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The nonlinear detection by a threshold device of a periodic train of
soliton-like pulses embedded in arbitrarily distributed white noise is
studied. A theoretical model is developed which provides expressions for
the signal-to-noise ratio at the output of the detector and for the
input–output gain in signal-to-noise ratio. We analyze the properties and
conditions of optimality for these quantities as functions of the param-
eters of the process. Especially, specific nonlinear properties not shared
by linear devices are established, among which are the possibility of an
input–output amplification of the signal-to-noise ratio and the demonstra-
tion that through nonlinear coupling the noise can be beneficial to the
signal detection and that adding noise may result in improved perfor-
mance via a mechanism known as stochastic resonance. r1999 Academic Press

1. INTRODUCTION

Signal processing, especially at low levels where a signal is to be recovered
out of the noise, relies heavily on linear devices, involving linear sensors
followed by linear filtering. Linear techniques are specially interesting because
they usually allow a thorough theoretical treatment, providing extensive
control over the processes [1]. Yet linear techniques also come with inherent
limitations, and one may turn to nonlinear techniques or devices in order to
gain additional properties. In the nonlinear domain, no comparable general
theory is available to guide the design and analysis of signal-processing
devices. The exploration and exploitation of nonlinear processes is still in its
infancy, and certainly many interesting and useful nonlinear properties remain
to be discovered and mastered [2, 3].

In a specific context here, we develop an analysis of a nonlinear process
concerning the detection of signal in noise. We show the possibility of
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interesting and powerful ‘‘nonlinear’’ performances not present in linear
devices. Especially, we demonstrate that through nonlinear coupling, the noise
can be beneficial to the signal detection and that adding noise may result in
improved performance via a mechanism known as stochastic resonance [4].

We consider a periodic signal s(t) consisting of a rectangular pulse of the
amplitude A . 0 and duration T, repeated at the period Ts . T; i.e., s(t) 5 A for
t [ [0, T , Ts3 and s(t) 5 0 elsewhere in the period Ts. This signal s(t) is
corrupted additively by a stationary white noise h(t) with probability density
function fh(u) and cumulative distribution function Fh(u) 5 e2`

u fh(u8)du8.
The signal s(t) is seen here as a model for different types of physical signals

carrying information in the form of discrete pulses. For example, this can be the
case of trains of neural action potentials or of neural postsynaptic potentials [5].
In such neural trains, the ‘‘firing’’ period Ts can code for the intensity of a
stationary stimulus. Also, the periodic train s(t) can represent a high-frequency
carrier which can carry useful information through modulation by a low-
frequency (quasi-static) message. Another embodiment would be a train of
solitons in a nonlinear setting [6].

We further consider that the signal-plus-noise mixture s(t) 1 h(t) is received
by a threshold detector producing the response y(t) 5 g[s(t) 1 h(t)] with

g(u) 5 50 for u # u,

1 for u . 0.
(1)

Equation (1) can be seen as a simple model for the essential nonlinearity in a
neuron response (i.e., a threshold nonlinearity). It can also represent the
response of a bistable optical device, or of many other devices (e.g., electronic)
[7]. Whatever its physical implementation, we shall demonstrate that the
nonlinear response of Eq. (1) possesses very interesting and unusual properties
(not shared by linear detectors) for efficient recovery of the information-
carrying pulse train s(t) out of the signal-plus-noise mixture s(t) 1 h(t).

2. FREQUENCY-DOMAIN ANALYSIS

A signal-to-noise ratio (SNR) in the frequency domain will now be evaluated,
both at the input and at the output of the threshold detector, through an
application of the theory proposed in [8].

At the input, the power spectral density of the signal-plus-noise mixture
s(t) 1 h(t) is formed by spectral lines (Dirac delta functions) at the harmonics
n/Ts contributed by the Ts-periodic input s(t), emerging out of a broadband
continuous background contributed by the white noise input h(t). The power
contained in the spectral line at frequency n/Ts is 0Sn 02, with the order n Fourier
coefficient of the pulse train s(t) given by

Sn 5 A
T

Ts
sinc 1np

T

Ts
2 exp 12inp

T

Ts
2 . (2)
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In the same way, at the output, the power spectral density is formed by
spectral lines at the harmonics n/Ts originating in the Ts-periodic input s(t),
emerging out of a broadband continuous background originating in the white
noise h(t). The power contained in the spectral line at frequency n/Ts is given [8]
by 0Yn 02, where Yn is the order n Fourier coefficient of the Ts-periodic non-
stationary output mean E[ y(t)],

Yn 5
1

Ts
e

0

Ts
E[ y(t)] exp 12in

2p

Ts
t2 dt, (3)

with the mean E[ y(t)] at a fixed time t expressable as

E[ y(t)] 5 1 3 Pr5s(t) 1 h(t) . u6 5 1 2 Fh[u 2 s(t)]. (4)

For s(t) our train of rectangular pulses, Eqs. (3)–(4) result in

Yn 5 [Fh(u) 2 Fh(u 2 A)]
T

Ts
sinc 1np

T

Ts
2 exp 12inp

T

Ts
2 . (5)

We now possess explicit expressions for the coherent powers located in
spectral lines at n/Ts in both the input and output power spectral densities. We
shall now evaluate the magnitude of the broadband noise background out of
which these spectral lines emerge, both at the input and at the output. For this
purpose, to avoid artificial difficulties stemming from the idealized character of
a white noise (infinite variance and zero correlation duration) we shall move to
a discrete-time description. The time scale is discretized with a step Dt 9 T ,

Ts. The white noise is implemented with the discrete-time sequence h(t 5 jDt)
of independent values identically distributed according to the density fh(u) with
the finite variance sh

2. The correlation duration of the discrete white noise is no
larger than Dt, and the product sh

2Dt is fixed and finite and measures the power
spectral density of the white noise.

In the input power spectral density, the noise background thus has the
constant amplitude sh

2Dt. The power contained in this noise background in a
small frequency band DB around the harmonic n/Ts is simply sh

2DtDB. A
classical definition of the signal-to-noise ratio [8], at frequency n/Ts, follows as
the ratio of the power 0Sn 02 contained in the spectral line to the power contained
in the noise background in the small frequency band DB around n/Ts. This
results in the expression of the input SNR as

Rin1nTs
2 5

0Sn 0
2

sh
2 DtDB

. (6)

In a similar way, the magnitude of the noise background in the output power
spectral density is given [8] by var( y)Dt, with the stationarized output variance

var( y) 5
1

Ts
e

0

Ts
var[ y(t)]dt, (7)
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expressable from the nonstationary variance var[ y(t)] at a fixed time t:

var[ y(t)] 5 E[ y2(t)] 2 E2[ y(t)] 5 Fh[u 2 s(t)] 51 2 Fh[u 2 s(t)]6. (8)

And for s(t) our train of rectangular pulses, Eqs. (7)–(8), result in

var( y) 5
T

Ts
Fh(u 2 A) [1 2 Fh(u 2 A)] 1 11 2

T

Ts
2 Fh(u)[1 2 Fh(u)]. (9)

The output SNR, defined in the same way as the input SNR, follows as

Rout 1nTs
2 5

0Yn 0
2

var( y)DtDB
, (10)

which, thanks to Eqs. (5) and (9), is

Rout 1nTs
2 5

[Fh(u) 2 Fh(u 2 A)]2

T

Ts
Fh(u 2 A) [1 2 Fh(u 2 A)] 1 11 2

T

Ts
2 Fh(u)[1 2 Fh(u)]

3
1TTs

2
2

sinc2 1np
T

Ts
2

DtDB
. (11)

Another quantity of interest [9], to characterize the operation of the
threshold detector, is the input–output gain GSNR 5 Rout/Rin for the SNR, whose
expression is found to be the same at any harmonic n/Ts, and follows as

GSNR 5
[Fh(u) 2 Fh(u 2 A)]2 sh

2/A2

T

Ts
Fh(u 2 A)[1 2 Fh(u 2 A)] 1 11 2

T

Ts
2 Fh(u)[1 2 Fh(u)]

. (12)

Without loss of generality, we can take A 5 1 for the unit of amplitude, in
which both u and sh will now be expressed. The quantity GSNR of Eq. (12) and,
also, the quantity Rout of Eq. (11) at a given harmonic n/Ts, are taken as mea-
sures of the performance of the threshold detector. We shall now analyze them
and exhibit some interesting properties. Especially, Rout and GSNR are both func-
tions of three important parameters characterizing the transmission process:
the pulse duration T/Ts, the threshold u, and the noise rms amplitude sh (via
Fh). We shall study these dependencies and examine the optimality conditions
on T/Ts, u, and, also, sh, in order to maximize Rout or GSNR in different situations.

3. MAXIMIZATION OF THE OUTPUT SNR

We assume first that the type of noise distribution (Gaussian, for example)
and its variance sh

2 are fixed, and we study the variations of Rout at the
fundamental 1/Ts, as a function of T/Ts and u.
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Figure 1 shows two typical evolutions of Rout, as a function of T/Ts and u when
h(t) is a zero-mean Gaussian noise, and with the product DtDB in Eqs. (11) and
(10) chosen to be 1023 (we shall stick to this value throughout the paper).

In the case of the Gaussian h(t) of Fig. 1, the cumulative distribution is
Fh(u) 5 0.5 1 0.5 erf[u/(Î2sh)]. If both T/Ts and u are free adjustable
parameters, the optimization of Rout in Eq. (11) shows that the absolute
maximum accessible for Rout is reached when (T/Ts, u) 5 (0.5, 0.5) for any noise
rms amplitude sh. If, on the contrary, a fixed value for T/Ts Þ 0.5 (or,
respectively, for u Þ 0.5) is imposed by the transmission process, the optimal
value of the complementary parameter u (or T/Ts) maximizing Rout will differ
from the value at the absolute maximum and will depend on sh, as is seen in
Fig. 1. To illustrate this property, Fig. 2A shows the values of the threshold u (at
different noise levels sh) maximizing Rout when the value of T/Ts is fixed. Figure

FIG. 1. Output SNR Rout(1/Ts) from Eq. (11) as a function of the pulse duration T/Ts and the
threshold u, when the input white noise h(t) is zero-mean Gaussian with rms amplitude sh 5 0.4
(panel A) and sh 5 0.8 (panel B).

FIG. 2. At a fixed pulse duration T/Ts, optimal threshold u, maximizing the output SNR Rout(1/Ts)
of Eq. (11) (panel A) and maximum value of Rout(1/Ts) at the optimal threshold (panel B), as a
function of the rms amplitude sh of the zero-mean Gaussian noise h(t). In panel A, from the lowest
to the upper curve, T/Ts 5 0.95, 0.9, 0.7, 0.5, 0.3, 0.1, 1022, 1023, 1024, and 1026. In panel B, from the
upper to the lowest curve, T/Ts 5 0.5, 0.3, 0.1, 1022, 1023, and 1024, in addition, a curve at T/Ts 5 0.7
is superimposed to the curve at T/Ts 5 0.3, and a curve at T/Ts 5 0.9 is superimposed to the curve at
T/Ts 5 0.1, illustrating the nonmonotonic influence of T/Ts.
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2B shows the corresponding maximum value of Rout, which reaches its overall
maximum when T/Ts 5 0.5 in the Gaussian case.

Optimality conditions for the threshold detector operating at a fixed T/Ts,
which are not intuitive in the first place, are revealed by the analysis
illustrated in Fig. 2A. Conditions exist (for sufficient noise levels), where the
optimal value of the threshold u is above 1, i.e. above the magnitude of the
coherent pulses to be detected which become subliminal. Also, in other
conditions (for T/Ts sufficiently large), the optimal threshold u can become
negative.

Complementary to Fig. 2 is Fig. 3, which shows the values of the pulse
duration T/Ts (at different noise levels sh), maximizing Rout when the value of u

is fixed, and also, the corresponding maximum value of Rout which reaches its
overall maximum when u 5 0.5 in this Gaussian case.

An especially interesting property appearing in Fig. 3B, for the threshold
detector operating at a fixed u, is that there exist conditions, at a fixed u . 1,
where the output SNR Rout can increase when the input noise rms amplitude sh

is raised. The same property is also present, at a fixed u . 1, when the pulse
duration T/Ts is fixed at a value differing from its optimum of Fig. 3A, as
depicted by Fig. 4.

In the regime with the threshold u , 1, the input pulses alone are above
threshold and able by themselves to trigger transitions in the output y(t). In
this case, in the absence of the noise, the output y(t) perfectly reproduces the
input train s(t) and the output SNR Rout goes to infinity. When the noise level is
gradually raised above zero, the output transitions coherent with the input
pulses will gradually get polluted by more and more noisy transitions. This
entails a monotonic decay of Rout with increasing noise level, as is seen in Figs.
3B and 4A when u , 1.

By contrast, in the regime with u . 1, the input pulse train s(t) alone is
subliminal and unable by itself to trigger transitions in the output y(t). In this

FIG. 3. At a fixed threshold u, the optimal pulse duration T/Ts maximizing the output SNR
Rout(1/Ts) of Eq. (11) (panel A), and maximum value of Rout(1/Ts) at the optimal pulse duration
(panel B), as a function of the rms amplitude sh of the zero-mean Gaussian noise h(t) with u 5 0.1
(a), u 5 0.3 (b), u 5 0.5 (c), u 5 0.9 (d), u 5 1.1 (e), u 5 1.5 (f). In panel B, the two curves, (a) for u 5 0.1
and (d) for u 5 0.9, are superimposed, illustrating the nonmonotonic influence of u.

167



case, in the absence of the noise, the periodic input s(t) is invisible in the output
y(t), and the output SNR Rout is zero. When the noise level is gradually raised
above zero, a cooperative effect becomes possible in which the noise can assist
the coherent input s(t) in overcoming the threshold u. The result is that output
transitions can occur which bear a correlation with the input pulses because
their occurrences involve the joint action of the noise and the coherent pulses.
As the noise level gets larger, the probability of this favorable outcome first
increases, leading to a reinforcement of the correlation of the output with the
input pulse train which translates to an increasing output SNR Rout. There
exists an optimum nonzero noise level, where Rout is maximized. Past this
optimum, when the noise level is further raised, the output transitions
produced by the noise alone, with no assistance from the coherent pulses, grow
in importance and gradually destroy the correlation of the output with the
coherent pulse train, resulting in the eventual decay of Rout. This noise
enhancement of the output SNR is visible in Figs. 4B and 3B when u . 1.

This noise-assisted signal transmission is a form of stochastic resonance. The
phenomenon of stochastic resonance was introduced some 15 years ago [10] in a
nonlinear system more complicated than our threshold detector of Eq. (1). It
was a nonlinear dynamic system (by contrast Eq. (1) rather constitutes a static
or memoryless nonlinear system) governed by a bistable potential in which it
was shown that the response to a sinusoidal forcing can be improved via noise
addition. In this form, the effect of stochastic resonance has been the subject of
much elaboration [11, 12, 4]. Only recently has stochastic resonance been
reported for simpler nonlinear systems amenable to a general theory and easily
implementable as signal processing devices [8, 13, 14]. A stochastic resonant
system of the type of Eq. (1) with a calculation of Rout and GSNR appeared for the
first time in [9], essentially to establish the existence of the stochastic
resonance effect. But it is here for the first time that the influences of the
parameters of the nonlinear transmission are systematically studied and that
the problem of optimizing the transmission in the presence of stochastic

FIG. 4. Output SNR Rout(1/Ts) of Eq. (11) as a function of the threshold u and of the rms amplitude
sh of the zero-mean Gaussian noise h(t), at a given pulse duration T/Ts 5 0.5. As sh increases, panel
A shows both the regime where Rout decreases (at u , 1) and the regime where Rout can increase (at
u . 1); panel B is a close-up on this last regime, where Rout can be increased when sh increases,
revealing a form of stochastic resonance.
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resonance is addressed, especially to determine the conditions maximizing the
performance.

The stochastic resonance is revealed here in Figs. 3B and 4 by the
nonmonotonic resonant evolution of Rout(1/Ts), observed at the first harmonic
1/Ts. It is to note that, thanks to the form of Rout of Eq. (11), resonant evolutions
will also exist for Rout(n/Ts) at higher order harmonics of n/Ts. Also the
conditions of Figs. 3 and 4, especially the Gaussian quality of the noise and the
value of T/Ts, are merely illustrative and are not critical for the existence of the
stochastic resonance effect with a subliminal input pulse train.

In the regime where u , 1, the output SNR is maximized at zero noise. In the
regime where u . 1, where stochastic resonance takes place, Eq. (11) shows
that the maximum Rout is obtained at the same conditions for any harmonic of
n/Ts, and Fig. 5A presents the optimal value of the noise rms amplitude sh

maximizing Rout of Eq. (11) for the case of Gaussian noise h(t). Figure 5B
presents the corresponding maximum Rout afforded by the optimal noise level.
Figure 5 is a vivid illustration of the stochastic resonance effect, showing that if
the threshold detector has to operate at a fixed u . 1, an optimal nonzero noise
level is required to maximize Rout. This may lead, in the case of too little noise,
to purposely adding more noise in order to maximize the performance.

4. MAXIMIZATION OF THE INPUT–OUTPUT SNR GAIN

We now turn to the analysis of the SNR gain GSNR of Eq. (12) as a function of
T/Ts and u. Figure 6 shows two typical evolutions of GSNR with T/Ts and u, when
h(t) is a zero-mean Gaussian noise.

The results of Fig. 6 show that over a definite domain of conditions, it is
possible to obtain a SNR gain GSNR larger than unity, i.e. an input–output
amplification of the SNR by the nonlinear threshold detector. This is a very
important property that cannot be obtained with a linear device, which always

FIG. 5. For a zero-mean Gaussian input noise h(t), as a function of the threshold u . 1, with
T/Ts 5 1023 (a), 1022 (b), 0.1 (c), 0.5 (d), 0.9 (e). Panel A shows the optimal value of the input noise
rms amplitude sh maximizing the output SNR Rout of Eq. (11). Panel B shows the maximum output
SNR Rout(1/Ts) at the optimal sh (a nonmonotonic influence of T/Ts on Rout is visible).
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conserves the SNR because in the frequency domain both the noise background
and the coherent spectral lines are multiplied, in the input–output transforma-
tion, by the same value given by the squared modulus of the transfer function of
the linear device at this frequency.

At fixed pulse duration T/Ts and noise level sh, we find that, thanks to the
form of Eqs. (12) and (11), the optimal value of the threshold u that maximizes
the SNR gain GSNR is always the same as the optimal u maximizing the output
SNR Rout. For the Gaussian case, this optimal threshold maximizing GSNR is
thus given by Fig. 2A, and the corresponding maximum of GSNR appears in
Fig. 7.

Figure 7 shows that the maximum SNR gain at the optimal threshold is also
found to be larger than unity over a large range of noise levels, especially at
small and intermediate noise levels. At high noise levels, the SNR gain
saturates slightly below one, indicating that in this case the threshold detector
brings no improvement in the SNR. When this detector can be avoided, the
SNR at the input is slightly better and, thus, preferable.

At a fixed threshold u, Eq. (12) allows one to find the optimal value of the

FIG. 6. Input–output SNR gain GSNR from Eq. (12) as a function of the pulse duration T/Ts and
the threshold u, when the input white noise h(t) is zero-mean Gaussian with rms amplitude sh 5
0.4 (panel A) and sh 5 0.7 (panel B).

FIG. 7. Maximum input–output SNR gain GSNR from Eq. (12) at the optimal threshold in the
conditions of Fig. 2A, with the upper to the lowest curves, T/Ts 5 1026, 1023, 1022, 0.1, 0.3, and 0.5.
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pulse duration T/Ts that maximizes the SNR gain GSNR. For an even density
fh(u), the SNR gain verifies GSNR(u, T/Ts 5 0) 5 GSNR(1 2 u, T/Ts 5 1), and in
that case the analysis of Eq. (12) shows that at a fixed u $ 0.5 the SNR gain
GSNR is maximized when T/Ts = 0. And, symmetrically, at a fixed u # 0.5 the
SNR gain GSNR is maximized when T/Ts = 1, as Fig. 6 shows for the Gaussian
case.

For two fixed values of the threshold u . 0.5, Fig. 8a shows the maximum
SNR gain GSNR afforded by the optimality condition T/Ts = 0. Strictly, the
optimal value T/Ts 5 0 (or T/Ts 5 1) cannot be realized because in that case the
periodic input s(t) disappears and there is no longer the transmission of a
useful signal. In practice, the pulse duration T has to be limited to a
nonvanishing value, especially for minimal energy requirements, in order to
switch the physical device implementing the threshold detector. For small
(near to optimal), but nonvanishing values of T/Ts, Figs. 8b–d also show
the resulting SNR gain GSNR and the way it approaches its maximum when
T/Ts = 0.

Again, Fig. 8 shows the important property of a SNR gain larger than unity
over a large domain of conditions. Also, Fig. 8 shows the second important
property, related to the stochastic resonance effect, of the possibility, in various
situations with both u . 1 and u , 1, of an improvement of the SNR gain by
means of noise addition. This form of stochastic resonance is again related to
the presence of a threshold that can sometimes be overcome more efficiently by
the coherent signal when it receives assistance from the noise.

Equation (12) also shows that, when both the values of the threshold u and of
the pulse duration T/Ts are imposed, so that neither of them can be adjusted to
its optimal value, there still exist regimes where the two interesting properties
of a SNR gain GSNR . 1 and of GSNR . 1 improvable through noise addition are
preserved, as suggested by Figs. 6 and 8. This feature is also illustrated by Fig.
9 which shows, at a fixed pulse duration T/Ts, evolutions of the SNR gain GSNR

with the threshold u and the noise rms amplitude sh in the Gaussian case.

FIG. 8. Input–output SNR gain GSNR from Eq. (12) at a fixed threshold u for (a) T/Ts = 0, (b)
T/Ts 5 1027, (c) T/Ts 5 1026, (d) T/Ts 5 1025. Panel A is for u 5 0.95, and panel B is for u 5 1.05.
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5. THE INFLUENCE OF THE NOISE DISTRIBUTION

The present model, through Eqs. (11) and (12), allows the optimization of the
output SNR Rout or of the gain GSNR in a similar way for any distribution of the
noise h(t), other than Gaussian. When the density fh(u) is an even function, its
cumulative distribution verifies Fh(2u) 5 1 2 Fh(u); as a consequence, in the
variables u8 5 u 2 0.5 and t8 5 T/Ts 2 0.5, the output SNR of Eq. (11) verifies
Rout(u8, t8) 5 Rout(2u8, 2t8) and the SNR gain of Eq. (12) verifies GSNR(u8, t8) 5

GSNR(2u8, 2t8). As a result, both Rout(u, T/Ts) and GSNR(u, T/Ts) have a local
extremum or saddle point at (T/Ts, u) 5 (0.5, 0.5) which may not, however, be an
interesting maximum; this property breaks down when the density ceases to be
even.

For illustration of the influence of the noise distribution, Fig. 10 shows
typical evolutions of Rout as a function of T/Ts and u. Two distributions have
been used for the noise h(t) with zero mean and rms amplitude sh: a uniform

FIG. 9. Input–output SNR gain GSNR of Eq. (12) as a function of the threshold u and of the rms
amplitude sh of the zero-mean Gaussian noise h(t), at a given pulse duration T/Ts 5 1022. Panel A
shows the two regimes at u , 1 and at u . 1. Panel B is a close-up of the regime at u . 1, revealing a
form of stochastic resonance.

FIG. 10. Output SNR Rout(1/Ts) from Eq. (11) as a function of the pulse duration T/Ts and the
threshold u, when the zero-mean input noise h(t) has the rms amplitude sh 5 0.7 and is uniform
(panel A), or dichotomous (panel B). A comparison can be made with the Gaussian distribution of
Fig. 1.
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distribution over h [ [2Î3sh, Î3sh]; and a dichotomous or two-level discrete
distribution with h [ 52sh, sh6. The results are comparable to those of Fig. 1
with a Gaussian distribution.

Figure 10 shows that when the noise distribution is changed, one is faced
with similar optimization possibilities for maximizing the output SNR Rout in
various conditions (and the same for maximizing the gain GSNR). For instance,
at a fixed noise rms amplitude, there exist optimal values for (T/Ts, u), both
considered as free parameters, that maximize Rout. Alternatively, if, for
instance, T/Ts is imposed, there is another value of u that maximizes Rout. The
optimality conditions maximizing Rout are generally different for different noise
distributions, but in any situation they can be found through maximization of
Eq. (11), and curves similar to those of Figs. 2, 3, 5 could be obtained easily for
noises other than Gaussian.

An important point is that the property of stochastic resonance, where Rout

can be increased through noise addition, is preserved when the noise distribu-
tion is changed. This is verified by the results of Fig. 11 in the regime u . 1,
comparable to those of Fig. 4B.

Also, the two interesting properties of a SNR gain GSNR . 1 and of GSNR . 1
improvable through noise addition, are preserved when the noise distribution
is changed, as illustrated by Fig. 12.

Figure 12, comparable to Fig. 9B, illustrates that the optimality conditions
maximizing GSNR also differ for differing noise distributions. In Fig. 12 it is
shown that with uniform or dichotomous noises the maximum SNR gain at a
given u . 1 increases with increasing u, whereas it decreases when the noise is
Gaussian in Fig. 9B.

If one seeks to maximize the SNR gain GSNR at a fixed pulse duration T/Ts,
then one can find, as in Fig. 2A, an optimal value of the threshold u through
maximization of Eq. (12). The resulting maximum of GSNR at the optimal
threshold is represented in Fig. 13 with a uniform and a dichotomous noise and
is comparable to Fig. 7B with a Gaussain noise.

If we consider the case of the dichotomous noise h(t) of Fig. 13B, the behavior

FIG. 11. Output SNR Rout(1/Ts) of Eq. (11) as a function of the threshold u and of the rms
amplitude sh of the zero-mean noise h(t), at a given pulse duration T/Ts 5 0.5 when h(t) is uniform
(panel A), or dichotomous (panel B). As is visible, Rout can be increased when sh increases, revealing
a form of stochastic resonance. A comparison can be made with the Gaussian noise of Fig. 4B.
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of the detector can be understood with simple threshold-crossing consider-
ations on the input s(t) 1 h(t), and a simple expression can be obtained from Eq.
(12) for the maximum of GSNR at the optimal threshold. When sh , 0.5, the
optimal value of the threshold u maximizing the output SNR is any value of u in
the interval ]sh, 1 2 sh[, which yields an infinite output SNR Rout and an
infinite SNR gain GSNR since at any sh . 0 the input SNR is finite. When sh .

0.5, the optimal value of the threshold u maximizing Rout and GSNR is any value
of u verifying u . sh and 2sh , u 2 1 , sh which yields, as shown in Fig. 13B,
GSNR 5 sh

2/(T/Ts) (at least when T/Ts # 0.5, the other case being recovered by the
symmetry properties of GSNR(u, T/Ts)). The maximum SNR gain GSNR 5

sh
2/(T/Ts) is thus an increasing function of the noise rms amplitude sh for any

sh . 0.5.
For similar reasons with the uniform noise of Fig. 13A, when 0 , sh , 0.5/Î3

the maximum gain GSNR is infinite; when 0.5/Î3 , sh , Î3 the maximum gain

FIG. 12. Input–output SNR gain GSNR of Eq. (12) as a function of the threshold u . 1 and of the
rms amplitude sh of the zero-mean noise h(t), at a given pulse duration T/Ts 5 1022, when h(t) is
uniform (panel A), or dichotomous (panel B). A comparison can be made with the Gaussian noise of
Fig. 9B.

FIG. 13. Maximum input–output SNR gain GSNR from Eq. (12) at the optimal threshold, as a
function of the rms amplitude sh of the zero-mean noise h(t) being uniform (panel A), or
dichotomous (panel B). In both panels, from the upper to the lowest curves, T/Ts 5 1026, 1023, 1022,
0.1, 0.3, and 0.5. A comparison can be made with the Gaussian noise of Fig. 7.
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GSNR is finite and increases with increasing sh; when sh . Î3 the maximum
GSNR decreases with increasing sh. All these evolutions of the gain GSNR, and
other properties in more complex situations, are contained in the behavior of
Eq. (12) from which they can be deduced by mathematical analysis.

6. DISCUSSION

The present analysis has demonstrated various interesting properties of the
simple threshold device of Eq. (1) for the detection of periodic pulse trains.

One interesting property is that this nonlinear detector can act as a SNR
amplifier, delivering an output SNR larger than the input SNR. This property
can never be obtained with a linear device. In the conditions tested (see Figs.
6–8), the property of a SNR gain GSNR . 1 is always present for small to
intermediate input noise levels sh, and the gain can reach very high values. For
large input noise levels sh, the SNR gain GSNR saturates to a value slightly
below, but very close to, one. Thus, over a large interesting range of conditions
the detector behaves as an effective SNR amplifier, and therefore, there is an
actual benefit in purposely using the nonlinear detector on the signal-plus-
noise mixture, rather than not using it, whenever this choice is available.

When using the detector, if its threshold u is an adjustable parameter, then it
can be set to an optimal value, which depends upon the properties of the input
signal-plus-noise mixture (see Fig. 2A, for instance). This optimal value for u at
the same time maximizes the output SNR and the input–output SNR gain.
Also, as revealed by the present analysis, there are conditions where the
optimal value of the threshold lies above one, i.e. above the amplitude of the
coherent pulses to be detected, especially when the input noise level is not too
small.

Another remarkable property, when the detector has to operate at a fixed
threshold u . 1, is that there exists an optimal nonzero input noise level that
maximizes the output SNR (see Figs. 4 and 11). This means that conditions
exist where (purposeful) addition of noise at the input results in an increase of
the SNR at the output. This effect is a form of the phenomenon of stochastic
resonance, where noise can favor the signal. This is a typically nonlinear effect,
which cannot be obtained with linear devices. The same type of improvement
through noise addition is also possible for the SNR gain (see Figs. 9 and 12),
except that in this case it can even occur when u , 1, as exemplified by Fig. 8.

Natural systems are known that have to operate in conditions comparable to
those considered here. This is the case with neurons, which achieve highly
efficient signal processing. At low levels, neurons have to transmit noisy pulse
trains in the presence of a fixed neuronal threshold, and it has been shown,
both in theoretical models [15] and in experimental situations [16], that they
can benefit from noise addition via stochastic resonance. Such nonlinear
mechanisms could also benefit technological systems in charge of the transmis-
sion of pulse trains, for instance solitons in optical communications.

A comparable study has appeared with another type of stochastic resonant
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system in which optimality conditions are sought [17]. Yet with this system of
[17] the important property of a SNR gain larger than unity cannot be
observed, and the output SNR in [17] is always found to be smaller than the
input SNR. In contrast, this important property of GSNR . 1 is available here in
our stochastic resonator.

Our present study constitutes a unique analysis, based on an exact theoreti-
cal model, of the conditions of optimality for a nonlinear transmission in the
presence of stochastic resonance. As such it can serve as a useful basis to extend
applications to nonlinear signal processing. The situation of neural systems,
that are highly nonlinear at low levels of their constitution with their response
threshold, and yet at higher levels achieve very efficient information-
processing tasks, also prompts us to envisage the possibilities of novel
modalities for signal processing (still to be elucidated), involving devices that
would be highly nonlinear as soon as the low levels, and in which stochastic
resonance would be a property, among others, contributing to the performance.
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