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Generalization of stochastic-resonance-based threshold networks with Tikhonov regularization
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Injecting artificial noise into a feedforward threshold neural network allows it to become trainable by gradient-
based methods and also enlarges the parameter space as well as the range of synaptic weights. This configuration
constitutes a stochastic-resonance-based threshold neural network, where the noise level can adaptively converge
to a nonzero optimal value for finding a local minimum of the loss criterion. We prove theoretically that the
injected noise plays the role of a generalized Tikhonov regularizer for training the designed threshold network.
Experiments on regression and classification problems demonstrate that the generalization of the stochastic-
resonance-based threshold network is improved by the injection of noise. The feasibility of injecting noise into
the threshold neural network opens up the potential for adaptive stochastic resonance in machine learning.
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Injecting noise into input data [1], weights, or a desired
signal [2–6] has been substantially studied in artificial neural
networks for improved network generalization, i.e., the ability
to fit real data outside the initial training set [7]. Using a rigor-
ous expansion of infinitesimal parameters, Bishop [1] proved
that noise injection is equivalent to a smoothing regularization
term that behaves as a generalized Tikhonov regularizer. How-
ever, the regularization term in the loss function contributed
by the injected noise variance is effective only in the case of
an infinite training set [2,3,8]. In terms of practical training,
this is intractable in view of the associated time consumed.
Moreover, a range of noise intensities has been manually tri-
aled to generalize the network performance for regression and
classification problems [1,2,4,9], from which an acceptable
noise variance was finally determined as a hyperparameter for
the neural network. The optimum injected noise variance is
still unknown and cannot be adaptively learned as a model
parameter of the network. This has severely limited the appli-
cation of noise injection in artificial neural networks.

Recently, the study of noise injection in neural networks
shifted its focus to the activation function of the hidden
layer [6,9–15]. In particular, adding noise only to the ac-
tivation function in its hard-saturated regimes allows the
stochastic gradient-descent method to be more widely ap-
plicable in training neural networks with nondifferentiable
functions [10,12–14]. The advantage of noise in the hidden
layer can be explained theoretically by the case of minimizing
the convex loss function of a feedforward neural network,
which estimates a regression function via a nonlinear mapping

f (x, θ) = α + βψ (W x + b), (1)
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where x ∈ RN×1 is the input vector, W ∈ RK×N and β ∈
RM×K are weight matrices, α ∈ RM×1 and b ∈ RK×1 de-
note bias vectors, the network parameter set θ = {α,β,W , b},
and ψ (x) is the activation function of hidden neurons. Let
{x(�), y(�)}L

�=1 denote L examples of the data set for training
the network in a supervised learning manner, and the observa-
tion y ∈ RM×1 is sampled from the regression function in the
presence of observational error or noise. Then, by minimizing
the empirical loss function

L = 1

L

L∑
�=1

‖ f (x(�), θ) − y(�)‖2 (2)

with respect to the parameter set θ, we can approximate the
network output as the desired regression function.

Now, for noise injection, one implementation is to perturb
the input x by introducing the artificial noise ξ ∈ RN×1 [1–4].
Here the zero-mean injected noise ξ has the common proba-
bility density function fξ (x) and the same variance σ 2

ξ . For the
convex Euclidean 2-norm ‖x‖ and using the Jensen inequality,
the expectation of the loss L satisfies

Eξ (L) = Eξ

[
1

L

L∑
�=1

‖ f (x(�) + ξ, θ) − y(�)‖2

]

� 1

L

L∑
�=1

‖Eξ [ f (x(�) + ξ, θ)] − y(�)‖2

= 1

L

L∑
�=1

‖ f̃ (x(�), ξ, θ) − y(�)‖2 = Lξ , (3)

where the empirical loss Lξ is achieved by a different neural
network architecture indicated by the mapping

f̃ (x, ξ, θ) = α + βψ̃[W (x + ξ) + b], (4)
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with the transformed hidden neuron ψ̃ (u) = Eξ [ψ (u + ξ )] =∫
ψ (u + ξ ) fξ (ξ )dξ .
From Eq. (3), the contrast of the designed network ar-

chitecture in Eq. (4) lies in (i) the smaller empirical loss
achieved by injecting noise ξ into the hidden neurons ψ̃ (x)
than the input data x, (ii) allowing backpropagation training of
neural networks with a family of nondifferentiable activation
functions, and (iii) the practicability of adaptively finding the
optimum noise variance σ 2

ξ in the training phase. For instance,
for the McCulloch-Pitts neuron [16]

ψ (u) =
{

1, u � 0

0, u < 0
(5)

yielding a binary output [12–14], the conventional backprop-
agation learning method is infeasible due to the zero gradient
of ψ (u) for u �= 0 and the nondifferentiability at u = 0. How-
ever, with the help of the injected noise ξ, the designed
threshold network in Eq. (4) becomes trainable via the back-
propagation learning method, because ψ̃ (x) = ∫ ∞

−x fξ (ξ )dξ

has a proper nonzero gradient [13,14].
Next, an interesting question is that whether the injected

noise ξ in the hidden layer still acts as a smoothing regu-
larization for generalizing the performance of the stochastic-
resonance-based threshold network or not? The answer is
positive.

Assuming the zero-mean noise ξ has a small variance σ 2
ξ ,

the empirical loss Lξ in Eq. (3) can be expanded in powers of
the noise vector η = W ξ as

Lξ = 1

L

L∑
�=1

‖α + βEξ [ψ (W x(�) + W ξ + b)] − y(�)‖2

≈ 1

L

L∑
�=1

∥∥∥∥∥∥∥∥∥∥∥
α + βEξ

⎡
⎢⎢⎢⎢⎢⎣ψ (W x(�) + b) + J�

ψη

+1

2

⎛
⎜⎜⎜⎜⎝

η�Hψ1η

η�Hψ2η

...

η�HψK η

⎞
⎟⎟⎟⎟⎠ + O(η)

⎤
⎥⎥⎥⎥⎦ − y(�)

∥∥∥∥∥∥∥∥∥∥

2

≈ 1

L

L∑
�=1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
f (x(�), θ) − y(�) + σ 2

ξ

2

λ︷ ︸︸ ︷
β

⎛
⎜⎜⎜⎜⎝

tr(Hψ1WW �)

tr(Hψ2WW �)
...

tr(HψKWW �)

⎞
⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≈ L + σ 2
ξ

L

L∑
�=1

[y(�) − f (x(�), θ)]�λ + O(σ 2
ξ ), (6)

where Jψ is the Jacobi matrix of ψ (W x(�) + b) ∈ RK×1,
Hψk is the Hessian matrix of ψk = ψ ([W ](k)x(�) + bk ) for
k = 1, 2, . . . , K , [W ](k) is the kth row of W , Eξ (η�Hψk η) =
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FIG. 1. (a) Outputs of the designed threshold network and the
sigmoid network. For comparison, the noisy observations and the
target function sin(2x) are also illustrated. (b) Learning curves of the
loss versus the epoch number on training and validation data sets.

tr[HψkEξ (ηη�)] = σ 2
ξ tr(HψkWW �), and the operator tr(·)

denotes the matrix trace. It is clearly seen from the second
term in Eq. (6) that the injected noise in the hidden layer
contributes a regularization term to the original empirical loss
L of Eq. (2). In addition, it is seen in Eqs. (4)–(6) that only one
hyperparameter of the injected noise level σξ is introduced;
thus the designing complexity of the stochastic-resonance-
based neural network does not increase much.

Next we will demonstrate experimentally the generaliza-
tion of the designed threshold network in Eq. (4) for function
approximation and classification problems. First, consider fit-
ting a unidimensional target function sin(2x) on observations
y = sin(2x) + ζ from Gaussian background noise ζ . Here ζ

is with zero mean and variance σ 2
ζ = 0.252. Also, x(�) are

randomly distributed with uniform distribution in the inter-
val [−2, 2], and an illustrative sample of the training set
{x(�), y(�)}L=20

�=1 (circles) is shown in Fig. 1(a). The injected
noise ξ in Eq. (1) is assumed to be Gaussian distributed with
a common level σξ , and the designed threshold network has
K = 21 hidden neurons of ψ̃ (x). The output (solid line) of the
trained threshold network after 3 × 104 epochs is presented
in Fig. 1(a). For comparison, Fig. 1(a) also plots the output
(dashed line) of the sigmoid network with K = 21 activa-
tion functions (1 + e−u)−1 in the hidden layer, which passes
through or overfits almost training observations. The corre-
sponding training curve of the loss Lξ in Eq. (3) is illustrated
in Fig. 1(b). Moreover, at every interval of 100 epochs, cross
validation is carried out to validate the generalization of the
designed threshold network on the validation set, which also
contains another sample of 20 noisy observations. It is clearly
seen from the validation curve of Lξ in Fig. 1(b) that the error
on the validation set in the sense of Lξ also monotonically
decreases to 0.031 during the training process. This is because
the regularization term in Eq. (6) can restrict the magnitude
of the weights and control the effective complexity of the
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FIG. 2. (a) Output of the trained threshold neural network as the
approximation (patched surface) to the two-dimensional function in
Eq. (7). The validation data (�) are also plotted. (b) Learning curves
of the loss Lξ on training and validation sets.

designed threshold network with a smoother response to noisy
observations. For comparison, the validation loss L of the
sigmoid network rises from 0.0296 to 0.067 as the epoch
number increases, as shown in Fig. 1(b).

Furthermore, we also validate the designed threshold neu-
ral network for approximating a two-dimensional function

z(x1, x2) = 3(1 − x1)2e−x2
1−(x2+1)2 − 1

3 e−(x1+1)2−x2
2

−10
(

1
5 x1 − x3

1 − x5
2

)
e−x2

1−x2
2 . (7)

Here the 16 × 16 training set contains the data
x(�) = [x1(�), x2(�)]� that are uniformly spaced in the
range [−3, 3] × [−3, 3] and the noisy observations
y(�) = z[x1(�), x2(�)] + ζ . Here the zero-mean Gaussian
noise ζ is with variance σ 2

ζ = 0.22. The 32 × 32 validation
set is also chosen in this way to validate the designed
threshold network with the size N × K × M = 2 × 30 × 1.
The approximation (patched surface) of the trained threshold
network and the validation set (stars) are both shown
in Fig. 2(a). The corresponding training (solid line) and
validation (dashed line) curves of the loss Lξ in Eq. (3) are
illustrated in Fig. 2(b). It is seen in Fig. 2(b) that the error
on the validation set still does not go up for 2 × 104 training
epochs, and the designed threshold network also generalizes
well to approximate the two-dimensional function of Eq. (7).

Specifically, Fig. 3 shows the learning curves of the in-
jected noise variance σ 2

ξ in the designed threshold network
for function approximation. The injected noise manifests its
beneficial role in the training process as the noise variance
converges on a nonzero (local) optimum value 0.813 for the
unidimensional function or 0.446 for the two-dimensional
function. Since the injected noise variance σ 2

ξ is adaptively
searched by the gradient-descent method, this prominent char-
acteristic of the adaptive stochastic resonance effect [15,17–
21] then greatly extends the practicability of the threshold
neural network.
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FIG. 3. Learning curves of the noise level σξ in the stochastic-
resonance-based threshold network for approximating unidimen-
sional and two-dimensional functions. The other parameters are the
same as in Figs. 1 and 2.

We further demonstrate the generalization of the designed
threshold network for multiclassification problems. Here the
empirical loss is chosen as the cross entropy

Lξ = 1

L

L∑
�=1

{−y(�)� ln f (x(�), θ) + [1 − y(�)]�

× ln[1 − f (x(�), θ)]}. (8)

First, consider a classical data classification problem [22], as
shown in Fig. 4. There is a pair of regions A and B facing each
other in an asymmetrically arranged manner, which represents
two data patterns. The data points are described by the coor-
dinates x1 and x2 that form the input vector x of the neural
network with the size 2 × 20 × 1. The vertical distance d =
−7 separates two regions with respect to the x2 axis and the
smaller d means the larger the area in which the two regions

-12 -6 0 6 12 18 24
-6

-3

0

3

6

9

12
region A

boundary region B

FIG. 4. Decision boundary given by the designed threshold net-
work trained by 200 pairs of data points for vertical distance d = −7
between regions A and B. Each region is with radius r = 10 and
width w = 6.
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overlap [22]. The training set consists of 200 pairs of data
points, where five pairs are mislabeled. Figure 4 presents the
training result of the decision boundary given by the trained
threshold network. For this difficult nonlinear separability
problem, the classification accuracy of the trained threshold
network is 97.8% for 2000 pairs of testing points, which is
comparable to the classification error of 98.2% achieved by
the radial basis function network with the common width 4.1
assigned to 20 Gaussian units [22].

We design a 4 × 6 × 3 threshold network to classify three
kinds of flowers on the Iris data set consisting of 150 sam-
ples [23]. A 4:1 ratio is selected for training and testing,
and the mislabeled data take in 1

9 of the training set. After
100 training epochs, the classification accuracy of the trained
threshold network is 97.4% for the test set, which is compara-
ble to the accuracy of 97.6% obtained by the elegant learning
method of support vector machines [24]. For comparison, the
sigmoid network with the activation function 1/(1 + e−5u)
only achieves the classification accuracy 61% on the same
testing set, which is usually viewed as a substitute for the
low-precision neural network with binary neurons [10,12–14].

The stochastic-resonance-based threshold network is also
applied to recognize handwritten digits in the MNIST
database. Here 104 images with the training set and testing
set in a 4:1 ratio are employed. Each gray handwritten image
has 28 × 28 pixels and so can be mapped into a 784 × 1 input
vector x for the threshold neural network with the size of
784 × 100 × 10. The categories of the digits are expressed
by the target vector set d = {di} for i = 0, 1, . . . , 9. For in-
stance, the vector d1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]� represents
the digit 1 and so on. The classification accuracy up to 97.0%
on the testing set is obtained [13]. Furthermore, the 2000
testing images are attacked by the spatial Gaussian noise with
variance 0.1, the salt and pepper noise with density 0.2, and
the speckle multiplicative noise with variance 0.3 and the
cropping of the 7 × 7 subpart of the image and the trained
stochastic-resonance-based threshold network attains the clas-
sification accuracies of 74.60%, 80.70%, 95.0%, and 62.25%,
respectively. For comparison, the sigmoid network with the
same size 784 × 100 × 10 only achieves the accuracies of
31.75%, 47.05%, 91.45%, and 56.25%. The generalization of
the designed threshold network is significantly more efficient.

In this paper, we proved theoretically that the injected noise
in the hidden layer plays the role of the generalized Tikhonov
regularizer for the loss function of the neural network. Exper-
iments on function approximation and classification problems
showed that the generalization performance of the designed
threshold network can be improved by the injection of noise
at the optimal nonzero noise level obtained by the gradient-
based learning rule. Compared with the conventional method
of substituting the sigmoid function for the threshold neuron,
the generalization performance of the designed threshold neu-
ral network is greatly satisfactory, even comparable to some
elegant machine learning methods.

However, we must emphasize that, in the testing phase,
the realization of the hidden neuron ψ̃ (W x + η + b) ≈
1
T

∑T
t=1 ψ (W x + ηt + b) in Eq. (4) needs to be asymptoti-

cally implemented by injecting a sufficiently large number
T of mutually independent noise ηt into threshold neu-
rons [12–14]. For instance, the number T takes the value
400 in the realization of the designed threshold neural net-
work for recognizing handwritten digits. From this point of
view, the heavy computations of testing designed thresh-
old networks are inconvenient for more complex problems
in practice [6,10,14]. We build a stochastic-resonance-based
threshold convolutional neural network with one convolu-
tional layer, one max-pooling layer, and two fully connected
layers, wherein the rectified linear unit (ReLU) activation
functions are replaced by the transformed neurons ψ̃ in
Eq. (4). It is interesting to note that the implementation of the
designed threshold convolutional neural network with T = 20
threshold neurons can achieve an accuracy of 96.75% for
testing 104 images in the MNIST data set and 70.39% top-1
accuracy for testing 104 images in the CIFAR-10 data set,
which are comparable to the accuracies achieved by the full
precision convolutional neural network with ReLU activation
functions. In such a case, the number T is greatly reduced, and
the generalization capability of the deeper threshold convolu-
tional neural network is worth further study.
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