–32]. In order to evaluate
the performance of the LO detector with respective to the
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Neyman-Pearson detector, the asymptotic relative efficiency of
two detectors is introduced [30–32]. With regularity conditions
[32], the asymptotic relative efficiency can be computed simply
as a ratio of their efficacies [see Eq. (7)] of detection procedures
based on the sequence of statistics [30–32]. For a given false
alarm probability, the detection probability of the LO detector
is a monotonically increasing function of its efficacy, which
is simply given by the Fisher information (FI) of the noise
probability density function (PDF) [31,32]. When independent
noise is added to the signal, we update the exact LO detector
for each added-noise condition. Then, it is theoretically
proven, by using the FI convolution inequality [33,34], that
no improvement in detection can be obtained compared to the
initial condition with no added noise. However, beyond these
restrictive conditions, the SR method can be an appropriate
way of improving the detection performance of a detector
[22–29]. Here we present a novel instance of detection of a
known weak signal in uniform noise with favorable action of
the noise through SR. In this case the FI of a uniform noise
PDF is infinite, but the LO detector is physically unrealizable,
since the output of the LO detector tends to infinity when the
input is larger than unity [31]. It is shown that a realizable LO
detector can be constructed by adding a type of noise with a
continuous PDF. Furthermore, we observe that the detection
performance of a fixed dead-zone limiter (DZL) detector can
be infinitely enhanced by adding suitable dichotomous noise
in order to better detect the known weak signal in uniform
noise. This example shows a potential application of SR in
signal detection in the case where a LO detector is physically
unrealizable.

II. THE OBSERVATION MODEL AND FEASIBILITY
OF SR IN SIGNAL DETECTION

Consider the observation vector X = (X1,X2, . . . ,XN ) of
real-valued components Xn by

Xn = θsn + Wn, n = 1, 2, . . . , N, (1)
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where the Wn form a sequence of independent and identically
distributed (i.i.d.) random variables with PDF fw, and the
known signal components sn are with the signal amplitude
θ . Here the signal amplitude θ takes values of either θ0 = 0
(the observations contain no signal) or θ1 > 0 (the signal is
present) [32]. For the known (periodic or aperiodic) signal
sequence {sn,n = 1,2, . . . ,N}, it is assumed that there exists
a finite (nonzero) bound Us such that 0 � |sn| � Us , and the
asymptotic average signal power is finite and nonzero, i.e.,
0 < P 2

s = limN→∞
∑N

n=1 s2
n/N < ∞ [32]. Then the detection

problem can be formulated as a hypothesis-testing problem
of deciding a null hypothesis H0 (θ = θ0) and an alternative
hypothesis H1 (θ = θ1) describing the joint density function
of X with

H0 : fX(X,θ0) =
N∏

n=1

fw(Xn) for Xn = Wn,

(2)

H1 : fX(X,θ1) =
N∏

n=1

fw(Xn − θsn) for Xn = θsn + Wn.

From the generalized Neyman-Pearson lemma and as θ1 → θ0,
the Taylor expansion of the log-likelihood ratio test statistic
can be expressed as

ln

[
fX(X,θ1)

fX(X,θ0)

] ∣∣∣∣
θ1→θ0

= ln

[∏N
n=1fw(Xn − θsn)∏N

n=1fw(Xn)

]∣∣∣∣∣
θ1→θ0

≈
N∑

n=1

[
− f ′

w(Xn)

fw(Xn)

]
θsn, (3)

with the derivative dfw(x)/dx = f ′
w(x) existing for almost all

x [30–32]. Then, based on Eq. (3), the LO detector can be
written as

TLO(X) =
N∑

n=1

[
− dfw(Xn)/dXn

fw(Xn)

]
sn =

N∑
n=1

gLO(Xn)sn

H1

≷
H0

γ,

(4)

with the decision threshold γ and the nonlinearity gLO(x) =
−f ′

w(x)/fw(x) [30–32].
Under the assumptions of a weak signal and sufficiently

large observation data, the detection performance of a LO
detector has an optimum. This is because, for a generalized
correlation (GC) detector,

TGC(X) =
N∑

n=1

g(Xn)sn

H1

≷
H0

γ, (5)

where the function g is an arbitrary memoryless nonlinearity.
We assume the memoryless nonlinearity g has zero mean
under fw, i.e.,

∫ ∞
−∞ g(x)fw(x) dx = E[g(x)] = 0, which is

not restrictive since any arbitrary g can always include a
constant bias to cancel this average [32]. Noting the natural
boundary conditions of fw, the function gLO accords with this
assumption of E[gLO(x)] = 0. In the asymptotic case of θ1 →
θ0 and N → ∞, the test statistic TGC, according to the central
limit theorem, converges to a Gaussian distribution with mean
E[TGC|H0] = 0 and variance Var[TGC|H0] = NP 2

s E[g2(x)]
under the null hypotheses H0 [31,32]. Similarly, TGC is asymp-
totically Gaussian with mean E[TGC|H1] = θNP 2

s E[g′(x)] and

variance Var[TGC|H0] = Var[TGC|H1] under the alternative
hypothesis H1 [31,32]. Here we also assume that the derivative
g′(x) = dg(x)/dx exists for almost all x.

Given a false alarm probability PFA, the asymptotic detec-
tion probability PD for the GC detector of Eq. (5), for a large
sample size N , can be written as [31,32]

PD = Q[Q−1(PFA) −
√

NθPs

√
EGC ], (6)

with Q(x) = ∫ ∞
x

exp[−t2/2]/
√

2π dt and its inverse function
Q−1(x) [31,32]. Thus, for fixed N and θPs (since the signal
is known), PD is a monotonically increasing function of the
efficacy EGC given by [32]

EGC = lim
N→∞

{
d
dθ

E[TGC(X)]|θ=θ0

}2

NVar[TGC(X)]|θ=θ0

= E2[g′(x)]

E[g2(x)]

=
{∫ ∞

−∞ g(x)[−f ′
w(x)/fw(x)]fw(x) dx

}2∫ ∞
−∞ g2(x)fw(x) dx

�
∫ ∞

−∞

[
f ′

w(x)

fw(x)

]2

fw(x) dx = I (fw), (7)

with equality being achieved when g(x) ≡ gLO(x) =
−f ′

w(x)/fw(x), as indicated in Eq. (4). Here I (fw) is the FI of
the PDF fw for location shift [31,32]. This result indicates that
the asymptotic optimum detector is the LO detector achieved
by the test statistic TLO(X) = ∑N

n=1 gLO(Xn)sn [31,32].
Aiming to improve the performance of the LO detector

in the context of SR, we add the i.i.d. random variables Yn

with PDF fy to the given signal X. The updated components
X̂n = θsn + Wn + Yn = θsn + Zn and the composite random
variable Zn has a convolved PDF:

fz(x) =
∫ ∞

−∞
fy(x − u)fw(u) du. (8)

Then, based on the deduction of Eq. (7), a new LO detector
ĝLO can be designed according to fz, and its efficacy ÊGC =
I (fz) is achieved when the nonlinearity g(x) = ĝLO(x) =
−f ′

z(x)/fz(x).
Since Yn and Wn are independent, it is known that the FI

quantities I (fz), I (fy), and I (fw) satisfy the FI convolution
inequality [33,34]

1

I (fz)
� 1

I (fy)
+ 1

I (fw)
, (9)

with equality in Eq. (9) occurring when Yn and Wn are Gaussian
distributed [33,34]. Since any I (f ) > 0, we have

I (fz)

I (fw)
� 1 − I (fz)

I (fy)
⇒ ÊGC = I (fz) � EGC = I (fw), (10)

which implies that the detection performance of the LO
detector cannot be improved by adding independent noise to
the signal in the sense of asymptotic optimality.

III. NOISE-ENHANCED DETECTION IN GC DETECTORS

From Eq. (3) to Eq. (10), it is seen that, with the asymptotic
assumptions of θ1 → θ0 and N → ∞, the LO detector of
Eq. (4) is optimal, since its efficacy EGC in Eq. (7) is
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maximized as the FI of the noise distribution. It is noted that
the memoryless nonlinearity of gLO in Eq. (4) depends on
the noise PDF fw. When we add more noise to the observed
data, the nonlinearity of ĝLO should be updated according to
the composite noise PDF fz. In this way the efficacy of the
updated LO detector is determined by the FI I (fz). The FI
convolution inequality in Eq. (10) tells us that the detection
performance of the updated LO detector is inferior to that of the
original LO detector. Therefore, aiming to improve the weak
signal detection by a LO detector, the SR method of adding
independent noise to a given signal is theoretically proven
to be impossible in the considered conditions. Interestingly,
under less restrictive conditions, noise-enhanced detection was
observed in fixed LO detectors [23], suboptimal detectors
[22,24], and the optimal detector with finite sample sizes or
nonweak signals [29]. It is noted that these observed noise-
enhanced detection phenomena occur outside the asymptotic
case of weak signals for sufficiently large data.

We now consider another interesting example of GC
detectors, which are not restricted to the conditions of Sec. II,
because the LO detector of Eq. (4) is physically unrealizable
in this considered example. Consider the generalized Gaussian
random variables Wn with PDF

fw(x) = c1

σw

exp

(
− c2

∣∣∣∣ x

σw

∣∣∣∣
α)

, (11)

where c1 = α
2 �

1
2 ( 3

α
)/�

3
2 ( 1

α
), c2 = [�( 3

α
)/�( 1

α
)]

α
2 for a rate of

exponential decay parameter α > 0, and the noise root-mean-
square (RMS) amplitude is σw [31,32]. The normalized LO
detector indicated in Eq. (4) [31,32] has the nonlinearity

gLO(x) = |x|α−1sgn(x). (12)

The efficacy achieved by this normalized LO detector equals
the FI of the PDF [31,32], viz.,

I (fw) = σ 2
w α2�(3α−1)�(2 − α−1)/�2(α−1). (13)

When the exponent α = ∞, the Wn are i.i.d. uniform random
variables, and fw can be rewritten as

fw(x) = 1/(2b), (14)

for −b � x � b (b = √
3σw > 0) and zero otherwise. It is

noted that the FI of uniform noise PDF in Eq. (13) is
I (fw) = ∞ for α = ∞ and 0 < σw < ∞, but the nonlinearity
of Eq. (12) is not realizable as gLO(x) = ±∞ for |x| > 1 in
Eq. (12). This is because fw is not absolutely continuous at
x = ±b, so that the regularity assumption is not satisfied [32].
Then we resort to the SR method by adding the i.i.d. random
variables Yn with an absolutely continuous PDF fy to the
signal. Then the PDF fz of the composite random variables
Zn = Yn + Wn is

fz(x) =
∫ b

−b

fy(x − u)
1

2b
du= Fy(x + b) − Fy(x − b)

2b
,

(15)
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FIG. 1. Nonlinearities of the redesigned nonlinearity ĝLO(x) of
Eq. (18) for parameters σy = 0.1 and b = 1.

with the cumulative distribution function (CDF) Fy(x) =∫ x

−∞ fy(u) du. Thus, a new realizable LO detector can be
constructed with the nonlinearity

ĝLO(x) = −f ′
z(x)

fz(x)
= − fy(x + b) − fy(x − b)

Fy(x + b) − Fy(x − b)
. (16)

For example, assume Gaussian random variables Yn with
PDF fy(x) = 1√

2πσ 2
y

exp[− x2

2σ 2
y

], and the composite PDF fz

becomes

fz(x) =
Q

(
x−b
σy

) − Q
(

x+b
σy

)
2b

. (17)

The nonlinearity ĝLO can be expressed as

ĝLO(x) =
exp

[
− (x−b)2

2σ 2
y

]
− exp

[
− (x+b)2

2σ 2
y

]
√

2πσy

[
Q

(
x−b
σy

) − Q
(

x+b
σy

)] , (18)

which is illustratively plotted in Fig. 1 for parameters σy = 0.1
and b = 1. From Eqs. (7) and (17), the corresponding efficacy
ÊGC = I (fz) = 3.101. Thus, it is seen that the addition of extra
noise to the given signal can elicit a realizable LO detector but
yields a degraded ÊGC = 3.101 compared with the original
one EGC = I (fw) = ∞ in accordance with Eq. (13).

Can we find an effective and simple detector that has the
infinite asymptotic efficacy EGC = ∞ by adding further noise
to a weak signal in uniform noise? This idea is feasible. Let us
consider a fixed GC detector with its nonlinearity gDZL given
by [31,32]

gDZL(x) =

⎧⎪⎨
⎪⎩

−1 for x < −c,

0 for − c � x � c,

+1 for x > c,

(19)

with response thresholds at x = ±c, which is specifically
called the DZL detector. From Eq. (7), the efficacy EGC of
the DZL detector is [32]

EGC = E2[g′(x)]

E[g2(x)]
= 2f 2

w(c)

1 − Fw(c)
, (20)
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FIG. 2. The efficacy EGC in Eq. (21) of the DZL detector as
a function of noise RMS amplitude σw/c for different exponents
α = 0.5, 1, 2, 5, and ∞ in Eq. (11).

where Fw represents the CDF of Wn. Here we focus on the
generalized Gaussian noise components Wn with the PDF of
Eq. (11).

In order to investigate the role of noise, we rewrite Eq. (20)
as

EGC = 1

c2

c2

σ 2
w

2σ 2
wf 2

w(c)

1 − Fw(c)
= 1

c2

(
c

σw

)2 2f 2
w0

(c/σw)

1 − Fw0 (c/σw)
, (21)

where Fw0 is the CDF of the standardized noise PDF fw0 (x) =
fw(x/σw)/σw with unity variance σ 2

w0
= 1 [21]. Thus, the

variation of noise RMS amplitude σw, as well as the response
threshold c, can improve the efficacy EGC of the DZL detector,
as shown in Fig. 2. For a fixed-response threshold c (c = 1
without loss of generality), Fig. 2 shows EGC of the DZL
detector as a nonmonotonic function of the RMS amplitude
σw/c for different exponents α = 0.5, 1, 2, 5, and ∞ in
Eq. (11). It is clearly seen that the SR effect occurs as σw/c

increases. Of course, EGC is never larger than the FI I (fw)
of Eq. (13), because the DZL detector is not the LO detector
of Eq. (12) for generalized Gaussian noise. However, as the
exponent α = ∞, EGC reaches the FI I (fw) = ∞ of the
uniform noise at σw = c/

√
3 (as c is fixed). This is because,

for the standardized uniform noise PDF fw0 (x) = 1/(2
√

3)
(−√

3 � x �
√

3) with unity variance σ 2
w0

= 1, fw0 (
√

3) 	= 0

but Fw0 (
√

3) = 1 in Eq. (21). Note that this infinite efficacy
EGC can be also achieved by tuning the response threshold
into c = √

3σw of the DZL detector (for the fixed σw).
When EGC = I (fw) = ∞ for detecting weak signals in

uniform noise, the detection probability PD in Eq. (6)
is approximately unity. This is because, for a fixed false
alarm probability PFA and the known weak signal, the
decision threshold in Eq. (5) γ = √

Var[TGC|H0]Q−1(PFA) ≈√
NP 2

s E[g2
DZL(x)]Q−1(PFA) is of order ∼√

N as N increases. Since
the uniform noise RMS σw = c/

√
3, the maximum and the

minimum values of Wn are ±b = ±√
3σw = ±c. Then, if

the weak signal components sn > 0, the probability of the
mixture Xn = θsn + Wn > c is θ |sn|/(2c), and the same for

sn < 0 [with the probability of the mixture Xn = θsn + Wn <

−c being θ |sn|/(2c)]. Computing by the nonlinearity gDZL

in Eq. (19), the output of detector is
∑N

n=1 gDZL(Xn)sn ≈∑N
n=1 θ |sn|2/(2c) = NθP 2

s /(2c) of order ∼N . Thus, as the
observed data number N → ∞, Eq. (5) will certainly take
TGC(X) = ∑N

n=1 gDZL(Xn)sn > γ for deciding the hypothesis
H1 (θ = θ1 > 0), i.e., PD → 1.

Now we reconsider the mentioned question whether adding
independent noise to the given signal can be helpful or not for
detection. For the Gaussian noise (α = 2) shown in Fig. 2, if
the original Gaussian noise RMS σw < σ ∗

w = 0.6098, which
corresponds to the maximum of E∗

GC = 1.1512, we can add
independent Gaussian random variables Yn with its RMS
amplitude σy = √

σ ∗2
w − σ 2

w to increase EGC to E∗
GC = 1.1512,

because the sum of two Gaussian noise are still Gaussian
distributed. This point has been noted in Ref. [25]. However,
this approach cannot be used for the uniform noise with the
exponent α = ∞. If the original uniform noise has the noise
RMS amplitude σw < c/

√
3 (b = √

3σw < c), we cannot add
more uniform noise to the data to obtain the infinite EGC, since
the sum of two uniform random variables is not uniformly
distributed. In this case we consider the dichotomous noise
components Yn with the PDF

fy(x) = [δ(x − σy) + δ(x + σy)]/2, (22)

with its RMS amplitude σy = c − b and δ(·) is Dirac delta
function. In this way Zn = Wn + Yn, as the sum of uniform
and dichotomous random variables has its PDF fz(x) =
[fw(x − σy) + fw(x + σy)]/2 with a maximum bound of +c

and a minimum bound −c. Since s(t) is corrupted by Zn, the
asymptotic efficacy of Eq. (20) becomes ÊGC = 2f 2

z (c)/[1 −
Fz(c)] = ∞, because fz(c) = fw(c − σy)/2 = fw(b)/2 	= 0
and Fz(c) = 1.

IV. CONCLUSION

In this paper we studied the constructive role of noise in
detecting known signals in additive white noise. Under the
assumptions of weak signals and a sufficiently large number
of observation values, the LO detector is asymptotic optimum
and its efficacy, i.e., the FI of the noise PDF, is maximal.
When the LO detector can be redesigned (optimized) for the
new composite noise, the SR method of adding independent
noise to a given data set for improving the performance of a LO
detector is proved to be impossible using the FI convolution
inequality. However, beyond these restrictive conditions, we
demonstrated that the SR method can be an appropriate way of
improving detection performance. A novel example is shown
that, for detecting a weak known signal in uniform noise, the
SR method of adding noise can elicit a realizable LO detector.
Furthermore, we found that the detection performance of a
fixed DZL detector can be infinitely enhanced by adding
suitable dichotomous noise to the initial uniform noise in
certain cases.

Some interesting open questions arise. Here we consider
only the LO detection of known weak signals in additive white
noise. It is found that SR becomes an alternative method of
improving signal detection in certain cases. Beside the DZL
detector, it is also interesting to further explore the possi-
bility of noise-enhanced phenomenon in other noninvertible
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nonlinearities for signal detection [21]. In practical detection
problems, the parameters of signals or background noise are
often not known, the signal might be a random variable, or
the noise is multiplicative. In these configurations the same
question arises regarding the conditions under which the
addition of noise to given data is favorable for weak signal
detection. We argue that the constructive role of noise in these

practical detection problems will be of interest for further
studies of signal detection.
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