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Exploiting vibrational resonance in weak-signal detection
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In this paper, we investigate the first exploitation of the vibrational resonance (VR) effect to detect weak
signals in the presence of strong background noise. By injecting a series of sinusoidal interference signals of the
same amplitude but with different frequencies into a generalized correlation detector, we show that the detection
probability can be maximized at an appropriate interference amplitude. Based on a dual-Dirac probability density
model, we compare the VR method with the stochastic resonance approach via adding dichotomous noise. The
compared results indicate that the VR method can achieve a higher detection probability for a wider variety of
noise distributions.
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I. INTRODUCTION

Vibrational resonance (VR) proposed by Landa and
McClintock [1] is the situation where a high-frequency
sinusoidal interference signal of appropriate amplitude can
optimally amplify a weak periodic signal in bistable systems.
It is also viewed as an interesting alternative to stochastic
resonance [2] in which the role of noise is taken over by
the vibrational interference [1]. So far, VR has been widely
studied in a variety of nonlinear systems such as excitable
neurons [3,4], bistable models [5–7], dynamical oscillators
[8–10], and circuit systems [11,12]. We inject a series of
sinusoidal interfering signals with different frequencies into an
array of nonlinear elements, and demonstrate the potential of
VR in improving the output-input signal-to-noise ratio (SNR)
gain of arrays [13,14]. Moreover, high-frequency vibration
or deterministic jitter often naturally arises in real devices
[15,16]. Thus, we argue that the VR phenomenon deserves to
be further investigated in nonlinear signal processing.

Up to now, there has been little research on the VR effect
in statistical signal detection. In this paper, we focus on the
potential application of VR in the generalized correlation
detector for detecting weak signals buried in a strong noise
background. Inspired by the VR mechanism, we inject a
series of high-frequency sinusoidal interfering signals of the
same tunable amplitude but with different frequencies into
nonlinear elements, and then average their outputs to establish
a generalized correlation detector. Since this weak signal
detection task can be formulated as a statistical hypothesis-test
problem, we theoretically analyze the statistical characteristics
of this constructed detector, and deduce the normalized
asymptotic efficacy with the assumption of a sufficiently large
observation length. It is shown that the detection probability
of this constructed detector is an increasing function of the
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number of nonlinear elements and attains its maximum for an
infinite number of elements at a given interference amplitude.
However, for this limiting case of an infinite number of
elements, the detector is not realizable in practice. So we
devise an effective realizable detector whose operation is
equivalent to that of an infinite number of nonlinear elements,
each possessing a given transfer function, and present the
theoretical formula for the detection probability. Within this
theoretical framework, the VR effect is demonstrated for
detecting weak signals buried in a variety of non-Gaussian
noise distributions, even when detector parameters vary. It
is noted that a dual-Dirac probability density model [15,16]
provides an approximation of the amplitude distribution of
the sinusoidal vibration. This distribution model is very
similar to the distribution of dichotomous noise that induces
the stochastic resonance phenomenon [17–21]. Therefore, in
the considered generalized correlation detector, we com-
pare the maximum detection probability obtained by high-
frequency sinusoidal interfering signals with that achieved
by dichotomous noise, and find the VR method attains an
improved detection probability for a wider variety of noise
distributions. In order to support practical signal detection
tasks, we numerically show that the detection probability of
a detector with the finite number of elements can closely ap-
proach the theoretical detection probability of the impractical
detector with an infinite number of elements. These results
show that VR is effective in enhancing weak signal detection,
without resort to an unrealizable infinite array.

II. MODEL

Consider the observation vector X= (X1,X2, . . . ,XN ) of
real-valued components Xn given by

Xn = θsn + Zn, n = 1,2, . . . ,N, (1)

where sn represent the known values of signal components with
an intensity of θ � 0, and Zn are additive zero-mean white
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noise components with a probability density function (PDF)
of fz. The existence of the signal or not is actually a statistical
hypothesis-test problem with the null hypothesis H0 (θ = 0)
and the alternative hypothesis H1 (θ > 0) [22]. Under the
hypotheses H0 and H1, the joint probability densities of the
observation X are expressed as fX(X|H0) = ∏N

n=1 fz(Xn)
and fX(X|H1) = ∏N

n=1 fz(Xn − θsn), respectively. It is very
difficult to choose H0 or H1 in the case of weak signals (θ →0).
Based on the generalized Neyman-Pearson lemma, the locally
optimum or locally most powerful detector can be constructed
based on the probability density of noise [22]. However, the
optimal detector does not exist for many problems of interest,
for instance, unknown noise distributions, or the structure of
the optimal detector is too complex to be realized [17,22–26].
Thus, a generalized correlation detector given by

TGC(X) =
N∑

n=1

g(Xn)sn

H1

≷
H0

γ (2)

and is often utilized to select H0 or H1 on the basis of X

[17,22–26]. Here g is a memoryless transfer function and γ is
the decision threshold.

For a sufficiently large observation length N and according
to the central limit theorem, the test statistic TGC converges
to a Gaussian distribution with expectation E(TGC|Hi) and
variance var(TGC|Hi) under the hypothesis Hi (i = 0,1)
[22]. Assume the expectation of the memoryless transfer
function g is zero under PDF fz, i.e., E[g(x)] = ∫ ∞

−∞ g(x)fz(x)
dx = 0 [22]. Then, for a given a false alarm probability PFA,
the detection probability PD can be calculated as

PD = Q[Q−1(PFA) − θ
√

NPs

√
ξGC], (3)

with the function Q(x) = ∫ ∞
x

exp[−t2/2]/
√

2π dt and the
inverse function Q−1(x) [22]. Here the signal power Ps =∑N

n=1 s2
n/N , and the normalized asymptotic efficacy ξGC of

the detector is defined as [22,27]

ξGC = lim
N→∞

lim
θ→0

[
E(TGC|H1) − E(TGC|H0)

θ
√

NPsvar(TGC|H0)

]2

= lim
N→∞

[
dE(TGC|H1)

dθ

∣∣
θ=0

]2

NPsvar(TGC|H0)
, (4)

where limθ→0{E[TGC(X)|H1] − E[TGC(X)|H0]}/θ tends to the
derivative dE(TGC|H1)/dθ [22].

Inspired by the mechanism of VR, we inject high-frequency
sinusoidal interfering signals

ηmn = Aη sin(2πfmn/fsa), m = 1,2, . . . ,M, (5)

with the same amplitude Aη but different frequencies fm into
a parallel array of nonlinear elements with the number M ,
as shown in Fig. 1. Here, we mainly consider the low-pass
known signal with a cutoff frequency fs and the sampling
frequency fsa , thus the condition fsa/2 > fm � fs needs to
be satisfied [1,14]. In the discrete-time implementation, the
injected frequencies fm and the sampling frequency fsa are
such that 1/fm is always an integer multiple of 1/fsa . Then, the
input of the mth transfer function g is updated as X̂mn = Xn +
ηmn, as shown in Fig. 1. At each time n, we average outputs

FIG. 1. Generalized correlation detector with M high-frequency
sinusoidal interfering signals.

g(X̂mn) and reestablish a generalized correlation detector as

THF(X̂) =
N∑

n=1

(
1

M

M∑
m=1

g(X̂mn)

)
sn

H1

≷
H0

γ. (6)

Similarly, when the observation length N is sufficiently
large, the statistic THF also converges to a Gaussian distribu-
tion, in accordance with the central limit theorem. Then, under
the hypothesis H0, the expectation can be computed as

E(THF|H0) = 1

M

N∑
n=1

M∑
m=1

E[g(X̂mn)]sn

=
N∑

n=1

E[g(X̂mn)]sn (∀m ∈ M)

= 0, (7)

and the variance is given by

var(THF|H0)=
N∑

n=1

[
E
(
T 2

HF

∣∣H0
) − E2(THF|H0)

]
≈ 1

M2

N∑
n=1

{
M∑

m=1

E[g2(X̂mn)] +
M∑

�=1

M∑
k=1

× E[ g(X̂�n)g(X̂kn)]

}
s2
n, (∀�	=k). (8)

Under the hypothesis H1, the expectation can be evaluated as

E(THF|H1)= 1

M

N∑
n=1

M∑
m=1

E[g(X̂mn)]sn, (9)

and the variance var(THF|H1) ≈ var(THF|H0) for a very weak
signal intensity (θ → 0). Since the derivative of the expecta-
tion of Eq. (9) with respect to θ has no explicit solution, then
the normalized asymptotic efficacy in Eq. (4) of the detector in
Eq. (6) can not be evaluated. In this case, we turn to calculate
the output SNR [22] or the deflection coefficient [27] of the
detector in Eq. (6) as

Rout = [E(THF|H1) − E(THF|H0)]2

var(THF|H0)
. (10)
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FIG. 2. Theoretical detection probability PD versus the interfer-
ence amplitude Aη for different numbers M = 1,2,5,10, and ∞ of
nonlinear elements. Here, the detection probability PD in Eq. (11) can
be theoretically computed by the output SNR Rout of Eq. (10) for finite
numbers of elements M = 1,2,5, and 10 (black lines from the bottom
up). While, for the infinite number M = ∞ of elements, the output
SNR Rout of Eq. (10) needs to be evaluated by Eqs. (13) and (14).
Accordingly, the theoretical detection probabilities PD are plotted
versus the interference amplitude Aη for M = ∞. The red solid
line corresponds to f� = 29fs and fk = 43fs , while the blue dashed
line represents the theoretical detection probabilities PD obtained as
f� = 21fs and fk = 77fs . These two lines almost coincide with each
other. Here the decay exponent of noise α = 8, the threshold 	 = 1.6,
the observation length N = 1000, the ratio fs/fsa = 10−3, the false
alarm probability PFA = 0.01, and the input SNR Rin = −25 dB.

Then, substituting Eqs. (8) and (9) into Eq. (10), we can obtain
the detection probability PD in Eq. (3) as [27]

PD = Q[Q−1(PFA) −
√

Rout]

= Q[Q−1(PFA) − θ
√

NPs

√
ξHF]. (11)

Furthermore, it is demonstrated in Refs. [22,27] that, for the
case where the signal strength θ is small, the output SNR Rout

[22] (or the deflection coefficient [27]) is also related to the
normalized asymptotic efficacy ξHF of the detector in Eq. (6)
as

ξHF = Rout

Nθ2Ps

. (12)

Based on Eqs. (8) and (9), the detection probability PD of
Eq. (11) can be theoretically calculated for a finite number
M of nonlinear elements. It is interesting to note that,
for a given detector and the signal energy, the normalized
asymptotic efficacy is an increasing function of the number
M of nonlinear elements [25]. This argument is also verified
by the illustrative example of Fig. 2, wherein the detection
probability PD attains its maximum for M = ∞ elements
at a given interference amplitude Aη. Thus, the subsequent
discussion will mainly focus on the situation of an infinite
number of nonlinear elements. Under this scenario, in order

to reduce the computation complexity of Eqs. (8) and (9), we
can approximate the expectation of Eq. (9) as

E(THF|H1)∞ = lim
M→∞

1

M

N∑
n=1

M∑
m=1

E[g(X̂mn)]sn

≈
N∑

n=1

E[g(X̂mn)]sn, (13)

and the variance of Eq. (8) becomes

var(THF|H0)∞ = lim
M→∞

N∑
n=1

{
1

M2

M∑
m=1

E[g2(X̂mn)]

+ 1

M2

M∑
�=1

M∑
k=1

E[g(X̂�n)g(X̂kn)]

}
s2
n

≈
N∑

n=1

E[g(X̂�n)g(X̂kn)]s2
n, (� 	= k), (14)

where the term
∑M

m=1 E[g2(X̂mn)] is O(M), and the term∑M
�=1

∑M
k=1 E[g(X̂�n)g(X̂kn)] is O(M2). We can regard the

sinusoidal interference signal as a variable with the distribution

of fη(x) = 1/(π
√
A2

η − x2), while different frequencies fk,�

indicate the different samples of this variable. Then there
are M(M − 1) identical expectations of E[g(X̂�n)g(X̂kn)] =
E{E2

η[g(Xn + ηn)]} for any pair of frequencies f� 	= fk . Here
the expectation operator Eη(·) = ∫ ·fη(u) du. Thus, the vari-
ance of Eq. (14) can be theoretically evaluated for the infinite
number of nonlinear elements.

Moreover, from Eqs. (13) and (14), we find that the indices
m, �, and k are generic indices that are arbitrary, but different
(� 	= k). Then, we can adopt two nonlinear parallel elements
subjected to the sinusoidal interfering signals η�n and ηkn with
frequencies f� 	= fk , respectively. Based on the outputs of
g(X̂�n) and g(X̂kn), the expectation of Eq. (13) and the variance
of Eq. (14) can be obtained. Substituting Eq. (13) and Eq. (14)
into Eq. (10), we can theoretically calculate the corresponding
detection probability PD of Eq. (11) for the detector in Eq. (6)
with an infinite number M = ∞ of nonlinear elements. In
Sec. III, it will be shown that this calculation method is
achievable.

III. RESULTS

The theoretical analyses of Sec. II are applicable to an
arbitrary memoryless transfer function that composes the
generalized correlation detector of Eq. (6). In this section,
for illustration, we consider a three-level transfer function

g(x) =

⎧⎪⎨⎪⎩
−1, x � −	

0, −	 < x � 	

1, x > 	

, (15)

with the threshold 	 � 0. Here it is noted that the transfer
function g in Eq. (15) is easily implementable in practice
and tractable analytically, while offering significant effect for
signal detection through VR. Furthermore, the weak signal
θsn = θ sin(2πfsn/fsa) is corrupted by zero-mean generalized
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FIG. 3. Detection probability PD versus interference amplitude
Aη and threshold 	. Here the number M = ∞ of elements, and
the interference frequencies f� = 29fs and fk = 43fs . The other
parameters are the same as in Fig. 2.

Gaussian noise Zn with its PDF [22,27]

fz(z) = c1

σz

exp

(
− c2

∣∣∣∣ z

σz

∣∣∣∣α)
, (16)

where c1=α
2 �

1
2 ( 3

α
)/�

3
2 ( 1

α
), c2=[�( 3

α
)/�( 1

α
)]

α
2 for a rate of

decay exponent α > 0, and the variance σ 2
z is also called noise

power Pz. Then, the input SNR is defined as Rin = Ps/Pz =
θ2/(2σ 2

z ) [22,27]. It is noted that the known input signal is not
restricted to the sinusoidal waveform, and other band-limited
signals with the same signal power Ps also present the similar
enhancement of the detection probability.

For a given input SNR Rin = −25 dB, the detection proba-
bility PD is plotted in Fig. 2 versus the interference amplitude
Aη for different numbers M = 1,2,5,10,∞ of elements (black
lines from the bottom up). It is seen in Fig. 2 that, as the
interference amplitude Aη increases, the detection probability
PD exhibits the VR effect, i.e., the enhancement of PD via
optimizing the interference amplitude Aη. It is also noted
that the detection probability PD is a monotonic increasing
function of the number M of nonlinear elements at a given
interference amplitude Aη. For an infinite number M = ∞
of elements, we select different frequencies of f� and fk to
calculate the theoretical detection probability PD of Eq. (11),
as shown in Fig. 2. The red solid line represents the detection
probability PD for the interfering frequencies of f� = 29fs

and fk = 43fs , and the blue dashed line corresponds to the
detection probability PD when interference frequencies are
f� = 21fs and fk = 77fs in Eq. (14). These choices of two
distinct frequencies are mainly illustrative, and in principle
for an infinite number M = ∞ of elements, any two distinct
frequencies will yield almost the same result.

Next, we plot the detection probability PD versus the
interference amplitude Aη and the threshold 	 in Fig. 3 for
the decay exponent α = 8 and the infinite number M = ∞
of elements. It is seen in Fig. 3 that, for a given threshold
	, the detection probability PD increases in pace with the
increase of Aη at first, then reaches a maximum value and
finally falls down, this is the VR effect. In addition, PD has
another local peak as Aη further increases, which is referred
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FIG. 4. Maximum of detection probability PD as a function of
Rin for three threshold values of 	 = 1 (black dotted line), 1.6 (red
solid line), and 2.5 (blue dashed line) via optimizing the interference
amplitude Aη. The other parameters are the same as in Fig. 3.

to as the multiresonance effect [1,3,5–9,13,14], as shown in
Fig. 3. In our previous studies [13,14], this multiresonance
effect is also analyzed for different decay exponents and
numbers of nonlinear elements. It is shown in Refs. [13,14]
that the multiresonance phenomenon is not only related to
the comparison between the nonlinearity and the excitations
due to the interferences, but is also associated with the noise
type (α > 2) and certain numbers M > 1. This complicated
resonant behavior deserves to be further studied, and we here
mainly focus on the maximum detection probability elicited
by this multiresonance phenomenon.

We also note in Fig. 3 that, for different values of the
threshold 	, the VR effect still survives. For instance, for given
threshold values of 	 = 1 (black dotted line), 1.6 (red solid
line) and 2.5 (blue dashed line), the maximum PD is plotted in
Fig. 4 as a function of the input SNR Rin via optimizing the
interference amplitude Aη. It is shown in Fig. 4 that, at each
point of Rin, the largest value of the maximum PD is obtained
at the optimal value of the 	 = 1.6. Therefore, the existence
of the VR phenomenon in Fig. 3 indicates that the positive
role of high-frequency interferences does not disappear for the
variable detector composed of the transfer function in Eq. (15).
The VR benefit to enhance the detection performance thus
exists over a broad range of the threshold 	, but the VR
efficacy is at its best for a specific optimal value of 	.

Furthermore, the generalized noise model of Eq. (16)
describes many noise types encountered in real-world sys-
tems, ranging from Gaussian noise (α = 2), Laplacian noise
(α = 1), to uniform noise (α = ∞) [22]. Based on the VR
method indicated in Fig. 3, we plot the maximum PD (blue
asterisks) as a function of the decay exponent α for the
given Rin = −25 dB and 	 = 1.6 in Fig. 5. It is seen in
Fig. 5 that, in this considered situation, Gaussian noise is the
worst type of background noise for detecting weak signals.
We attribute this characteristic to the Fisher information
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FIG. 5. Theoretical maximum detection probability PD versus
the decay exponent α for a given input SNR Rin = −25 dB and the
threshold 	 = 1.6. Here the blue asterisks represent the maximum
PD achieved by the VR method, while the black squares represent
the maximum PD via the stochastic resonance method. The detection
probabilities of the LOD (red solid line) and the LCD (magenta
dashed line) are also plotted as a function of the decay exponent α,
respectively. The other parameters are the same as in Fig. 3.

I (fz) = α2�(3α−1)�(2 − α−1)/[σ 2
z �2(α−1)] of the noise dis-

tribution [13,14,22], and the Gaussian noise has the minimal
Fisher information I (fz) = 1/σ 2

z (α = 2) [22]. Here it is noted
that the obtained maximum PD (blue asterisks) are the upper
bound that this generalized detector of Eq. (6) can achieve,
but not the optimal detectability (red solid line) of the locally
optimum detector (LOD) in the generalized Neyman-Pearson
sense [22,27], as illustrated in Fig. 5. It is known that
the normalized asymptotic efficacy in Eq. (4) reaches its
maximum of the Fisher information I (fz), which is achieved
by the LOD with the nonlinearity g(X) = −f ′

z(X)/fz(X) in
Eq. (2) [22]. The corresponding detection probability PD =
Q[Q−1(PFA) − θ

√
NPs

√
I (fz)] (red solid line) of the LOD is

also illustrated in Fig. 5. It is noted that, due to the benefits
of high-frequency interferences, the VR method presents the
corresponding detection probability PD (blue asterisks) close
to that (red solid line) of the LOD. In addition, the linear corre-
lation detector (LCD) with g(X) = X in Eq. (2) is frequently
employed in practice [22], since the Gaussian noise model of
the data is well justified and the corresponding optimal detector
is the LCD. We note that the detection probability of the LCD
is PD = Q[Q−1(PFA) − √

NRin] (magenta dashed line). For a
given input SNR Rin, the detection probability of the LCD is
a constant for any decay exponent α > 0, as shown in Fig. 5.
It is interesting to note that, compared with the LCD, the VR
method always attains a better detection probability.

In addition, it is shown in Refs. [15,16] that, from the
histogram of the ideal timing positions of binary transitions
between ±A, a dual-Dirac probability density model

fη(η) = 1
2 [δ(η − A) + δ(η + A)] (17)

provides an appropriate way to approximately represent the
amplitude distribution of high-frequency sinusoidal interfering
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FIG. 6. Detection probability PD as a function of threshold 	

and the dichotomous noise level ση. Here the dichotomous noise
components, instead of high-frequency sinusoidal interfering signals,
is added to the generalized correlation detector of Eq. (6). The other
parameters are the same as in Fig. 3.

signals. This model is immediately similar to the distribution
for dichotomous noise, which randomly takes +A or −A

with the same probability of 0.5. Therefore, in this considered
detector of Eq. (6), we will compare the maximum detection
probability obtained by tuning the amplitude of high-frequency
sinusoidal interfering signals with that achieved by tuning the
dichotomous noise level.

We inject dichotomous noise into the mth transfer function,
and the observation vector is updated as

X̃mn = θsn + Zn + ηmn = θsn + Wmn, (18)

where ηmn represent the dichotomous noise samples in the
mth parallel element, and the composite noise components
Wmn = Zn + ηmn have the convolution distribution fw(w) =∫

fη(u)fz(w − u) du = [fz(w − ση) + fz(w + ση)]/2. Here,
the dichotomous noise is with its PDF fη(η) = 1

2 [δ(η − ση) +
δ(η + ση)] and variance σ 2

η [17–21]. Therefore, the hypothesis-
test problem becomes a decision on the updated observation
data X̃ to determine whether the weak signal appears or not.

In previous work [25], when the signal amplitude θ → 0,
the normalized asymptotic efficacy in Eq. (4) for a generalized
correlation detector with an infinite number M = ∞ is given
by

ξGC = lim
M→∞

E2
w[dg(w)/dw]

1
M

Ew[g2(w)]+ M−1
M

Ez

{
E2

η[g(η + z)]
}

≈ E2
w[dg(w)/dw]

Ez

{
E2

η[g(η + z)]
}

= 4f 2
w[	]

Ez

{
E2

η

[
1
2 sign(η + z − 	) + 1

2 sign(η + z + 	)
]} ,

(19)

where Eν[·] = ∫ ·fν(ν)dν for ν = w,z and η. Using Eq. (19)
and Eq. (3), we plot the detection probability PD in Fig. 6 as
a function of threshold 	 and the noise level ση. It is seen
in Fig. 6 that, at a given Rin = −25 dB and for the external
non-Gaussian noise (α = 8), PD also presents the stochastic

022141-5



REN, PAN, DUAN, CHAPEAU-BLONDEAU, AND ABBOTT PHYSICAL REVIEW E 96, 022141 (2017)

20102 40 60 80 100 120
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

element number M

de
te

ct
io

n 
pr

ob
ab

ili
ty

 P
D

Theoretical P∞
D

Numerical P̂D

Theoretical PD

FIG. 7. Numerical and theoretical detection probabilities PD as
a function of the number M of nonlinear elements. For an infinite
number M = ∞, the theoretical maximum detection probability
PD = 0.65 of Eq. (11) (magenta dashed line) is calculated by the
output SNR Rout of Eq. (10) based on Eqs. (13) and (14). For a finite
number M � 2 of elements, the theoretical detection probability PD

of Eq. (11) calculated by Eqs. (8) and (9) is plotted (blue solid line).
In numerical experiments, the values of the detection probability
(black upper triangles) are achieved by the Monte Carlo simulation
method [27]. Based on Eq. (14) and Eq. (2.37) of Ref. [27], the
decision threshold γ = Q−1(PFA)/var(THF|H0) can be obtained for a
given false alarm probability PFA = 0.01. Then, for the observation
size N = 1000 and generating N independent random variables
Zn, we compare the statistic THF in Eq. (6) with the obtained
threshold γ for a number of realizations of 105, and estimate the
detection probability P̂D as the ratio of the number of THF > γ over
the 105 realizations. From Eq. (2.38) of Ref. [27], the number of
realizations needs to be larger than [Q−1(β/2)]2(1 − PD)/ε2PD. Here
the number of realizations 105 is large enough for evaluating the
detection probability PD with a relative absolute error ε = 0.01 and
the confidence level 100(1 − β)% (β = 0.05). Here, the threshold
value of the nonlinearity is 	 = 1.6, the input SNR is Rin = −25 dB,
the interference amplitude Aη = 0.2, and the other parameters are the
same as in Fig. 3.

multiresonance effect as the noise level ση increases. This
kind of multipeak effect has been also observed by tuning the
noise (not dichotomous noise) level in the context of stochastic
multiresonance [28–30].

The global similarity of Fig. 3 and Fig. 6 indicates
the comparable possibility of enhancing the detection of
a generalized correlation detector, by injecting the high-
frequency interference via VR or by adding noise via stochastic
resonance. Here we further observe an interesting feature of
the multiresonance effect by comparing the nonlinearity with
the amplitude Aη of the high-frequency interference or the
noise level ση. From Fig. 3 and Fig. 6, it is clearly seen that
the location of the main resonance maximum of PD has linear
relationship with a certain offset of the threshold 	. This result
indicates that the superposition of the intrinsic noise Zn and the
external vibration or dichotomous noise ηn forms an effective

excitation whose amplitude interacts with the threshold 	.
Thus, even in absence of the external vibration, the intrinsic
noise, by tuning its own level, can induce the stochastic
resonance effect that defines the offset peak location in the
threshold 	. We also observe that the aforementioned linear
interrelationship between the location of the second resonance
maximum of PD and the offset of the threshold 	.

From Fig. 6, the maximum PD = 0.586 at the threshold
	 = 1.6 and the noise level ση = 0.2. While, from the result of
Fig. 3 via the VR method, the maximum PD = 0.65 is achieved
at the threshold 	 = 1.6 and the high-frequency interference
amplitude Aη = 0.2. For a variety of the decay exponent α > 0
of noise, we also depict the corresponding maximum detection
probabilities PD (black squares) of the stochastic resonance
method in Fig. 5. It is seen in Fig. 5 that, as the decay exponent
α > 1.2, the VR method (blue asterisks) is more efficient than
the approach of adding dichotomous noise for improving the
detection probability.

IV. DISCUSSION

In this paper, we theoretically demonstrate that the VR
method can be exploited to improve the detection probability
of a weak signal. A series of sinusoidal interfering signals
with the same amplitude but different high frequencies is
injected into an array of parallel elements that compose the
generalized correlation detector. Under such scenarios, the
normalized asymptotic efficacy of the detector is theoretically
deduced. Specifically, the detector with an infinite number
of nonlinear elements is mathematically significant, because
the detection probability is an increasing function of the
number of nonlinear elements. It is demonstrated that we
can simply adopt two arbitrary elements subjected to different
high-frequency sinusoidal interfering signals, and theoretically
calculate the statistical characteristics of such a detector under
both hypotheses. Then, for a given false alarm probability, the
normalized asymptotic efficacy and the detection probability
can be theoretically calculated. This calculation method is
theoretically proved to be effective and realizable, as shown
in Figs. 2–5. However, an infinite number of elements is not
realizable in practice; yet the statistic THF in Eq. (6) represents
a theoretical asymptotic performance that can be closely
approached in practice, with an accessible finite number
of elements. In Fig. 7, for a given input SNR Rin = −25
dB and the interference amplitude Aη = 0.2, we plot both
the numerical and theoretical detection probabilities PD for
different numbers 2 � M � 120 of nonlinear elements. It is
seen in Fig. 7 that the numerical results (black upper triangles)
agree well with the corresponding theoretical values (blue solid
line) of PD, and the origin of the deviation between numerical
and theoretical results is due to some of the approximations
made in the derivations of Eq. (8), Eq. (9), and the assumption
of the variance var(THF|H1) ≈ var(THF|H0) in Sec. II. A more
accurate theoretical model needs to be established to reduce the
statistical dispersion between numerical and theoretical results
of the detection probability in future studies. When the number
M increases to 120, the corresponding detection probability
PD = 0.645, while the theoretical detection probability of
P ∞

D = 0.65 for an infinite number M = ∞ (magenta dashed
line). Importantly, even for the number M = 10, the numerical
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detection probability PD already approaches 0.63. Therefore,
in realistic signal detection tasks, we only need average outputs
of a finite number of parallel elements and establish the
detector of Eq. (6) to determine whether a weak signal exists or
not. Of course, the detection probability PD for a finite number
of parallel elements will closely approach but be slightly below
P ∞

D for an infinite number of elements.
The amplitude distribution of high-frequency sinusoidal

interfering signals can be approximately described as a dual-
Dirac probability density model. This model is similar to the
distribution for dichotomous noise. Therefore, in the consid-
ered detector, we compare the maximum detection probability
obtained by tuning the high-frequency sinusoidal interfering
signals with that achieved by tuning the dichotomous noise
level. It is shown in Fig. 5 that the VR method, compared to the
stochastic resonance approach via tuning dichotomous noise,
does achieve a higher detection probability when the noise
decay exponent α > 1.2. Thus, these results indicate that VR
is a potential method for enhancing the performance in weak
signal detection. The effect can be exploited via purposeful
injection of high-frequency interference signals in the process.
But it can also be exploited in devices where vibrations or
jitters are already naturally present.

Finally, there remain some open questions: In an array
of nonlinear elements, we randomly chose the interfering
frequencies that are much larger than the input signal fre-
quency. However, the mutual interference characteristic of
the high-frequency sinusoidal signals is not considered. If

these high-frequency sinusoidal signals are selected as a set
of quadrature waveforms by the Gram-Schmidt algorithm, can
the detection probability be further improved? Moreover, can
the phases or the amplitudes of these high-frequency sinusoidal
signals be randomly set? For some interfering frequencies,
the interference signals might be sampled into a discrete
quasiperiodic sequences similar to the stochastic modulation.
The resonant effects can be also observed (not shown here).
Then, can these kind of resonant effects be viewed as stochastic
resonance? It is also interesting to explore the unknown signal
detection problem within the framework of VR. In practice,
for unknown input SNRs and a variety of noise distributions,
we need to tune the vibrational amplitude and the nonlinearity
threshold to enhance the detection probability. We argue that
an adaptive algorithm of adjusting the vibrational amplitude
might be a good solution, in which the amplitudes of sinusoidal
vibrations do not have to be the same, and can be adaptively
adjusted based on real-time measurements of the input signals
to maximize the detection probability of a detector. These
questions deserve to be further studied.
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