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A model is developed for a nonlinear line of coupled noisy threshold elements. The propa-
gation on the line of various information-carrying signals, periodic, aperiodic or random, is
analyzed. Different measures quantifying the efficacy of the propagation are calculated, in-
cluding signal-to-noise ratio, cross-correlation measures, information-theoretic measures and
propagation length. These measures are shown to be improvable by the addition of noise.
These results establish a new instance of the nonlinear phenomenon of stochastic resonance
under the form of a noise-enhanced propagation applying to a broad variety of signals and
noises. The results also contain significance for the propagation of neuronal signals.

1. Introduction

Stochastic resonance [Moss et al., 1994; Gam-
maitoni et al., 1998] is a nonlinear phenomenon
of noise-enhanced signal transmission which has
been reported, under different forms, in a broad
variety of systems, including, for example, elec-
tronic circuits [Fauve & Heslot, 1983; Anishchenko
et al., 1992, 1994; Godivier & Chapeau-Blondeau,
1997; Godivier et al., 1997], optical devices [Mc-
Namara et al., 1988; Dykman et al., 1995; Jost &
Saleh, 1996; Vaudelle et al., 1998], neurons [Bulsara
et al., 1991; Douglass et al., 1993; Pantazelou
et al., 1995; Chapeau-Blondeau et al., 1996]. Es-
sentially, stochastic resonance has been reported as
a noise enhancement of the input–output transmis-
sion of a signal applied to an individual nonlinear
system. Some studies though, have also considered
stochastic resonance in arrays of coupled nonlinear
systems [Lindner et al., 1995; Inchiosa & Bulsara,
1995; Jung & Mayer-Kress, 1995], the signal be-
ing equally applied to every system of the array
and the signal transmission for a system improved
by the coupling in the array. Only recently has

stochastic resonance been extended to coupled sys-
tems where the signal is applied only to one system,
and where the effect is interpreted as a noise en-
hancement of the propagation of the signal among
the coupled systems [Löcher et al., 1998; Lindner
et al., 1998; Zhang et al., 1998]. Such conditions
may be relevant to wave propagation among non-
linear cells like neurons or over excitable or nonlin-
ear media like those supporting solitons. The few
studies that have appeared on this matter [Löcher
et al., 1998; Lindner et al., 1998; Zhang et al., 1998]
usually resort to numerical simulations or experi-
ments, because the coupled nonlinear systems used
to exhibit a noise-enhanced propagation form a set-
ting which is complicated enough to defeat an exact
theoretical analysis.

Very recently though, a nonlinear line of sim-
ple threshold elements has been shown capable of
a noise-enhanced propagation via an exact the-
oretical treatment backed up by an experiment
[Chapeau-Blondeau, 1999]. The noise-enhanced
propagation was demonstrated, both theoretically
and experimentally, for a sinusoidal signal, with
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quantification by the standard signal-to-noise ratio
of periodic stochastic resonance. Here, we shall con-
sider a similar type of nonlinear line as in [Chapeau-
Blondeau, 1999], yet with a slight modification to
allow for a neuronal interpretation. We shall extend
the model to demonstrate noise-enhanced propaga-
tion of both periodic and aperiodic signals, and also
of deterministic and random information-carrying
signals. We shall extend the quantification mea-
sures to incorporate, in addition to the standard
signal-to-noise ratio, cross-correlation measures and
information-theoretic measures, and also define a
propagation length that we show increasable via
the addition of noise for the propagation of various
information-carrying signals.

2. The Nonlinear Propagation Line

We consider the propagation line formed, as in
Fig. 1, by the cascade of nonlinear cells consist-
ing of two-state threshold elements. The input end
of the line is fed by an information-carrying signal
s(t). The cell n ≥ 1 receives at its input the sum
yn−1(t)+ηn(t) = xn(t) where ηn(t) is the local noise
on cell n, and yn−1(t) is the output signal from cell
n−1 except for the first cell n = 1 for which the in-
put y0(t) ≡ s(t). We consider that the local noises
are independent from cell to cell, and each ηn(t)
is white and stationary although not necessarily
Gaussian.

Each cell n ≥ 1 produces a two-state output
yn(t) according to

If xn(t) > θ then yn(t) = 1

else yn(t) = 0 , (1)

with the threshold θ which, for simplicity, is as-
sumed to be the same for all cells. Such nonlinear
cells can be seen as mimicking, in certain condi-
tions, the intrinsic nonlinearity of a neuron which
generates a nonzero output activity when its input
exceeds a given threshold.

At cell n, the output yn(t) results as a ran-
dom signal bearing some dependency with the
information-carrying input s(t) propagating down
the noisy line. We shall introduce quantitative mea-
sures, according to the nature of s(t), to express this
dependency. We shall then show that regimes ex-
ist in the propagation where these measures can be
improved by the addition of noise, thus establishing

Fig. 1. Nonlinear line cascading two-state threshold
elements.

an instance of stochastic resonance under the form
of a noise-enhanced propagation.

3. Periodic Signal

We first consider the case where the information-
carrying s(t) is a Ts-periodic signal. In this case, an
appropriate measure to quantify a noise-enhanced
propagation is the standard signal-to-noise ratio
(SNR) defined in the frequency domain for peri-
odic stochastic resonance [Gammaitoni et al., 1998].
With a Ts-periodic input s(t), the output yn(t)
at cell n is a cyclostationary random signal with
period Ts [Chapeau-Blondeau & Godivier, 1997].
As a result, the power spectral density of yn(t) is
formed [Moss et al., 1994; Chapeau-Blondeau &
Godivier, 1997] by spectral lines at integer multi-
ples of 1/Ts emerging out of a broadband continu-
ous noise background. On the output of cell n, a
standard signal-to-noise ratio (SNR) Rn is defined
[Moss et al., 1994; Chapeau-Blondeau & Godivier,
1997] as the power contained in the coherent spec-
tral line at 1/Ts divided by the power contained in
the noise background in a small frequency band ∆B
around 1/Ts. According to the theory of [Chapeau-
Blondeau & Godivier, 1997], this SNR can be
expressed as

Rn =

∣∣∣∣∣
〈

E[yn(t)] exp

(
− i2πt
Ts

)〉∣∣∣∣∣
2

〈var[yn(t)]〉∆t∆B
, (2)

with the time average defined as

〈· · · 〉 =
1

Ts

∫ Ts

0
. . . dt . (3)

Also ∆t is the time resolution of the measurement
(i.e. the signal sampling period in a discrete time
implementation).

For the two-state cell of Eq. (1), we have for
the output expectation

E[yn(t)] = Pr{yn(t) = 1} = 1−Pr{yn(t) = 0} , (4)
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and for the output variance

var[yn(t)] = Pr{yn(t) = 0}[1 − Pr{yn(t) = 0}] (5)

since E[y2
n(t)] = E[yn(t)].

To compute the SNR Rn for cell n with
Eqs. (2)–(5), we need to relate both E[yn(t)] and
var[yn(t)] to the coherent input s(t) to the line and
to the properties of the noise sources down the line.

The input xn(t) to cell n is a random signal
whose cumulative distribution function Fxn(u) =
Pr{xn(t) ≤ u} verifies

Fxn(u) = Pr{yn−1 = 0}Fηn(u)

+ Pr{yn−1 = 1}Fηn(u− 1) , (6)

where Fηn(u) is the cumulative distribution of the
noise ηn(t). The two-state ouput yn(t) thus occurs
with probabilities Pr{yn(t) = 0} = Pr{xn(t) ≤
θ} = Fxn(θ) and Pr{yn(t) = 1} = 1 − Fxn(θ).
Thanks to Eq. (6), we can write

Pr{yn = 0} = Fxn(θ) = Fxn−1(θ)Qn(θ)+Fηn(θ−1) ,
(7)

with Qn(θ) = Fηn(θ)−Fηn(θ−1). Applying a chain
rule, we can obtain Pr{yn(t) = 0} as a function
of Fx1(θ) = Fη1 [θ − s(t)] and of the Fηj (θ)’s and
Fηj (θ − 1)’s for j = 2 to n. For the sake of simplic-
ity, we choose to write this expression in the case
where the noises ηj(t), although independent, share
the same cumulative distribution Fη(u), yielding

Pr{yn = 0} = Fη[θ − s(t)]Qn−1(θ)

+ Fη(θ − 1)
1−Qn−1(θ)

1−Q(θ)
, (8)

with Q(θ) = Fη(θ)− Fη(θ − 1).
Equation (8) together with Eqs. (2)–(5) then

provide an explicit expression for the SNR Rn at
cell n, for a Ts-periodic input s(t) with arbitrary
waveform feeding the line corrupted by noise with
arbitrary distribution Fη(u). A study of the evolu-
tion ofRn with the noise properties can then be per-
formed, to investigate the conditions for a stochastic
resonance in the propagation of the periodic signal
s(t).

For illustration we consider s(t) to be the Ts-
periodic pulse train defined by s(t) = 1 for t ∈
[0, 0.2Ts] and s(t) = 0 elsewhere in the period Ts.
Such an s(t) can provide a schematized picture of a
periodic train of action potentials propagating down
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Fig. 2. Output SNR Rn from Eqs. (2)–(5) and (8) at var-
ious cells n, as a function of the rms amplitude of the noise
over the line, when the input signal s(t) is a periodic pulse
train. Panel A: with zero-mean Gaussian noise, for n = 1 to
10 from the upper to the lowest curve. Panel B: with zero-
mean uniform noise, for n = 1 to 13 from the upper to the
lowest curve.

a chain of noisy neurons responding to Eq. (1). The
local noises ηn would represent the membrane po-
tential random fluctuations at the level of each neu-
ron, originating for instance in random gating of ion
channels of the membrane. A train of solitons could
be another interpretation for s(t).

The measure of the propagation efficacy pro-
vided by the SNR Rn has been evaluated from
Eqs. (2)–(5) and (8) for different cells n down the
line, and with the choice ∆t∆B = 10−5. Figure 2
shows this SNR Rn for different cells n, and for
different noise distributions, with cells of threshold
θ = 1.1. With such a value of the threshold, the pe-
riodic input s(t) and every ouput yn are below the
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Fig. 3. Propagation length deduced from the SNR for the
periodic signal of Fig. 2, as a function of the rms amplitude
of the noise over the line. (∗) with zero-mean Gaussian noise.
(◦) with zero-mean uniform noise.

threshold θ. As a consequence, no propagation can
take place in the absence of noise. This translates
into an SNR Rn for every cell n which goes to zero
at zero noise, as indicated in Fig. 2. When noise is
added over the line, a cooperative effect takes place
at each cell, through which the local noise assists the
signal in overcoming the threshold. This allows the
propagation of the coherent signal down the line,
with an SNR Rn for every cell n which can be max-
imized by an optimal nonzero noise level, as visible
in Fig. 2. If ever the noise were set to zero at any
cell n then the propagation would be blocked at this
cell. This is an instance of a stochastic resonance ef-
fect, under the form of a noise-assisted propagation
of a periodic signal.

Another characterization of the noise-assisted
propagation that can be deduced from SNR curves
like those of Fig. 2, is the evaluation of a propaga-
tion length defined as the index n of the remotest
cell that can be reached before the SNR Rn drops
below an arbitrary level, say 0 dB. Such a propaga-
tion length is shown in Fig. 3, when the input signal
s(t) is the periodic pulse train of Fig. 2, as a func-
tion of the level of noise over the line. Again, we
observe in Fig. 3 that the propagation length goes to
zero at zero noise, and that there exists an optimal
nonzero noise level where the propagation length
is maximized, thus providing another characteriza-
tion of a stochastic resonance in the propagation of
a periodic signal.

4. Aperiodic Signal

4.1. Deterministic aperiodic signal

We now consider the case where the information-
carrying signal s(t) feeding the line in Fig. 1, is a
deterministic aperiodic signal defined over the du-
ration Ts. In such a case, as candidate measures
to quantify a noise-enhanced propagation, we can
take cross-correlation measures similar to those of
[Collins et al., 1995] for aperiodic stochastic res-
onance. We choose here to use the time-averaged
normalized cross-covariance, between the input s(t)
and the output yn(t) of cell n. We introduce the sig-
nals centered around their time-averaged statistical
expectation,

s̃(t) = s(t)− 〈s(t)〉 (9)

and

ỹn(t) = yn(t)− 〈E[yn(t)]〉 , (10)

with the time average again defined by Eq. (3). The
time-averaged normalized cross-covariance is

Csyn =
〈E[s̃(t)ỹn(t)]〉√
〈E[s̃2(t)]〉〈E[ỹ2

n(t)]〉
, (11)

or equivalently, since s(t) is deterministic,

Csyn =
〈s̃(t) E[ỹn(t)]〉√
〈s̃2(t)〉〈E[ỹ2

n(t)]〉
. (12)

The expectations E[yn(t)] = E[y2
n(t)] are again

expressed by Eq. (4). And in the case where the lo-
cal noises ηj(t) share the same distribution, Eq. (8)
applies to provide these expectations as functions
of both s(t) and the common noise distribution
Fη(u). For a given s(t) the time averages involved
in Eq. (12) can then be explicitly realized, possibly
through numerical integration, to yield the cross-
covariance Csyn as a function of the noise properties
conveyed by Fη(u). A study of the evolution of Csyn
with the noise properties can then be performed, to
investigate the conditions for a stochastic resonance
in the propagation of the deterministic aperiodic
signal s(t).

For illustration we consider s(t) to be the aperi-
odic pulse train of duration Ts depicted in Fig. 4. As
before, our treatment applies to an arbitrary wave-
form for s(t), but the choice of a pulse train for s(t)
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Fig. 4. Deterministic aperiodic signal s(t) of duration Ts
experiencing a noise-enhanced propagation.

maintains the possibility of carrying on the neuronal
interpretation, with our illustration here picturing
the propagation of an aperiodic train of action po-
tentials over a chain of noisy neurons responding to
Eq. (1).

The measure of the propagation efficacy pro-
vided by the cross-covariance Csyn from Eq. (12)
has been evaluated at different cells n down the
line. Figure 5 shows the cross-covariance Csyn at
different cells n, and for different noise distribu-
tions, with cells of threshold θ = 1.1. Again, with
such a value of the threshold, the input s(t) and
every ouput yn are below the threshold θ. No prop-
agation can take place at zero noise, and the propa-
gation is maximized at each cell by a nonzero noise
level, as expressed by the resonant evolutions of the
cross-covariance Csyn of Fig. 5. Again, if the noise
is set to zero at any cell, then the propagation of
the signal stops at this cell. This is a stochastic res-
onance effect as a noise-assisted propagation of an
aperiodic signal.

Another characterization of the noise-assisted
propagation that can be deduced from cross-
covariance curves like those of Fig. 5, is the eval-
uation of a propagation length defined as the index
n of the remotest cell that can be reached before
the cross-covariance Csyn drops below an arbitrary
level, say −20 dB. Such a propagation length is
shown in Fig. 6, when the input signal s(t) is the
aperiodic pulse train of Figs. 4 and 5, as a function
of the level of the noise over the line. Again, we
observe in Fig. 6 that the propagation length goes
to zero at zero noise, and that an optimal nonzero
noise level maximizes the propagation length, thus
characterizing a stochastic resonance in the propa-
gation of a deterministic aperiodic signal.

4.2. Random aperiodic signal

We now consider the case where the information-
carrying signal s(t) feeding the line of Fig. 1, is a
stationary random signal. In such a case, a pos-
sibility to quantify a noise-enhanced propagation
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Fig. 5. Normalized cross-covariance Csyn from Eq. (12) at
various cells n, as a function of the rms amplitude of the noise
over the line, when the input signal s(t) is the aperiodic pulse
train in Fig. 4. Panel A: with zero-mean Gaussian noise, for
n = 1 to 9 from the upper to the lowest curve. Panel B: with
zero-mean uniform noise, for n = 1 to 12 from the upper to
the lowest curve.

is again to use the normalized cross-covariance ex-
pressed by Eq. (12), provided the time average de-
fined in Eq. (3) is replaced by the statistical average

〈· · · 〉 =

∫
s
· · · fs(s)ds , (13)

where fs(s) is the probability density function of
the random signal s(t).

Another possibility to quantify a noise-
enhanced propagation of a random signal s(t) down
the line of Fig. 1, is to rely on information-theoretic
measures [Neiman et al., 1996; Heneghan et al.,
1996; Bulsara & Zador, 1996; Chapeau-Blondeau,
1997; Godivier & Chapeau-Blondeau, 1998] to



1956 F. Chapeau-Blondeau & J. Rojas-Varela

0 0.5 1 1.5 2
0
1
2
3
4
5
6
7
8
9

10
11
12

noise rms amplitude

pr
op

ag
at

io
n 

le
ng

th

Fig. 6. Propagation length deduced from the cross-
covariance for the deterministic aperiodic signal of Figs. 4
and 5, as a function of the rms amplitude of the noise over
the line. (∗) with zero-mean Gaussian noise. (◦) with zero-
mean uniform noise.

evaluate a mutual information between s(t) and the
output yn(t) at cell n. Although such a character-
ization can be realized for general conditions con-
cerning the input signal s(t), we shall consider here
special conditions where the characterization can be
developed analytically up to the computation of the
information capacity of the nonlinear line.

We consider the case where the nonlinear line
in Fig. 1 is operated as a memoryless binary infor-
mation channel. The signals s(t) and every yn(t)
are observed or sampled at discrete times tk, the
distribution of which need not be further specified.
The random signal s(t) is assumed to be a white
noise, and thus the values s(tk) for different times
tk are independent. Further, we suppose that the
signal s at the sampling times tk assumes values
restricted to 1 or 0, respectively with probabilities
Pr{s = 1} = p1 and Pr{s = 0} = 1 − p1. At the
output of a cell n governed by Eq. (1), the signal yn
at the sampling times also assumes values 0 or 1.

The above conditions can again receive a neu-
ronal interpretation. The sampling times can be
taken at regular intervals tk = kT , where T can be
interpreted as a neuron refractory period setting the
fastest repetition period at which action potentials
can be fired by a neuron. The values 0/1 assumed
by the signals model the absence/presence of an ac-
tion potential at the corresponding sampling time.
The line model can then be viewed as describing
the propagation of an information-carrying train s
of action potentials over a chain of noisy neurons.

Between the input s and the output yn at
cell n, the line also represents a memoryless bi-
nary information channel [Cover & Thomas, 1991].
The input–output transmission probabilities of this
channel can be expressed by means of Eq. (8), again
when the local noises share the same distribution.
When s = 0 in Eq. (8), we get the transmission
probability

p00 = Pr{yn = 0|s = 0}

= Fη(θ)Q
n−1(θ)

+ Fη(θ − 1)
1−Qn−1(θ)

1−Q(θ)
, (14)

and we deduce

p10 = Pr{yn = 1|s = 0} = 1− p00 . (15)

When s = 1 in Eq. (8), we get the transmission
probability

p01 = Pr{yn = 0|s = 1}

= Fη(θ − 1)Qn−1(θ)

+ Fη(θ − 1)
1−Qn−1(θ)

1−Q(θ)
, (16)

and we deduce

p11 = Pr{yn = 1|s = 1} = 1− p01 . (17)

Once the input–output transmission probabili-
ties are known, the input–output mutual informa-
tion I(s; yn) of the channel can be computed from
the entropies as [Cover & Thomas, 1991; Chapeau-
Blondeau, 1997]

I(s; yn) = H(yn)−H(yn|s) . (18)

The output entropy at cell n can be expressed as

H(yn) = h[p1p11 + (1− p1)p10]

+ h[p1p01 + (1− p1)p00] , (19)

with the function h(u) = −u log2(u), and the
input–output conditional entropy as

H(yn|s) = p1[h(p11) + h(p01)]

+ (1− p1)[h(p00) + h(p10)] . (20)

Equations (18)–(20) provide an explicit expres-
sion for the mutual information I(s; yn) as a func-
tion of the input probability p1. The derivative of
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Fig. 7. Information capacity Cn from Eqs. (18)–(22) at various cells n, as a function of the rms amplitude of the noise over
the line, when the input signal s(t) is a random pulse train. Panel A: with zero-mean Gaussian noise, for n = 1 to 8 from the
upper to the lowest curve. Panel B: with zero-mean uniform noise, for n = 1 to 11 from the upper to the lowest curve.

I(s; yn) relative to p1 can be computed, to yield the
value p∗1 of p1 that maximizes I(s; yn) and achieves
the channel capacity Cn; this value comes out as

p∗1 =
ap00 − 1

a(p00 − p01)
, (21)

with

a=1+exp

[
ln(2)

h(p00)+h(p10)−h(p11)−h(p01)

p00−p01

]
.

(22)

Expression (21) used in Eqs. (19) and (20) re-
sults in an explicit expression for the channel ca-
pacity Cn as the maximum I(s; yn) which follows
in Eq. (18). A study of the evolution of Cn with
the noise properties can then be performed, to in-
vestigate the conditions for a stochastic resonance
in the propagation of the random signal s(t).

The measure of the propagation efficacy pro-
vided by the capacity Cn has been evaluated for
different cells n down the line. Figure 7 shows this
capacity Cn at different cells n, and for different
noise distributions, with cells of threshold θ = 1.1.
Again, with such a value of the threshold, the in-
put s and every ouput yn are below the threshold
θ. A nonzero noise is strictly necessary at each cell
to have information propagating through the line.
The flow of information is maximized at an optimal
nonzero noise level, as expressed by the resonant
evolutions of the capacity Cn in Fig. 7. If the noise
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Fig. 8. Propagation length deduced from the information
capacity for the random aperiodic signal of Fig. 7, as a func-
tion of the rms amplitude of the noise over the line. (∗) with
zero-mean Gaussian noise. (◦) with zero-mean uniform noise.

is set to zero at any cell, then the flow of informa-
tion stops at this cell. This is a stochastic resonance
effect as a noise-assisted propagation of information
down the line.

Another characterization of the noise-assisted
propagation that can be deduced from information-
capacity curves like those in Fig. 7, is the evaluation
of a propagation length defined as the index n of the
remotest cell that can be reached before the capac-
ity Cn drops below an arbitrary level, say −35 dB.
Such a propagation length is shown in Fig. 8 for the
conditions of Fig. 7, as a function of the level of the
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noise over the line. Again, we observe in Fig. 8 the
propagation length which goes to zero at zero noise
and the existence of an optimal nonzero noise level
where the propagation length is maximized, thus
characterizing a stochastic resonance in the propa-
gation of information.

5. Conclusion

The present model establishes a new instance of
the nonlinear phenomenon of stochastic resonance
under the form of a noise-enhanced propagation,
over a line of threshold elements, which applies to a
broad variety of signals and noises. Here, we have
considered the information-carrying signal s(t) un-
der the form of pulse trains (periodic, aperiodic
and random). Such a choice enabled an interpre-
tation of the results for neuronal signals; another
interpretation could be for trains of solitons. Yet,
the model could be applied as well to investigate
stochastic resonance in the propagation of arbitrary
waveforms s(t). Also, in our treatment the noise
can be arbitrarily distributed, and the influence of
the noise statistical distribution can be investigated.
Even the consideration of a spatial arrangement of
the noise varying along the line could be envisaged,
although this has not been done here. The model
is the first to demonstrate a noise-enhanced propa-
gation based on an exact theoretical treatment ap-
plicable to periodic, aperiodic as well as random
signals. It offers a unique framework for further
studies on stochastic resonance and its potential
applications.
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