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Signal estimation and filtering from quantized observations via adaptive stochastic resonance

Fei Li and Fabing Duan*

Institute of Complexity Science, Qingdao University, Qingdao 266071, People’s Republic of China

François Chapeau-Blondeau †

Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d’Angers,
62 avenue Notre Dame du Lac, 49000 Angers, France

Derek Abbott‡

Centre for Biomedical Engineering (CBME) and School of Electrical & Electronic Engineering,
University of Adelaide, Adelaide, South Australia 5005, Australia

(Received 20 February 2021; accepted 22 April 2021; published 5 May 2021)

Using a gradient-based algorithm, we investigate signal estimation and filtering in a large-scale summing
network of single-bit quantizers. Besides adjusting weights, the proposed learning algorithm also adaptively
updates the level of added noise components that are intentionally injected into quantizers. Experimental results
show that minimization of the mean-squared error requires a nonzero optimal level of the added noise. The
process adaptively achieves in this way a form of stochastic resonance or noise-aided signal processing. This
adaptive optimization method of the level of added noise extends the application of adaptive stochastic resonance
to some complex nonlinear signal processing tasks.
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I. INTRODUCTION

An optimal amount of existing background noise or in-
tentionally added noise sometimes is beneficial to physical,
biological, and engineering systems [1–9]. Such noise bene-
fits, originally named stochastic resonance (SR) [10], offer a
possible explanation of the functional role of neuronal noise
in nervous systems [11–13] and provide a means of improv-
ing information processing capabilities of nonlinear systems
[6,9,14–20].

From the practical point of view, a natural way of utilizing
the SR effect is adding a suitable amount of noise to a given
nonlinear system, and then operating it in an optimally noisy
environment. However this is not always feasible. Adding
more noise to a given nonlinear system is not useful when the
input signal is already corrupted by too much existing noise
[4,21]. In other words, a given nonlinear system is operated
at a larger noise level than the “optimum” one that corre-
sponds to the stochastic resonance peak, and adding more
noise will only degrade the system performance. Moreover, it
is noted that an important feature of certain nonlinear systems
is the optimal frequency range where the input signal can
be transferred [22–26]. When the system operates out of this
optimal frequency range, adding noise has a beneficial effect
for improving the signal transfer; otherwise, adding noise only
degrades the system response [24–27]. Another limitation
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is that adding noise or reducing noise in the system might
not be a useful effort, because the system itself has a good
adaptability to a given noisy environment; for instance, the
activity-deprived neuron actively lowers its action potential
threshold to improve its sensitivity to weak stimuli [2–4,8,11].
A number of issues are known to limit the practical exploita-
tion of SR in a single nonlinear system [3,28]. Nevertheless,
studies of SR in a summing network of excitable neuron
models or threshold devices demonstrate that adding more
noise may be of no use for a single system, but can signifi-
cantly enhance the response of a large-scale summing network
[3,13,28]. Moreover, even for conditions wherein a single neu-
ron or device has the capability of a local self-optimization,
the addition of noise is actually necessary for maximizing the
information flow of the large-scale network [3,4,13,28].

Therefore, adding a suitable amount of noise to a large-
scale summing network is gaining the attention of researchers.
Since the addition of noise can be artificially controlled, find-
ing the optimal level of added noise or the optimal noise type
becomes an interesting question [6,14,16–20,29–39]. Beyond
the analytical studies of optimal noise [6,14,16–20,29–40], a
gradient-based learning law that continuously finds the op-
timal noise level has been proposed to adaptively learn the
SR effect, which is called adaptive SR [6,17] and is also
applied to image enhancement [14,17,20] and nonlinear signal
processing [40,41].

In this paper, we investigate the constructive role of added
noise in networks of single-bit quantizers for signal parameter
estimation and nonlinear filtering by using the approach of
adaptive SR, as illustrated in Fig. 1. We first consider a sum-
ming network of M quantizers that all receive the same input
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FIG. 1. Block diagram representations of (a) the summing
threshold network model G for the noise-enhanced estimator θ̂ and
(b) the adaptive noise-enhanced transversal filter d̂n.

x, but each quantizer is subjected to the added noise ηm for
m = 1, 2, . . . , M. For a large-scale network with a sufficiently
large M, the input-output characteristic of this summing net-
work can be approximated as a differentiable function that
allows us to use the gradient-based learning rule to adap-
tively adjust the quantizer threshold, the network weights, and
the level of added noise. We further combine a number of
such summing networks into a transversal filter and apply
this gradient-based algorithm to tracking the desired signal
based on quantized observations. Experimental results show
that this learning scheme can adaptively reach the SR peak
that corresponds to a global or local minimum mean-squared
error (MSE), which is achieved at a nonzero optimal noise
level of added noise. These interesting results also suggest
the potential applications of the adaptive SR to some complex
signal processing problems in practical situations.

II. SIGNAL PARAMETER ESTIMATION
VIA ADAPTIVE SR

We first consider a summing network model G as shown in
Fig. 1(a) with a common scalar observation

x = θ + ξ, (1)

where the parameter θ is an unknown random variable with
the prior probability density function (PDF) fθ (θ ), and the
zero-mean background noise ξ , independent of the θ , has its
PDF fξ (ξ ). We here add a number of artificial noise com-
ponents ηm (m = 1, 2, . . . , M) into the common observation
x and send these mixed inputs x + ηm, respectively, to M
single-bit quantizers described by

g(x + ηm) =
{

1, x + ηm � γ ,

0, x + ηm < γ ,
(2)

with the response threshold γ . The noise components ηm are
mutually independent and accord to a common PDF fη(η).
Then, multiplying the average value of the summing network
by the weight w and adding a variable bias b0, we design a
noise-enhanced estimator

θ̂ (x) = b0 + w

M

M∑
m=1

g(x + ηm) (3)

to estimate the parameter θ , as illustrated in Fig. 1(a).
Moreover, the estimator θ̂ in Eq. (3) is designed to be unbi-
ased, i.e., Ex,η(θ̂ ) = b0 + wEx,η[g(x + η)] = Eθ (θ ), because
of Ex,η[g(x + ηm)] = Ex,η[g(x + η)] for m = 1, 2, . . . , M.
Here, the mean Eθ (θ ) of θ is known, the operator Eθ (·) de-
notes the expectation with respect to the PDF fθ , and the
operator Ex,η(·) represents the expectation with respect to the
joint PDF fx,η(x, η) of random variables x and η. We then find
the bias

b0 = Eθ (θ ) − wEx,η[g(x + η)]. (4)

Substituting Eq. (4) into θ̂ of Eq. (3), we have

θ̂ = Eθ (θ ) + w

M

M∑
m=1

g̃(x + ηm), (5)

where g̃(x + ηm) = g(x + ηm) − Ex,η[g(x + η)].
Defining the error signal ε = θ − θ̂ , the MSE of the de-

signed estimator θ̂ in Eq. (5) is given by

R = Ex,η[(θ − θ̂ )2]

= Ex,η

[(̃
θ − w

M

M∑
m=1

g̃(x + ηm)
)2
]

= Eθ (̃θ2) − 2wEx,η [̃θ g̃(x + η)]

+ w2

M2

{
M∑

m=1

Ex,η [̃g2(x + ηm)]

+ Ex

( M∑
m=1

Eη [̃g(x + ηm)]
M∑

n=1

Eη [̃g(x + ηn)]
)}

(m �= n)

= Eθ (̃θ2) − 2wEx,η [̃θ g̃(x + η)] + w2Ex{E2
η [̃g(x + η)]}

+ w2

M

(
Ex,η [̃g2(x + η)] − Ex{E2

η [̃g(x + η)]}
)
, (6)

where θ̃ = θ − Eθ (θ ), g̃(x + η) = g(x + η) − Ex,η[g(x + η)]
and Eη(·) is the expectation with respect to the PDF fη(η).

Using the Jensen inequality and for the given observation x,
we obtain the inequality Eη [̃g2(x + η)] � E2

η [̃g(x + η)] based
on the convex function f (x) = x2. Then, Ex,η [̃g2(x + η)] �
Ex{E2

η [̃g(x + η)]}. Therefore, it is indicated in Eq. (6) that, for
a given observation x and the added noise components ηm, the
MSE R is a monotonically decreasing function of the number
M. We here are interested in the limit of the MSE

R∞ = lim
M→∞

R

= Eθ (̃θ2) − 2wEx,η [̃θ g̃(x + η)] + w2Ex{E2
η [̃g(x + η)]}

= Ex
{(̃

θ − wEη [̃g(x + η)]
)2}

(7)
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for a sufficiently large number M. Interestingly, as M → ∞,
the average in Eq. (5) asymptotically converges to

lim
M→∞

1

M

M∑
m=1

g̃(x + ηm) = Eη [̃g(x + η)] (8)

and the designed estimator θ̂ of Eq. (5) reduces to

θ̂∞ = lim
M→∞

θ̂ = Eθ (θ ) + wEη [̃g(x + η)]. (9)

Substituting Eq. (9) into Eq. (6), the MSE of estimator θ̂∞ is
just the limit R∞ given by Eq. (7).

From Eq. (7), it is seen that the MSE R∞ is a function
of the weight w, the added noise PDF fη(η), and the re-
sponse threshold γ . We here consider a given noise PDF fη(η)
with the tunable level ση of the added noise and simplify g(x +
η) as g in the following deductions. Then, the partial derivative
of R∞ with respect to the weight w can be written as

∂R∞
∂w

= −2Ex,η (̃θ g̃) + 2wEx[E2
η (̃g)]. (10)

The partial derivative of R∞ with respect to the level ση of
the added noise is given by

∂R∞
∂ση

= −2w
∂Ex,η (̃θ g̃)

∂ση

+ w2
∂Ex[E2

η (̃g)]

∂ση

= −2w

(
Ex

[
θ
∂Eη(g)

∂ση

]
− Eθ (θ )Ex

[∂Eη(g)

∂ση

])
+2w2

(
Ex

[
Eη(g)

∂Eη(g)

∂ση

]
− Ex,η(g)Ex

[∂Eη(g)

∂ση

])
(11)

with

∂Eη(g)

∂ση

=
∫ +∞

γ−x

∂ fη(η)

∂ση

dη = γ − x√
2πσ 2

η

exp

(
− (γ − x)2

2σ 2
η

)
.

(12)

Substituting γ for ση in Eq. (11) and noting

∂Eη(g)

∂γ
= ∂

∂γ

∫ +∞

γ−x
fη(η)dη = −1√

2πση

exp

(
− (γ − x)2

2σ 2
η

)
,

(13)

we can also obtain the partial derivatives of ∂R∞/∂γ . Then,
the learning rule of the weight w, the noise level ση, and the
quantizer threshold γ can be expressed as


(k) = 
(k − 1) − μ
∂R∞
∂


∣∣∣

=
(k−1)

, (14)

where the network parameter 
 ∈ {w, ση, γ }, 
(0) denotes
the initial values, and the learning rate μ > 0 for the iteration
times k � 1.

For instance, consider a uniformly distributed parameter θ

buried in the Gaussian white noise ξ [37,42]. The prior PDF
of θ is fθ (x) = 1/a for 0 � x � a (a = 2) and otherwise zero,

and ξ has the PDF fξ (x) = exp(−x2/2σ 2
ξ )/
√

2πσ 2
ξ with zero

mean and variance σ 2
ξ = 1. When the threshold of quantizers

FIG. 2. MSE R∞ in Eq. (7) as a function of the weight w and the
noise level ση for a given quantizer threshold γ = 0. The minimum
R∞ = 0.2498 (�) at the optimal weight wopt = 3.1 and the optimal
level σ opt

η = 4.7 of the added Gaussian noise is marked.

in Eq. (2) is fixed as γ = 0 and the added Gaussian noise is

with its PDF fη(η) = exp(−η2/2σ 2
η )/
√

2πσ 2
η , the MSE R∞

can be illustratively plotted in Fig. 2 as a function of the
weight w and the level ση of the added Gaussian noise. It
is seen in Fig. 2 that the minimum MSE R∞ = 0.2498 is
achieved at an optimal nonzero noise level σ

opt
η = 4.7 and

the optimal weight wopt = 3.1. However, R∞ = 0.2498 is
still larger than the minimum MSE 0.2492 obtained by the
minimum MSE estimator [37,42]

θ̂mmse(x) = Eθ |x(θ |x) =
∫

θ fθ |x(θ |x)dθ

= x + σξ

√
2

π

e
− x2

2σ2
ξ − e

− (x−a)2

2σ2
ξ

erf
(

x√
2σξ

)
− erf

(
x−a√

2σξ

) (15)

with the conditional posterior PDF fθ |x(θ |x) = fθ (θ ) fξ (x −
θ )/
∫

fθ (θ ) fξ (x − θ )dθ .
However, the optimized MSE R∞ = 0.2498 in Fig. 2 is

manually searched by griding the weight w and the noise level
ση for a fixed quantizer threshold γ = 0. Next, we show that
the learning rule in Eq. (14) can adaptively find a smaller MSE
R∞ with the corresponding optimal noise level σ

opt
η , weight

wopt, and threshold γ opt. Using the learning rule in Eq. (14), it
is shown in Fig. 3(a) that, after 69 iterations, the MSE R∞
of the designed filter θ̂∞ in Eq. (9) reaches the minimum
value 0.2492 achieved by the minimum MSE estimator of
Eq. (15). Interestingly, the converged noise level σ

opt
η = 1.806

as shown in Fig. 3(b) clearly manifests that the benefit of
added noise exists for the considered parameter estimation
problem. The converged optimal weight wopt = 1.362 and
threshold γ opt = 0.976 are also obtained in 69 iterations, as
shown in Figs. 3(c) and 3(d), respectively. Compared with the
method of finding an optimal noise PDF in Refs. [19,37], the
feasibility and efficacy of this adaptive SR algorithm for signal
estimation is demonstrated. We also numerically demonstrate
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FIG. 3. Learning curves of (a) MSE R∞ in Eq. (7), (b) the level
ση of the added noise, (c) the weight w, and (d) the quantizer thresh-
old γ for estimating an uniformly distributed parameter θ buried in
the Gaussian white noise ξ . The learning rate μ in Eq. (14) is chosen
as 1 for the weight w, 0.1 for the noise level ση, and 0.01 for the
threshold γ .

the noise-enhanced parameter estimation with the converged
parameters σ

opt
η , wopt, and threshold γ opt for 106 estimation

experiments for 106 values of the parameter θ randomly drawn
according to the PDF fθ (θ ). In the numerical realization, the
finite number M = 104 of the summing network is employed.
The numerical MSE of the designed estimator in Eq. (3) is
0.2494, which is very close to the minimum one 0.2492.

III. NONLINEAR FILTERING VIA ADAPTIVE SR

The summing network model G in Fig. 1(a) and the pro-
posed adaptive SR learning rule in Eq. (14) can be further
extended to the nonlinear filtering problem based on quantized
observations. An L-order transversal filter is implemented
with the network model G� and unit delay elements for

� = 0, 1, . . . , L − 1, as shown in Fig. 1(b). The input vector
x = [xn, xn−1, . . . , xn−(L−1)]� is the data sequence for estimat-
ing a desired signal dn by the current and past samples xn−�.
Here, the subscripts are used as time indexes. This nonlinear
filter might be meaningful in the context of the widespread
use of low-power and low-complexity sensors (e.g., quantiz-
ers) in practical engineering systems to face the demanding
requirements of cost constraints and bandwidth limitations
[19,43–46].

We assume that the input x and the added noise com-
ponents η�m in each network model G� are statistically
stationary, and set each network model G� with its weight
w� and output θ̂� for � = 0, 1, . . . , L − 1. Then, we have the
weight vector w = [w0,w1, . . . ,wL−1]� and the output vec-
tor θ̂ = [θ̂0, θ̂1, . . . , θ̂L−1]�. Here, we still consider that each
threshold network G� incorporates a sufficiently large num-
ber M of one-bit quantizers, and thus its output can be also
approximated as θ̂� = Eη[g(xn−� + η)] as indicated in Eq. (8).
Then, the designed filter output at the time index n can be
expressed as

d̂n = b0 + w�θ̂. (16)

Since the expected value Ex,η(d̂n) of Eq. (16) equals the ex-
pectation Ed (dn) of the desired signal dn, then we set the bias
b0 = Ed (dn) − w�Ex,η(θ̂) and rewrite the filter output d̂n in
Eq. (16) as

d̂n = Ed (dn) + w�[θ̂ − Ex,η(θ̂)]. (17)

Define the error signal ε = dn − d̂n, the MSE of the designed
filter in Eq. (17) is given by

J = Ex,η[(dn − d̂n)2]

= var(dn) − 2w� p + w�Cw, (18)

where the variance var(dn) = Ed (d2
n ) − E2

d (dn), and the L × 1
cross-correlation vector p = Ex,η{[dn − Ed (dn)][θ̂ − Ex,η(θ̂)]}
has elements

[p]�+1 = Exn−�,dn{dnEη[g(xn−� + η)]} − Ed (dn)

× Exn−�
{Eη[g(xn−� + η)]}. (19)

The L × L covariance matrix C = Ex,η{[θ̂ − Ex,η(θ̂)][θ̂ −
Ex,η(θ̂)]�} has the L diagonal elements

[C]�+1,�+1 = Exn−�
{E2

η[g(xn−� + η)]}
− E2

xn−�
{Eη[g(xn−� + η)]}, (20)

and the L(L − 1) nondiagonal elements (� �= κ )

[C]�+1,κ+1

= Exn−�,xn−κ
{Eη[g(xn−� + η)]Eη[g(xn−κ + η)]}

−Exn−�
{Eη[g(xn−� + η)]}Exn−κ

{Eη[g(xn−κ + η)]}. (21)

To develop the adaptive filtering algorithm, we calculate
gradients

∂J
∂w

= −2p + 2Cw, (22)

∂J
∂ση

= −2w� ∂ p
∂ση

+ w� ∂C
∂ση

w, (23)
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∂J
∂γ

= −2w� ∂ p
∂γ

+ w� ∂C
∂γ

w, (24)

where the L × 1 gradient vectors

∂ p
∂


=
[
∂[p]1

∂

,
∂[p]2

∂

, . . . ,

∂[p]L

∂


]�
(25)

and the L × L symmetric gradient matrix

∂C
∂


=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂[C]11

∂


∂[C]12

∂

· · · ∂[C]1L

∂

∂[C]22

∂

· · · ∂[C]2L

∂


∗ . . .
...

∂[C]LL

∂


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(26)

for 
 ∈ {ση, γ }. Using Eqs. (12) and (13) and the derivation
rule of compound function, we can deduce the exact expres-
sions of ∂[p]�+1/∂
 and ∂[C]�+1,κ+1/∂
, and the tedious
manipulation is not included here for simplicity. Substituting
Eqs. (22)–(24) into the learning rule of Eq. (14), the level ση of
the added noise, the filter weight vector w, and the threshold
γ can be adaptively updated.

For example, consider the noisy input xn = sn + ξn, where
the input signal sn = sin(2πn/N ) is a sampled sinusoid with
N = 16 samples per period and the external white-noise pro-
cess ξn is Gaussian distributed. The desired signal is assumed
to be the sampled sinusoid dn = 2 cos(2πn/N ) at the same
frequency [47]. Due to the periodicity of the input and desired
signals, the expectations are computed by averaging over one
period, i.e., the operator

∑N
n=1(·)/N . Then, the variance of

the desired signal is var(dn) = 2. When the external Gaussian
noise ξn has a fixed level σξ = 0.1 and the added noise com-
ponents η�i are also Gaussian distributed, the learning curves
of the 5-order filter MSE J and the noise level ση are plotted
in Figs. 4(a) and 4(b), respectively. It is seen in Fig. 4 that
the MSE J approaches 0.021 in 10 iterations and the level
ση of the added noise converges to a stationary nonzero value
1.979 after 16 iterations. It is noted that the root-mean-squared
error

√
J = 0.145, which can be appreciated in relation to the

maximum amplitude 2 of dn = 2 cos(2πn/N ). This result also
clearly demonstrates the benefit of adding a suitable amount
of noise into the nonlinear filtering on quantized observations.

At each iteration number k, with the iterated weight vector
w(k), the level ση(k) of the added noise, and the threshold
γ (k), we plot a numerical realization of the output d̂n (circles
plus solid line) of the designed filter of Eq. (17) in Fig. 5. For
comparison, the desired signal dn = 2 cos(2πn/N ) (dashed
line) is also plotted. Here, each network model consists of
M = 104 quantizers, and the output d̂n of the 5-order designed
filter starts from n = 5. It is noted that the iteration number k
is identical to the time n, and the on-line tracking ability of the
designed filter in Eq. (17) performs well by comparison with
the desired signal dn, as shown in Fig. 5. After eliminating the
first 5 points of the output d̂n, the corresponding numerical
MSE is 0.023, which agrees well with the theoretical MSE
J = 0.021.

200 40 60 80 100
0

0.5

1

200 40 60 80 100
1.97

1.98

1.99

2

(a)

(b)

FIG. 4. Learning curves of (a) MSE J of the 5-order filter of
Eq. (17) and (b) the level ση of the added noise. The learning rate
μ = 5 for updating the weight w, 0.01 for the noise level ση, and
0.001 for the threshold γ . Here, the initial noise level ση(0) = 2, the
initial weight vector w(0) = [1,−1, −1, −1, −1]�, and the initial
threshold γ (0) = 0.

IV. DISCUSSION AND CONCLUSION

In this paper, an adaptive SR learning algorithm is pro-
posed for estimating unknown parameters or filtering the
output signal based on the observations from a summing net-
work of single-bit quantizers. When a large-scale summing
network has a sufficiently large number of quantizers, it is
found that the network output can be approximately viewed as
a differentiable function of the added noise level and network
model parameters. Thus, the gradient-based learning rule is
applied to the added noise level and adaptively searches the
SR peak of the MSE. Results of two examples show the

200 40 60 80 100
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIG. 5. A realization of the output of the designed filter d̂n

(circles plus solid line) and the desired signal dn = 2 cos(2πn/N )
(dashed line). At each iteration number k (i.e., the time n), the
output of the designed filter d̂n is calculated by Eq. (17) with the
iterated weight vector w(k), the level ση(k) of the added noise and
the threshold γ (k), and M = 105 quantizers in each network model
G�. The other parameter are the same as in Fig. 4.
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FIG. 6. Learning curves of (a) MSE J of the 5-order filter of
Eq. (17) and (b) the level ση of the added noise. Here, the initial level
ση(0) = 1 of the added noise and the other parameters are the same
as in Fig. 4.

practicability of the proposed adaptive SR learning algorithm
for signal estimation and filtering problems. The benefits of
added noise are also manifested in the nonlinear signal pro-
cessing. Therefore, we argue that the incorporation of noise
in the design of nonlinear signal processors deserves to be
further studied.

Several open questions remain. In Fig. 3 and Fig. 4, it
is noted that the learning rate μ for the weight (vector) is
greatly larger than that of the level of the added noise and the
response threshold of quantizers. As indicated by the MSE
performance surface in Fig. 2, the reason can be explained
by the steep gradient of the MSE with respect to the weight

(vector). The larger the learning rate for the weight (vector) is,
the faster the convergence of the MSE takes place. However,
how to chose suitable learning rates for the weight (vector),
the level of the added noise and the threshold of quantizers,
and the necessary and sufficient conditions for convergence
of the proposed adaptive SR learning algorithm still remain
unsolved. We must emphasize that the MSE J of Eq. (18) is
nonconvex, because the inequality

J [λz1 + (1 − λ)z2] � λJ (z1) + (1 − λ)J (z2) (27)

does not hold for any two points z = [ση, γ ,w�]�
in the domain space of definition of the MSE J .
For instance, for λ = 0.5, z1 = [0.2964, 0.0394,

0.0339,−2.2067,−0.0130,−1.892,−1.425]�, and z2 =
[1.0723, 0.0175, 1.386,−5.989,−9.011,−9.394,−2.212]�,
Eq. (27) does not hold. This fact implies that the converged
values J = 0.021 and ση = 1.979 in Fig. 4 are local optimum
solutions that depend crucially on the initial values in
Eq. (14). For example, we only change the initial noise level
ση(0) = 1.5 and keep the other parameters the same as in
Fig. 4. Then, the learning curves of the MSE J and the
noise level ση are plotted in Figs. 6(a) and 6(b), respectively.
We find that the level ση of the added noise converges to
a stationary nonzero value 1.249 after 16 iterations, and
the MSE J can also approach 0.019 within 20 iterations.
Although the converged solutions of the noise level ση

are different, the local convergence of the filter MSE J
shows general usefulness of a nonzero added noise in such
large-scale summing networks of single-bit quantizers.
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