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This paper studies the signal-to-noise ratio (SNR) gain of a parallel array of nonlinear elements that transmits
a common input composed of a periodic signal and external noise. Aiming to further enhance the SNR gain,
each element is injected with internal noise components or high-frequency sinusoidal vibrations. We report that
the SNR gain exhibits two maxima at different values of the internal noise level or of the sinusoidal vibration
amplitude. For the addition of internal noise to an array of threshold-based elements, the condition for occurrence
of stochastic resonance is analytically investigated in the limit of weak signals. Interestingly, when the internal
noise components are replaced by high-frequency sinusoidal vibrations, the SNR gain displays the vibrational
multiresonance phenomenon. In both considered cases, there are certain regions of the internal noise intensity or
the sinusoidal vibration amplitude wherein the achieved maximal SNR gain can be considerably beyond unity
for a weak signal buried in non-Gaussian external noise. Due to the easy implementation of sinusoidal vibration
modulation, this approach is potentially useful for improving the output SNR in an array of nonlinear devices.
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I. INTRODUCTION

The studies on stochastic resonance have progressively
changed the status of noise in physics and information
sciences. It is now known that under certain circumstances
a nonzero optimal noise level can enhance, rather than
degrade, the nonlinear system performance measured by
signal-to-noise ratio (SNR) [1–6], correlation coefficient [7,8],
mutual information [9], detection probability [10], response
power spectrum [11], etc. Moreover, this counterintuitive view
attracts considerable attention in the area of improvement
of the response of systems that might be operated in noisy
environments, e.g., electronic devices [3,12,13], neuronal
systems [7,8,11,14–17], and signal processors [9,10,18–23].

The primary feature of stochastic resonance is that the
system response can reach a maximum at a nonzero optimal
amount of noise [1–3,5]. In addition, Vilar and Rubı́ reported
that in some cases the system output SNR can be enhanced
at multiple values of the noise level, and exhibits a series of
maxima; this is stochastic multiresonance [24]. This effect was
then observed in threshold-crossing systems [5,25], coupled
oscillators [26,27], and hierarchical networks [28], which
extends the scope and perspectives of the noise-enhanced
phenomenon [24–28]. Recently, in the generic bistable system,
Landa and McClintock [29] reported the phenomenon of vibra-
tional resonance that displays many analogies to the stochastic
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resonance effect, but with high-frequency vibrational mod-
ulation filling the constructive role usually played by noise.
Experimental and analytical evidence of vibrational resonance
has been demonstrated in analog electric circuits [30,31],
excitable neurons [32], optical devices [33,34], and dynamical
oscillators [35–40]. Interestingly, the occurrence of vibrational
multiresonance was also found [29,39,40].

Motivated by the fact of large numbers of neurons in
the nervous systems of animals and humans with variations
in structure, function, and size, the potential exploitation of
stochastic (vibrational) resonance in neuroscience becomes an
interesting open question [6–9,14–17,22,23,32,37,41], espe-
cially in a summing parallel threshold-based sensory neuron
model [8,9,22,23,41]. In spite of efforts devoted to under-
standing the constructive roles of external or internal noise
components, the resonant mode of noise is not sufficiently
considered, for instance, the optimal values of the noise level
and the optimizing modes of the noise type that benefit signal
transmission through nonlinear elements.

In this paper, we focus on enhancing the SNR gain, i.e.,
the ratio between the output SNR and the input SNR, for
a periodic signal mixed with external input noise passing
through a parallel array of nonlinear elements. It is usually
argued that the level of external noise is not tunable, thus we
inject internal noise into each element for further improvement
of the SNR gain. We report that in a parallel array of threshold-
based elements, the output-input SNR gain manifests double
resonant peaks as the internal noise level increases. Within the
limit of weak signals, we analytically address the condition
under which stochastic resonance occurs for various external
noise types and array sizes. The optimal internal noise
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levels and the external noise types that elicit the double
resonance mode are theoretically addressed. The possibility
of the maximal SNR gain exceeding unity is demonstrated for
weak signals corrupted by the external non-Gaussian noise.
The approach by which internal noise is added has received
considerable attention for enhancing the array performance
within the framework of stochastic resonance [9,16,22,23,42].
However, in many practical operating devices, the internal
noise type or level may be not controllable. Inspired by the
mechanism of vibrational resonance [29–40], in each element
of an array, the random noise components are replaced by
the high-frequency sinusoidal vibrations. Upon increasing the
amplitude of sinusoidal vibrations, we find that the SNR
gain also exhibits two maxima. Besides, our analysis shows
that the locally maximum SNR gain obtained by vibrational
resonance is higher than the one via the phenomenon of
stochastic resonance. These analytical results not only show
a new feature of array stochastic resonance, but also provide
another practical realization of the SNR improvement in an
array via tuning sinusoidal vibrations. We believe that these
theoretical results presented in this paper will be valuable to a
variety of systems ranging from threshold sensors to sensory
neural networks.

II. MODEL AND MEASURE

The input x(t) = s(t) + ξ (t) comprises the deterministic
sinusoidal signal s(t) = A sin(2πt/T ) with period T and am-
plitude A, and the stationary white noise ξ (t) with probability
density function (PDF) fξ and variance σ 2

ξ . The input SNR for
x(t) can be defined as the power contained in the spectral line
at frequency 1/T divided by the power contained in the noise
background in a small frequency bin �B around 1/T [5], this
is

Rin = |〈s(t) exp[−i2πt/T ]〉|2
σ 2

ξ �B�t
= A2/4

σ 2
ξ �B�t

, (1)

with �t indicating the time resolution or the sampling time
in a discrete-time implementation and the temporal average
defined as 〈· · · 〉 = 1

T

∫ T

0 · · · dt [5].
Then, x(t) is applied to a parallel array of N identical

elements, which have the same memoryless characteristic g.
The internal white noise terms ηn(t), independent of x(t), are
injected into each element to yield the outputs

yn(t) = g[x(t) + ηn(t)], (2)

where the noise components ηn(t) are mutually independent
and identically distributed with the same PDF fη and variance
σ 2

η . Then, the response y(t) of an array is the collective outputs
as

y(t) = 1

N

N∑
n=1

yn(t). (3)

Since s(t) is periodic, y(t) is in general a cyclostationary
random signal with period T [5]. Similarly, the output SNR
for y(t) is given by

Rout = |〈E[y(t)] exp[−i2πt/T ]〉|2
〈var[y(t)]〉�B�t

(4)

with nonstationary expectation E[y(t)] and nonstationary
variance var[y(t)] = E[y2(t)] − E2[y(t)] [5].

At time t , for a fixed value x of the input x(t), the conditional
expectations can be computed as

E[y(t)|x] = E[yn(t)|x] =
∫ ∞

−∞
g(x + u)fη(u)du, (5)

E[y2(t)|x] = 1

N
E[y2

n(t)|x] + N − 1

N
E2[yn(t)|x], (6)

with

E[y2
n(t)|x] =

∫ ∞

−∞
g2(x + u)fη(u)du. (7)

Here, for the input x(t) = s(t) + ξ (t), we have the expectations

E[y(t)] =
∫ ∞

−∞
E[y(t)|x]fξ (x − s(t))dx, (8)

E[y2(t)] =
∫ ∞

−∞
E[y2(t)|x]fξ (x − s(t))dx. (9)

Based on the input SNR of Eq. (1) and the output SNR of
Eq. (4), we have the output-input SNR gain of an array as

GN = Rout

Rin
= |〈E[y(t)] exp[−i2πt/T ]〉|2

〈var[y(t)]〉
σ 2

ξ

A2/4
. (10)

Since ξ (t) and ηn(t) are independent, Eq. (2) can be
rewritten as yn(t) = g[s(t) + z(t)], where the composite noise
components zn(t) = ξ (t) + ηn(t) are with the same convolved
PDF fz(z) = ∫

fη(u)fξ (z − u)du. We further consider a
small periodic signal s(t) with a maximal amplitude A→ 0
[|s(t)| � A]. Then, at a fixed time t , we can make a Taylor
expansion of fξ (x − s(t)) ≈ fξ (x) − s(t)f ′

ξ (x) up to the first
order in Eqs. (8) and (9) with f ′

ξ (x) = dfξ (x)/dx. Then, the
small-signal limit of Eq. (8) can be expressed as

E[y(t)] ≈
∫ ∞

−∞
E[y(t)|x][fξ (x) − s(t)f ′

ξ (x)]dx

=
∫ ∞

−∞

∫ ∞

−∞
g(x + u)fη(u)fξ (x)dudx − s(t)

×
∫ ∞

−∞

∫ ∞

−∞
g(x + u)fη(u)f ′

ξ (x)dudx

= s(t)
∫ ∞

−∞
g′(z)

∫ ∞

−∞
fη(u)fξ (z − u)dudz

= s(t)Ez[g
′(z)], (11)

where we assume that the derivative g′(z) = dg(z)/dz and
g has zero mean under fz, i.e., Ez[g(z)] = 0, which is not
restrictive since any arbitrary g can always include a constant
bias to cancel this average. Similarly, we obtain

E[y2(t)] ≈
∫ ∞

−∞
E[y2(t)|x][fξ (x) − s(t)f ′

ξ (x)]dx

≈ Eξ {Eη[y2(t)]}

= Eξ

{
1

N2

N∑
n=1

N∑
m=1

Eη[ynym]

}
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= 1

N2
Eξ

{
NEη

[
y2

n

] + N (N − 1)Eη[ynym]
}

(∀n 	= m)

= 1

N
Ez[g

2(z)] + N − 1

N
Eξ

{
E2

η

[
g(ξ + η)

]}
, (12)

where Ez[·] = ∫ ∞
−∞ ·fz(z)dz = ∫ ∞

−∞
∫ ∞
−∞ ·fξ (ξ )dξ fη(η)dη =

Eξ {E[·]} and Eη[yn] = Eη[ym] for n,m = 1,2, . . . ,N .
Therefore, based on Eqs. (11) and (12), we have

var[y(t)] = E[y2(t)] − E2[y(t)]

≈ E[y2(t)] − s2(t)E2
z[g′(z)]

≈ E[y2(t)] (13)

up to first order in the small signal s(t). Substituting Eqs. (12)
and (13) into Eq. (10), we obtain the expression of the SNR
gain of a parallel array of memoryless nonlinearities, up to first
order in the small signal s(t), as

GN ≈ σ 2
ξ E2

z[g′(z)]
1
N

Ez[g2(z)] + N−1
N

Eξ

{
E2

η[g(ξ + η)]
} . (14)

III. DOUBLE-MAXIMUM RESONANCE EFFECTS

A. Array stochastic resonance by random noise

When the internal noise root-mean-square amplitude
(RMS) ση increases, the positive derivative

∂GN

∂ση

> 0 (15)

indicates the occurrence of the stochastic resonance phe-
nomenon. Furthermore, when the equality

∂GN

∂ση

∣∣∣∣
ση=σ

(k)
η

= 0 (16)

holds at solutions of ση = σ (k)
η , and in the neighborhood

[σ (k)
η − δ,σ (k)

η + δ] (δ > 0) of σ (k)
η , the derivative ∂GN/∂ση

is positive to the left of σ (k)
η and negative to the right of this

point, then GN has a local maximum at σ (k)
η . Thus, if there is

more than one local maximum, the stochastic multiresonance
phenomenon of SNR gain will appear.

We here consider the three-threshold characteristic

g(x) = 1
2 [sgn(x − λ) + sgn(x + λ)], (17)

with the threshold parameter λ and the signum (sgn) function
sgn(·). The internal noise components ηn(t) are assumed
to be uniformly distributed over [−√

3ση,
√

3ση] with PDF
fη(u) = 1/(2

√
3ση) and cumulative distribution

Fη(u) =

⎧⎪⎪⎨
⎪⎪⎩

0, for u �
√

3ση

u+√
3ση

2
√

3ση

, for − √
3ση < u <

√
3ση,

1, for u �
√

3ση.

(18)

Then, based on Eq. (17), we have the explicit expression of
expectation

Eη[g(ξ + η)] = 1 − Fη(−λ − ξ ) − Fη(λ − ξ ). (19)

Thus, the asymptotic expression of the SNR gain of Eq. (14)
can be expressed as

GN ≈ 4σ 2
ξ f 2

z (λ)
2
N

[1 − Fz(λ)] + N−1
N

Eξ {[1 − Fη(−λ − ξ ) − Fη(λ − ξ )]2} (20)

and the equality of Eq. (16) becomes

∂GN

∂ση

= 2[fξ (λ −
√

3ση) + fξ (λ +
√

3ση) − 2fz(λ)][1 − Fz(λ)]+fz(λ)[Fξ (λ −
√

3ση) + Fξ (λ+
√

3ση) − 2Fz(λ)]

+ (N − 1)[fξ (λ −
√

3ση) + fξ (λ +
√

3ση) − 2fz(λ)]Eξ [(1 − Fη(−λ − ξ ) − Fη(λ − ξ ))2]

− 2(N − 1)fz(λ) Eξ {[1 − Fη(−λ − ξ ) − Fη(λ − ξ )][(λ − x)fη(λ − x) − (λ + x)fη(λ + x)]} = 0. (21)

We further consider the generalized Gaussian noise ξ (t)
with PDF

fξ (x) = c1

σξ

exp

(
−c2

∣∣∣∣ x

σξ

∣∣∣∣
α)

, (22)

where c1 = α
2 �

1
2 ( 3

α
)/�

3
2 ( 1

α
), c2 = [�( 3

α
)/�( 1

α
)]

α
2 for a rate

of decay exponent α > 0, and the noise RMS is σξ . Here,
as the exponent α varies, we can conveniently consider a
spectrum of densities ranging from the Gaussian (α = 2) to
those with relatively much faster (α > 2) or slower (α < 2)
rates of exponential decay of their tails. In this case, the PDF
fz of the composite random variables zn(t) = ξ (t) + ηn(t)

becomes

fz(x) =
∫ √

3ση

−√
3ση

fξ (x − u)
1

2
√

3ση

du

= Fξ (x + √
3ση) − Fξ (x − √

3ση)

2
√

3ση

, (23)

with the cumulative distribution Fξ (x) = ∫ x

−∞ fξ (u)du.

Given the noise RMS amplitude σξ = 1/
√

3 and the
exponent α = 8, we plot the SNR gain GN as a function of
the internal uniform noise level ση in Fig. 1(a) for different
array sizes. It is seen that G1 of an isolated characteristic
monotonically decreases as ση increases, and the stochastic
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FIG. 1. (Color online) (a) Output-input SNR gain GN of Eq. (20) versus the internal uniform noise level ση for different array sizes
N = 1,2,5,10,20,100, and ∞ (from the bottom up); (b) Roots of uniform noise RMS amplitudes σ (k)

η in Eq. (21) versus the array size N . The
optimal noise levels σ (1)

η and σ (3)
η that locally maximize GN are marked by green asterisks (∗) and red downward triangles (�), respectively.

While, the magenta squares (�) represent σ (2)
η that correspond to the locally minimum of GN . Here, the threshold λ = 1 in Eq. (17), the external

generalized Gaussian noise ξ (t) is with RMS amplitude σξ = 1/
√

3 and exponent α = 8.

resonance effect does not occur. For the array size N � 2, the
noise-enhanced effect appears and the SNR gain GN exhibits
the resonancelike behavior as ση increases. Moreover, as the
array size N � 8, it is found in Fig. 1(b) that there are three
roots of the noise RMS amplitudes σ (k)

η in Eq. (21). For
solutions σ (1)

η and σ (3)
η , we calculate the derivative ∂GN/∂ση

of Eq. (21) in the neighborhood [σ (k)
η − δ,σ (k)

η + δ] of σ (k)
η

(δ > 0). It is found that the derivative ∂GN/∂ση is positive
to the left of σ (k)

η and negative to the right of this point, then
GN has local maxima at σ (1)

η and σ (3)
η . This is the stochastic

multiresonance effect that manifests in an array possessing
nonlinear characteristics, as illustrated in Fig. 1(a). The
mechanism giving rise to stochastic multiresonance depends
on the interaction of internal noise components ηn(t) in the
nonlinear systems. It is shown in Fig. 2 that the first variance
term Ez[g2(z)] (solid line) of the denominator in Eq. (21)
increases monotonically for the increase of uniform noise
RMS amplitude ση, which represents the statistical fluctuation
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 E
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FIG. 2. (Color online) Variance terms Ez[g2(z)] (solid line) and
Eξ {E2

η[g(ξ + η)]} (dashed line) in the denominator of Eq. (14) versus
the internal uniform noise RMS amplitude ση. Other parameters are
the same as in Fig. 1(a).

around the nonstationary mean E[y(t)] of each element.
However, as the array size N increases, its contribution to the
whole variance weakens with the proportional factor of 1/N .
While, as shown in Fig. 2, the term Eξ {E2

η[g(ξ + η)]} (dashed
line) first decreases, and then goes through a bell-type curve.
By this mechanism, the addition of internal noise ηn(t) first
helps the input signal to overcome the nonlinear threshold,
and the array output y(t) carries more signal-ingredient of
E[y(t)], leading to the decrease of this variance part. Further
increase of noise results in the increase of Eξ {E2

η[g(ξ + η)]}.
However, due to the independent characteristics of ηn, the
quantity of Eξ {E2

η[g(ξ + η)]} tends to a finite constant at large
ση. Moreover, as the array size N increases, its contribution
to the whole variance is enhanced by the proportional factor
of (N − 1)/N . Thus, the output-input SNR gain presents the
double extrema.

Particularly, for the array size N = 100, the roots of
uniform noise RMS amplitudes σ (k)

η in Eq. (21) are illustrated
in Fig. 3 versus the exponent α of generalized Gaussian noise
ξ (t) of Eq. (22). For α = 2, Eq. (22) corresponds to the
Gaussian noise type. It is observed in Fig. 3 that, only for
the tails of noise densities decaying at a higher rate α > 2
than Gaussian noise, the array stochastic multiresonance effect
occurs. The reason is, for the exponent α > 2, the tails of these
non-Gaussian noise densities decay at rates faster than the rate
of decay of the Gaussian density tail. For the same noise RMS
amplitude σξ , this special non-Gaussian noise will produce
less large-magnitude observations than would be predicted by
a noise model with α � 2. Therefore, in such noise types with
α > 2, the positive role of the internal noise will be manifested
more clearly in assisting the input signal to cross the threshold,
resulting in this multiple resonance effect.

It is also noted in Fig. 1(a) that the maximum of SNR
gain G∞ = 2.36 at the optimal noise level σ (1)

η = 0.12. For

σξ = 1/
√

3 and N = ∞, the maximal SNR gains G∞, at
the corresponding optimal noise levels σ (1)

η , are plotted as a
function of the generalized Gaussian noise decay exponent α

in Fig. 4. Interestingly, it is seen in Fig. 4 that the maximal
SNR gains G∞ can greatly exceed unity for the non-Gaussian
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FIG. 3. (Color online) Roots of uniform noise RMS amplitudes
σ (k)

η of the denominator in Eq. (21) versus the decay exponent α of
generalized Gaussian noise ξ (t). The array size N = 100 and the
noise RMS amplitude σξ = 1/

√
3. Solid lines represent the optimal

noise levels σ (1,3)
η that locally maximize the SNR gain G100, while the

dashed line indicates the corresponding noise level σ (2)
η that locally

minimizes G100.

noise types with the exponents α 	= 2. This is because, using
the Cauchy-Schwarz inequality and as N = ∞, we find the
SNR gain G∞ in Eq. (14) bounded by

G∞ = σ 2
ξ E2

z[g′(z)]

Eξ

{
E2

η[g(ξ + η)]
} = σ 2

ξ E2
ξ {dEη[g(ξ + η)]/dξ}
Eξ

{
E2

η[g(ξ + η)]
}

� σ 2
ξ Eξ

[
f ′2

ξ (ξ )

f 2
ξ (ξ )

]
= σ 2

ξ I (fξ ) = I (fξ0 ), (24)
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FIG. 4. (Color online) The maximal SNR gains G∞ of Eq. (20)
versus the generalized Gaussian noise decay exponent α at the
corresponding optimal noise levels σ (1)

η . The other parameters are
the same as in Fig. 1. The solid line represents G∞, the black dashed
line indicates the unity line and the magenta dashed line is the Fisher
information of I (fξ0 ). At the exponent α = 8, the the corresponding
Fisher information I (fξ0 ) = 2.55 marked by a square, and the asterisk
mark indicates the maximum of SNR gain G∞ = 2.36 that obtained
by the optimal noise level and the infinity of array size N by the array
of nonlinearities of Eq. (17).

where the equality occurs as the nonlinearity Eη[gopt(ξ + η)] =
Cf ′

ξ (ξ )/fξ (ξ ), i.e., the locally optimum nonlinearity gopt(ξ ) =
Cf ′

ξ (ξ )/fξ (ξ ) and the PDF fη(η) = δ(η). This means there is
no internal noise in each nonlinearity of gopt. Furthermore,
we assume that the scaled noise ξ (t) = σξ ξ0(t) has PDF
fξ (ξ ) = fξ0 (ξ/σξ )/σξ and ξ0(t) has a standardized PDF fξ0

with unity variance σ 2
ξ0

= 1. Then, the Fisher information
I (fξ0 ) = Eξ0 [f ′2

ξ0
/f 2

ξ0
] and I (fξ ) = Eξ [f ′2

ξ /f 2
ξ ] = I (fξ0 )/σ 2

ξ . It
is known that the standardized generalized Gaussian noise
distribution in Eq. (22) has the Fisher information I (fξ0 ) =
α2�(3α−1)�(2 − α−1)/�2(α−1) [43].

Our finding agrees with the conclusion in Ref. [4]: The
addition of noise to a nonlinear system first degrades, and
then improves the output SNR, resulting in a resonance-
like behavior. However, the output SNR can never exceed
the input SNR for a weak signal corrupted by Gaussian
noise, i.e., an output-input SNR gain less than unity. Here,
Eq. (24) generalizes this conclusion to arbitrary noise types
of ξ (t) for processing a weak periodic signal. We note that
the maximum SNR gain, that is Fisher information I (fξ0 ),
can be only achieved by the locally optimum nonlinearity
gopt(ξ ) = Cf ′

ξ (ξ )/fξ (ξ ) indicated in Eq. (24). The standardized
Gaussian noise distribution is with α = 2 and a minimal Fisher
information I (fξ0 ) of unity [42,43]. For processing a weak
signal in Gaussian white noise, the optimum processor is the
matched filter. For other suboptimal nonlinear systems that
might show the stochastic resonance effect, the SNR gain can
never exceed the bound of I (fξ0 ) = 1.

Since the locally optimum nonlinearity gopt(ξ ) might be
unavailable for unknown noise PDF, the suboptimal nonlinear
systems are frequently employed [5,10,18,19,43]. For a weak
signal buried in generalized Gaussian noise, the considered
nonlinear system of Eq. (17) is suboptimal. We note that
the maximum of SNR gain of G∞ will never catch up, but
it can come close to the upper limit of I (fξ0 ). Thus, the
possibility of the SNR gain G∞ beyond unity can be expected
for the non-Gaussian noise distribution with a larger Fisher
information I (fξ0 ) > 1. For instance, as the exponent α = 8,
the corresponding Fisher information I (fξ0 ) = 2.55. In the
considered suboptimal system of Eq. (17), the maximum of
SNR gain G∞ = 2.36 � I (fξ0 ), even with the help of the
optimal noise level and the array size N approaching infinite,
as shown in Fig. 4 with the square [I (fξ0 )] and asterisk (G∞).
This results accord with the opinion of stochastic resonance
in Ref. [4].

In each nonlinear element, the internal uniform noise
plays a part to enhance the SNR gain, resulting in an explicit
expression of GN in Eq. (20). It is proved that for the addition
of internal noise to a given weak signal, the output SNR of an
arbitrary memoryless nonlinearity is bounded by the Fisher
information I (fz) of the composed noise distribution [43,44].
Besides, it is known that the Fisher information quantities
satisfy the inequality I (fz) � min[I (fξ ),I (fη)] [45,46].
Thus, the internal noise type with a larger Fisher information
I (fη) > I (fξ ) is preferable. Here, we assume that the external
noise has a fixed RMS amplitude of σξ , but a varying I (fξ ) for
various distributions. In line with this point, the uniform noise
with an infinite Fisher information of I (fη) = σ−2

η I (fη0 ) =
σ−2

η α2�(3α−1)�(2 − α−1)/�2(α−1) = ∞ (ση > 0 and
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α = ∞) is a potential option [20,43,44]. Furthermore, for
such an array of threshold-based nonlinearities, finding the
optimal distribution of internal noise to maximize the output
SNR deserves to be further studied.

B. Array vibration multiresonance by high-frequency
sinusoidal vibrations

In practice, the internal noise type or level might be difficult
to control. We hereby replace the internal noise terms by the
high-frequency sinusoidal vibrations

ηn(t) = Aη sin(2πfnt), (25)

in each element for the improvement of the output-input SNR
gain of an array. Here, the vibrations ηn(t) have the common
amplitude Aη, but different frequencies fn for n = 1,2, . . . ,N .
In this case, the nonstationary expectation can be expressed as

E[y(t)] = 1

N

N∑
n=1

E[yn(t)], (26)

and

E[yn(t)] =
∫ ∞

−∞
g[x + s(t) + ηn(t)]fξ (x)dx. (27)

For index n,m = 1,2, . . . ,N , the second moment

E[yn(t)ym(t)] =
∫ ∞

−∞
g(x + s + ηn)g(x + s + ηm)fξ (x)dx.

(28)

Therefore, the nonstationary variance

var[y(t)] = E[y2(t)] − E2[y(t)]

= 1

N2

N∑
n=1

N∑
m=1

{E[yn(t)ym(t)] − E[yn(t)]E[ym(t)]}.

(29)

Substituting Eqs. (26)–(29) into Eq. (10), the output-input SNR
gain GN can be also calculated.

The output-input SNR gain GN is illustrated in Fig. 5
as a function of the sinusoidal vibration amplitude Aη for
different array sizes N = 1,2,5,10, and ∞. Here, the input
signal s(t) = 0.01 sin(2πt/T ), and the external generalized
Gaussian noise ξ (t) is with RMS amplitude σξ = 1/

√
3 and

exponent α = 8. In each element, the sinusoidal vibration
frequencies take fn = (20 + n)/T for n = 1,2, . . . ,N . It is
seen in Fig. 5 that as the vibration amplitude Aη increases, the
multiple vibrational resonance effect occurs for N � 1. This
method of injecting high-frequency sinusoidal vibrations can
also obtain the maximal SNR gain GN that exceeds unity. For
instance, the maximal G∞ = 2.32 at Aη = 0.15, as shown in
Fig. 5 by an asterisk mark. Moreover, it is noted in Fig. 5
that the locally maximal G∞ = 1.17 (marked by a downward
triangle) is still larger than unity at Aη = 2.06. While, in
Fig. 1(a) by the addition of uniform noise, the second resonant
peak value of GN are always less than unity.

The mechanism of vibrational multiresonance is similar
to the stochastic multiresonance. Actually, the sinusoidal
vibration modulation can be viewed as a variable with the
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FIG. 5. (Color online) Output-input SNR gain GN of Eq. (10)
versus the sinusoidal vibration amplitude Aη for different array
sizes N = 1,2,5,10, and ∞ (from the bottom up). For N = ∞,
the stationary variance 〈var[y(t)]〉 is calculated by Eq. (31). Here,
the external generalized Gaussian noise ξ (t) is with RMS am-
plitude σξ = 1/

√
3 and exponent α = 8. The sinusoidal vibration

frequencies fn = (20 + n)/T for n = 1,2, . . . ,N . The input signal
s(t) = 0.01 sin(2πt/T ).

distribution fη(u) = 1/(π
√

A2
η − u2) over the interval u ∈

[−Aη,Aη]. The roles of internal noise components are filled
by the sinusoidal vibrations. Therefore, the output-input SNR
gain also presents the multiple peaks as the sinusoidal vibration
amplitude Aη increases.

For the method of adding noise and array size N = ∞,
Eq. (12) becomes

lim
N→∞

E[y2(t)] = 1

N
Eξ

{
Eη

[
y2

n

]+ (N − 1)Eη[ynym]
}

(∀n 	= m)

= Eξ {Eη[ynym]}. (30)

It is noted that the indices n and m are different, but arbitrary in
Eq. (30), thus we can adopt two elements, each embedded with
independent internal noise components ηn and ηm, to evaluate
the SNR gain of a parallel array with size N = ∞, as shown
in Fig. 1(a). This method is tractable and effective. Similarly,
for the approach of injecting sinusoidal vibrations and based
on Eq. (29), the stationary variance can be calculated as

lim
N→∞

〈var[y(t)]〉

= 1

N2

{
N∑

n=1

〈
E
[
y2

n(t)
]− E2[yn(t)]〉 +

N∑
n=1

N∑
m=1

〈E[yn(t)ym(t)]

− E[yn(t)]E[ym(t)]〉}(∀n 	= m)

= 〈E[yn(t)ym(t)]〉 − 〈E[yn(t)]E[ym(t)]〉. (31)

Therefore, via two arbitrary sinusoidal vibrations ηn and ηm,
we can also evaluate the array SNR gain in Eq. (10) with size
N = ∞, as shown in Fig. 5.

IV. CONCLUSION

In this paper, we report the double-peak resonance effect
in an array of threshold elements, which can be achieved
by two methods of injecting internal noise components or
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high-frequency sinusoidal vibrations. In the limit of weak
signals, we analytically show the occurrence condition of
array stochastic multiresonance, and obtain the maximal SNR
gain greatly larger than unity for a small signal buried in
non-Gaussian noise. Since the method of adding noise in an
array might be not always practical, we inject high-frequency
sinusoidal vibrations into arrays to enhance the output-input
SNR gain. The vibrational resonance effect is also observed.
The output-input SNR gain not only can be enhanced by the
increase of the sinusoidal vibration amplitude and the array

size, but also exhibits two maxima at multiple values of the
vibrational modulation amplitude. We argue that this easily
implemented method will be valuable for nonlinear signal
processing, and deserves to be further studied extensively. For
instance, besides the considered threshold-based characteris-
tics, it is also interesting to further explore the possibility of
multiple resonance in other electronics devices or a bundle of
sensory excitable neurons, wherein the sinusoidal vibrations
are exploited to optimize the output SNR of an array of
nonlinear elements.
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[30] A. A. Zaikin, L. López, J. P. Baltanás, J. Kurths, and M. A. F.

Sanjuán, Phys. Rev. E 66, 011106 (2002).
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