accounts for the conditional probabilities of going from X; to X, in
one time step so that its powers can be used to compute the auto-
correlation function [3]. For an (n, #)-tailed shift we have

where the upper left blocks are # X (n — ¢) and & = —t/(n — t). As the
probability of being in a given X; is 1/n, indicating with O(X)) the
value of Q for all the points in X; (i.e. -1 for j < n/2 and +1 for j >
n/2) we have

Ar= 23D QUXIQUEKY = it

i=1 j=1

For any given #, this trend approximates the optimal choosing ¢
as the integer closest to nr/(1 + r). The accuracy of this approxi-
mation obviously increases as n — oo, Since r = 0.2679, for n = 10
we have t = 2 and the approximation is with # = —0.25. Simula-
tions of the resulting sequences for U = 10 users are reported in
Fig. 2, in which the theoretical optimum, the theoretical perform-
ance of the exponential approximation and the theoretical per-
formance of purely random sequences are reported for 2 < N <
128.

-2
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20 40 60 80 100 120

N o7E,

Fig. 2 Performance of chaos-based spreading compared with optimal
and random spreading

optimal
B exponential approximation
~~~~~~~~~ random
O simulation

Note how the exponential auto-correlation of chaos-based
spreading results in a performance improvement with respect to
purely random spreading. Such an improvement leads to an
extremely good approximation of the maximum achievable per-
formance of any system which employs second-order stationary
sequences and for which the SGA is valid.
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Noise-assisted propagation over a nonlinear
line of threshold elements

F. Chapeau-Blondeau

The propagation of a periodic wave over a nonlinear line of two-
state threshold elements is considered. A theoretical model and an
experimental realisation confirm that the propagation of a low-
amplitude wave can be improved by the addition of noise. This
represents a new instance of the nonlinear phenomenon of
stochastic resonance for signal enhancement by noise.

Stochastic resonance is a nonlinear phenomenon in noise-
enhanced signal transmission that has been reported, in different
forms, in a growing variety of systems, including electronic cir-
cuits, optical devices, and neurons [1]. Essentially, stochastic reso-
nance has been reported to act as a noise enhancement factor in
the input-output transmission of a signal applied to individual sys-
tems. Only recently has stochastic resonance been extended to
coupled systems where the signal is applied only to one of them,
and where the effect is interpreted as a noise-enhanced propaga-
tion of the signal among the coupled systems [2 — 4]. Such condi-
tions may have relevance for wave propagation among nonlinear
cells such as neurons or over excitable or nonlinear media such as
those supporting solitons. In the few studies that have appeared [2
- 4], numerical simulation or experiments are usually resorted to,
since the nonlinear systems used to exhibit a noise-enhanced prop-
agation are sufficiently complicated to hinder an exact theoretical
analysis. Here we introduce a nonlinear line of threshold elements
that we demonstrate is amenable to a complete theoretical analysis
and which lends itself to a direct electronic implementation, estab-
lishing one of the simplest conceivable settings for noise-enhanced
propagation.

A line is formed by cascading nonlinear cells consisting of two-
state comparators with threshold 6. The input end of the line is
fed by a coherent T -periodic signal s(z). The cell » > 1 receives at
its input the sum y, ,(¢) + N,(r) = x,(¢) where 1n,(?) is the local noise
(independent from cell to cell) on cell n, and y, ,(¢) is the output
signal from cell n — 1 except for the first cell » = 1 for which the
input y,(7) = s(f). Each cell n > 1 produces a binary output y,(f) =
1if x,(¢r) > 8, and y,(¢) = -1 if x,(¢) < 6.

The output y,(f) results as a random signal which bears some
correlation with the Ti-periodic input s(z) propagating down the
noisy line. We apply and extend for this nonlinear propagation the
theory of [5, 6] for stochastic resonance in a single static nonline-
arity. Strictly speaking, the output y,(¢) is a cyclostationary ran-
dom signal with period 7,. As a result, the power spectral density
of y,(r) is formed [1, 5] by spectral lines at integer multiples of 1/7,
emerging out of a broadband continuous-noise background. At
the output of cell n, a standard signal-to-noise ratio (SNR) R, is
defined [1, 5] as the power contained in the coherent spectral line
at 1/T, divided by the power contained in the noise background in
a small frequency band AB around 1/T; it takes the form [5]

R = l(E[y"(t)] exp(_izﬂ-t/T,S)>I‘2 (1)
" (var[y, (t)])AtAB
with the time average {...) = T, | ... dt. Also At is the time reso-
lution of the measurement (i.e. the signal sampling period in a

discrete-time implementation). For the two-state threshold compa-
rator here, we have, for the output expectation

Elyn(t)] =1 = 2Pr{ya(t) = -1} 2
and for the output variance
var{yn ()] = 4Pr{ya(t) = ~1}[1 — Pr{ya(t) = ~1}] (3)

To compute the SNR at cell R, » with eqns. 1 — 3, we need to
relate both E[y, ()] and var[y,(#)] to the coherent input s(¢) to the
line and to the properties of the noise sources down the line.
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The input x, (¢) to cell n is a random signal for which the cumu-
lative distribution function F, = Pr{x, (¢) < u} verifies

F, (u)=Pr{yn—1=-1}F, (u+1)+Pr{y,—1 =1}F, (u—1)
(4)

where F, () is the cumulative distribution of the noise 1, (#). The
binary ouput y,(f) thus occurs with probabilities Pr{y, () = -1} =
Pr{x, () < 6} = F, () and Pr{y,(r) = 1} = 1 — F,, (8). Owing to
eqn. 4, we can write

Priy, = —1} = F,,(0) = Fe,_,(0)Qn (0)+F,, (6-1) (5)

with Q,(6) = F, (q+1) — F, (6-1). Applying a chain rule, we can
obtain Pr{y,(s) = -1} as a function of F, () = F, [6-s(?)] and of
the F,;(6+1) and F,;(6-1) values for j =2 to n. For simplicity, we
choose to write this expression in the case where the noise sources
1;(#), although independent, share the same cumulative distribu-
tion Fn(u), yielding

1-Q"@)

1-Q(¥)
(6)

Pr{yn = -1} = F[0 —s(1)]Q™(0) + F (0 - 1)

with Q(6) = F(6 + 1) - F,(6 - 1).

Eqn. 6, together with eqns. 1 — 3, provides an explicit expression
for the SNR R, at cell n, for a T,-periodic input s(¢) with arbitrary
waveform feeding the line corrupted by noise with arbitrary distri-
bution F (u).
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Fig. 1 Output SNR R, at cell n against (zero-mean Gaussian) noise
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Fig. 2 Propagation length against noise RMS amplitude over line with
threshold g: 11V

* 5(t) = A cos(2mt/T,) with A = 1V, and zero-mean Gaussian noise
[ s(¢) square wave half period at 1V and half period at -1V, and
zero-mean uniform noise

A line has been realised with each nonlinear comparator imple-
mented by an operational amplifier. The details of the experiment
for the line reproduce the conditions of [7] for a single compara-
tor. By adjusting the operational amplifiers and their coupling
resistances, we have set the two levels of the signals y, at £1V. We
had AtAB = 10 for eqn. 1. The ouput SNR can be experimentally
evaluated at each cell down the line, and compared to the theoret-
ical predicition from eqns. 1 — 3. Fig. 1 shows this comparison
when the coherent input is s(f) = 4 cos(2nt/T,) with 4 = 1V and
the threshold 6 = 1.1V. In this case, the coherent signal s(f) and
every ouput y, = £1V are below the threshold 8, and no propaga-
tion can take place in the absence of noise, this translating into a
zero SNR R, at every cell n. When noise is added over the line, a
co-operative effect takes place by which the noise assists the signal
in overcoming the threshold, thus allowing the propagation of the
coherent signal down the line. This is a stochastic resonance effect
under the form of a noise-assisted propagation. This translates, as
is visible in Fig. 1, into a SNR R, which can be maximised at
every cell n by a optimal nonzero noise level. If ever the noise is
set to zero at any cell # then the propagation is blocked at this
cell.

Another characterisation of the noise-assisted propagation that
can be deduced from SNR curves such as those of Fig. 1 is the
evaluation of a propagation length defined as the index » of the
remotest cell that can be reached before the SNR R, drops below
a given reference level, say 0dB. Such a propagation length is
shown in Fig. 2, under various conditions, as a function of the
level of the noise over the line. Again, we observe in Fig. 2 that
the propagation length goes to zero at zero noise, and that there
exists an optimal nonzero noise level at which the propagation
length is maximised.

The model reveals how stochastic resonance in propagation is
preserved over many conditions for the periodic waveform s(f) and
the noise distribution. This work is the first to establish a noise-
enhanced propagation based on an exact theoretical model and its
experimental realisation. It constitutes a unique framework for
further studies on stochastic resonance and its applications in non-
linear processing.
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