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Stochastic resonance in a neuron model that transmits spike trains
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Numerical simulation of a classic integrate-and-fire neuron model, driven by a periodic spike train and
a Poisson noise train, demonstrates that stochastic resonance is a property that is available in neural
transmission of spike trains. Beyond peripheral sensory neurons that process analog stimuli, our study
extends to central neurons that process spike trains, the possibility of noise-enhanced signal transmis-
sion. Also, it enlarges the scope of stochastic resonance to the transmission of signals formed by trains

of discrete pulses.

PACS number(s): 87.22.Jb, 05.40.+]

The phenomenon of stochastic resonance can be de-
scribed as an increase of the signal-to-noise ratio on the
output of certain nonlinear systems, that is obtained
through an increase of the noise level on the input. This
paradoxical property was first introduced over a decade
ago, in the context of climate dynamics [1]. It has since
been observed in a large variety of both model systems
and natural ones [2]. Stochastic resonance has now
gained the status of a central paradigm that demonstrates
the possibility of extracting signal from noise, or order
from disorder, in complex (nonlinear) systems.

For a while, after its introduction, stochastic resonance
was essentially recognized and theorized in dynamical
systems of a bistable type [3]. Only recently has stochas-
tic resonance been extended to monostable systems [4],
and, of this kind, to threshold or excitable devices [5].
An important experimental prototype that is very often
suggested for this class of systems is the neuron [S]. Neu-
rons in the brain are engaged in complex and very
efficient signal-processing operations, that are currently
the object of intense investigations. In this respect, it is
quite important to elucidate whether, and how, stochastic
resonance in neuron transmission is a property that is
indeed available for the brain function.

To date, this issue has been considered only for the
case of peripheral sensory neurons. In those investiga-
tions, the neuron is submitted to analog signals: a
coherent input that is usually a sine wave, and a noise in-
put that is a continuous, usually Gaussian white, noise.
These two inputs are interpreted as analog signals from
the external world that impinge on the sensory neuron.
Such conditions have been studied in model neurons with
a monostable excitable character [5], and also in other
models where it is shown that a bistable system can
reproduce some properties of a neuron [6]. The possibili-
ty of stochastic resonance was established, in these mod-
els, for the response to continuous periodic forcing in the
presence of continuous noise. An experimental demon-
stration of stochastic resonance in sensory neurons was
also obtained recently, on the hair mechanoreceptor
neural cell of the crayfish, stimulated by a combination of
periodic and random motions [7].

Beyond the case of peripheral sensory neurons that are
submitted to analog stimuli because of their direct con-
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tact with the external world, it is known that most neu-
rons process signals under the form of trains of (discrete)
spikes. These spike trains convey the information in-
volved in cognitive processes. In other circumstances,
spike trains can also have the status of a noise, which re-
sults from stochastic stages that can dominate in the
neural response or in the endogenous activity of
pacemaker neurons [8]. Both informative, coherent spike
trains, and noise spike trains can thus be envisaged in the
nervous system. In the following, we demonstrate
through the simulation of a simple neuron model that
stochastic resonance can occur in the transmission of
spike trains by a neuron.

We consider a classic integrate-and-fire neuron model.
The neuron membrane, of time constant 7,,, has its elec-
tric potential ¥V (¢) governed by

Tm%Z—V(t)-i—ws(t)—Fwn(t) . (1)

As input signals on ¥V (t), there is the coherent com-
ponent s(#)=3,8(¢t —nT;) with n integer, that
represents a periodic spike train with period T,. There is
also the noise component 7(#)=3,6(t —t;), where
the t,’s are Poisson-distributed random instants of
density 1/ T,,, with autocorrelation function R,m(r)
={(n(t)n(t +7)) =D8(r)+D?, and power spectral densi-
ty S,m(v)=D28(v)+D, with D =1/T, [9]. wis a synap-
tic coupling, which could be different for the noise and
the coherent input pathways, but which we suppose the
same here to limit the number of parameters.

If the membrane potential V reaches the threshold
Vi >0, a spike is fired by the neuron, and then V is reset
to zero, from where the variation of V resumes according

to Eq. (1). The signal y(¢) on the neuron output thus
evolves according to the following:
If V(t)=V, then y(t)=8(t'—t), V(1)=0;
else y (1)=0. (2)

The response of Eq. (1) to a single input spike at ¢ is,
for t > ¢,

t—t
Vo= |Vieg )+ |exp |- — 3)
Tm Tm
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In standard stochastic resonance, the coherent input
alone is not sufficient to induce a transition of the output.
Accordingly, here, the synaptic coupling w is chosen so
that the coherent signal s(z) alone is not sufficient to
drive ¥V (z) to V. But we allow two sufficiently close in-
put spikes to elicit an output spike. For the neuron that
starts from V' (ty )=0, a second input spike after the one
at ¢ has to occur before ¢, + T, with

Vin
w/T,

Th =T Tm In s (4)

in order to generate an output spike.

Thus, in the absence of the noise 7(¢), the coherent sig-
nal s(¢) alone is insufficient to trigger the output. As the
noise power density D is gradually increased from O (or
equivalently as T, is reduced), there will be a possibility
for a noise spike to occur close enough to a coherent
spike on the input. The cooperative effect of two such in-
put spikes is able to elicit an output spike, which will be
correlated with the coherent spike on the input. As D is
increased, this outcome will first get more and more
probable, leading to a reinforcement of the correlation
between the output train and the coherent input train.
For D still stronger, the possibility of two noise spikes
occurring close enough to elicit by themselves an output
spike will begin to matter, and from then on will gradual-
ly destroy the correlation of the output train with the
coherent input train. Due to this nonmonotonic
influence of the input noise power, one can thus expect a
stochastic resonance effect.

This property has been verified by means of a numeri-
cal simulation of the neuron model. A Euler discretiza-
tion with time step Atz =10 %7, has been used for Eq.
(1). The autocorrelation function R, (7)={y (t)y (t +7))
of the output spike train y (¢) has been computed; for any
value of 7, in the averaging process, t modT, uniformly
covers the interval [0, T,[. A Fourier transform of R, (1)
then yielded the output power spectral density S, (v). At
the signal frequency v=1/T,, the magnitude of the
strong peak S,,(1/7;) has been measured on the output
power spectral density (PSD), together with N(1/T;),
the level of the broadband noise background at 1/T.
This served for the standard definition of the signal-to-
noise ratio (SNR): 10logo[S,,(1/T,)/N(1/T;)]. The
variation of the SNR was then examined as a function of
the input noise power density D.

Stochastic resonance was observed for a large range of
the neural parameters. For illustration we chose a situa-
tion where it is clearly visible, with T,=57, and
w/t,, =0.8V,,, which gives T}, =0.287, in Eq. (4). Fig-
ure 1 shows the normalized output autocorrelation func-
tion R, (7) at T, =0.5T, which is the location observed
for the resonance; and Fig. 2 the corresponding PSD
S}, (v). The variation of the SNR as a function of the in-
put noise power density D =1/T, is given in Fig. 3(a).
The curve of Fig. 3(a) displays a nonmonotonic evolution
of the SNR with the noise level, with a maximum, here at
D =2/T,, that is the signature of stochastic resonance.
We have observed that the SNR at higher-order harmon-
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FIG. 1. Normalized output autocorrelation function R,,(7)
as a function of the time lag /T, with a noise parameter
T, =0.5T; which is the location observed for the resonance.

ics of the signal frequency 1/7; also resonates in the
same region of D, although not strictly at the same value.
We have tested the harmonics up to 10X1/7, and all
were found to resonate. Figure 3 also shows the SNR at
2X1/T, and at 4 X1/T,, which yielded, in this order, the
strongest resonance after the fundamental 1/7.

We observed that the value of T, at the resonance is
dependent upon both T and the interval T}, of Eq. (4),
and T, increases as T, or T}, increases. We found that,
given T, if the system operates at the value of T, that
yields the strongest resonant peak (it is the case in Figs.
1-3), then the resonance takes place when T,=~0.5T,.
This behavior can be related to stochastic resonance in
symmetric bistable systems, where there is a maximum in
the response to the periodic signal when its period ap-
proximately matches twice the mean first passage time.
We also observed with our system that, in the region of
the resonance, on the output autocorrelation function
R, (1), as illustrated in Fig. 1, around each sharp peak at
integer multiples of T there is a small symmetric plateau
whose radius is approximately T,. The parameter T}, has
a direct influence on the characteristics of the resonance,
since it represents the time scale over which strong corre-
lation between a coherent input spike and an output spike
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FIG. 2. Output power spectral density S,,(v) resulting from
a Fourier transform of R, (7) of Fig. 1, as a function of the fre-
quency v/(1/Ty).
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FIG. 3. Signal-to-noise ratio SNR on the output, as a func-
tion of the input noise power density D /(1/T,), at the funda-
mental frequency 1/7; in (a), and at harmonics 2/7; in (b) and
4/T, in (c). The nonmonotonic variation of the SNR, which
passes through a maximum for a specific noise level, is the sig-
nature of stochastic resonance.

can be preserved.

The present study extends the scope of stochastic reso-
nance beyond the case of analog signals to the transmis-
sion of a new class of signals under the form of trains of
discrete pulses. Our model can be categorized in the
class of threshold-crossing models such as those reported
in [5]. The main differences from the stochastically reso-

1275

nant models of [5] are that our model uses (1) a different
kind of noise (shot noise instead of continuous noise), and
(2) a different kind of coherent signal (a pulse train in-
stead of a sine wave). We are currently working on the
theoretical description of the results reported here. How-
ever, modeling strategies previously applied to stochastic
resonance, like rate-equation approaches or level-crossing
theory or linear-response theory, do not seem to
transpose directly here, as we abandon the domain of
continuous signals for that of discrete pulses, yet still in a
nonstationary context.

Our study also extends, beyond the case of peripheral
sensory neurons that process analog stimuli, to central
neurons that process spike trains, the possibility of noise-
enhanced signal transmission. Whether real neurons ac-
tually exploit stochastic resonance in spike transmission
is still an unproven matter; however, the present results
demonstrate that this possibility is authorized by the
basic neural mechanisms of spike transmission. The neu-
ron model we have used carries, in a schematized way,
the most essential features of neural transmission of spike
trains (capacitive integration followed by a threshold
response). We are now considering the evolution of the
effect when more detailed elements are taken into ac-
count in the description of the neuron, and also when
neurons interact in networks, in order to gain broader as-
sessment of a property that may have important implica-
tions in neural information processing.
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