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Abstract For binary images, or bit planes of non-binary images, we investigate the
possibility of a quantum coding decodable by a receiver in the absence of reference
frames shared with the emitter. Direct image coding with one qubit per pixel and
non-aligned frames leads to decoding errors equivalent to a quantum bit-flip noise
increasing with the misalignment. We show the feasibility of frame-invariant coding
by using for each pixel a qubit pair prepared in one of two controlled entangled states.
With just one common axis shared between the emitter and receiver, exact decoding
for each pixel can be obtained bymeans of two two-outcome projective measurements
operating separately on each qubit of the pair. With strictly no alignment information
between the emitter and receiver, exact decoding can be obtained by means of a
two-outcome projective measurement operating jointly on the qubit pair. In addition,
the frame-invariant coding is shown much more resistant to quantum bit-flip noise
compared to the direct non-invariant coding. For a cost per pixel of two (entangled)
qubits instead of one, complete frame-invariant image coding and enhanced noise
resistance are thus obtained.
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1 Introduction

Quantum representation or coding becomes a natural requirement for images when
their storage or communication is envisaged at the level of individual elementary
constituents, like photons, electrons, atoms or nanodevices, as implied by the progress
of information technologies. In addition, under a quantum form, images get access
to the powerful potentialities of quantum computation and quantum algorithms for
information processing. A quantum variant of digital image processing is, however,
still in a very early stage of elaboration [1]. To begin with, the basic issue of coding
an image under a quantum form can be approached in several different ways, as, for
instance, witnessed in the studies of [2–10] and the very recent survey [11], depending
on the aims and targeted properties. Here we shall examine a property not previously
addressed for quantum images, and dealing with possible forms of quantum coding
enabling invariance or independence with respect to the reference frame used for
quantum measurement and decoding.

Quantum measurement typically is referred to a given projective basis. Changing
the measurement basis usually changes the measurement outcomes and their statis-
tics. For storage, retrieval, communication of information between an emitter and a
receiver, aligned reference frames are usually presumed, in order to enable actual
transmission of information in a controlled way [12]. This implicitly requires that
some prior alignment information be established with the emitter, before the receiver
can start to perform quantum measurement with interpretable outcomes [12]. This
requirement is sometimes very stringent in practice. To circumvent this limitation,
different schemes have been proposed so as to obtain frame independence for various
quantum information tasks of interest, such as cryptographic key distribution [13],
non-local correlation establishment [14] or entanglement assertion [15–17]. Here, we
address frame independence for quantum image coding.

2 Single-qubit pixel coding

Our starting point is a standard classical digital image, for which we envisage a quan-
tum coding where each pixel of the image will be represented (coded) by a quantum
system prepared in some controlled state. This can be motivated, for instance, by the
storage or communication of the image with quantum technologies, to benefit from
very high density storage or communication capacity at a quantum level. As is very
often the case with digital images, we will consider that the coding of the spatial
locations of the pixels is implicit and experiences no other coding. It is ensured, for
instance, by the temporal sequence of the stream of quantum states supporting the
image in a communication process, or by the spatial location of the physical systems
materializing the quantum states in a solid-state storage, or by the logical structure of
sequential addressing of a memory. So we will only consider quantum coding of the
pixel values or intensities.

A possible quantum coding of an image consists in assigning to each pixel a qubit
prepared in a pure state of the form
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|ψ〉 = α0 |0〉 + α1 |1〉 , (1)

with {|0〉 , |1〉} an orthonormal basis of the complex two-dimensionalHilbert spaceH2,
and α0 and α1 two complex numbers satisfying the normalization condition |α0|2 +
|α1|2 = 1. From the quantum-coded image, through quantum measurement, one then
wants to be able recover the original classical image. When the qubit in state |ψ〉 is
measuredvia a projectivemeasurement in the computational basis {|0〉 , |1〉}, according
to the Born rule, the probability of projecting on |0〉 is |α0|2 = | 〈0|ψ〉 |2 while the
probability of projecting on |1〉 is |α1|2 = | 〈1|ψ〉 |2 = 1−|α0|2. In this way, the result
of the quantummeasurement of an image is intrinsically random. One can assign to the
recovered pixel a value 0 when projecting on |0〉, and a value 1 when projecting on |1〉.
Over repeated measurements on a large number of copies with the same preparation
|ψ〉, the average value for the pixel is obtained as |α1|2 = 1−|α0|2. This provides the
ability to encode an arbitrary intensity or gray level |α1|2 ∈ [0, 1] for each pixel of the
image [3,5–7]. In this form of quantum coding, the intensity of each pixel is coded
via the coordinate α1 in the qubit state of Eq. (1). To recover the classical image via
quantum measurement requires averaging over a large number of identical copies of
the array of qubits materializing the quantum code. This statistical approach, however,
enables the recovery of a classical image with an arbitrary distribution of gray levels
over [0, 1].

Another possible form of quantum coding considers binary images, as in [10] for
instance. A binary image with pixel values at 0 or 1 can also be seen as one bit plane
of a gray-level image, with typically 8 such bit planes to represent an image with each
gray level codedwith a byte of data. For such a binary image, a natural quantum coding
is to assign to each pixel a qubit, with for a pixel at 0 the qubit state |0〉 and for a pixel
at 1 the qubit state |1〉. In this way, measuring a single copy of each qubit of the two-
dimensional array, via a projective measurement in the computational orthonormal
basis {|0〉 , |1〉}, enables deterministic recovery of the classical binary image.

This mode of quantum coding of binary images avoids the requirement of a sta-
tistical recovery via an average over a series of measurements on a large number
of identical copies needed for a gray-level image. Instead, from measurement of
a single quantum image, it enables deterministic recovery of the classical binary
image. There is, however, a limitation with such deterministic recovery of a binary
image. Each qubit, which is prepared either in state |0〉 or in state |1〉 at each
pixel, need be measured precisely in the original coding basis {|0〉 , |1〉} for a correct
deterministic recovery of the classical binary information. This requires the emitter
performing quantum coding of the image, and the receiver performing the decoding,
to share a common reference frame, and this may sometimes represent a stringent
condition.

Suppose the receiver, instead of measuring in the original (coding) orthonormal
basis {|0〉 , |1〉}, measures in an orthonormal basis {|0′〉 , |1′〉} rotated by an angle ξ

according to

{
|0′〉 = + cos(ξ) |0〉 + sin(ξ) |1〉 ,

|1′〉 = − sin(ξ) |0〉 + cos(ξ) |1〉 ,
(2)
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Fig. 1 A 256 × 256 pixel binary image coded for each pixel with a qubit in state |0〉 or |1〉, and decoded
by measuring the qubit in the basis {|0′〉 , |1′〉} of Eq. (2) rotated by the angle ξ relative to the coding basis
{|0〉 , |1〉}, with from left to right ξ = 0, 0.1π , 0.15π , 0.2π and 0.25π

equivalent to the inverse relation

{
|0〉 = cos(ξ) |0′〉 − sin(ξ) |1′〉 ,

|1〉 = sin(ξ) |0′〉 + cos(ξ) |1′〉 ,
(3)

and both Eqs. (2) and (3) will be useful for expressing the points of view of the
decoding and of the coding stages. When measuring in the rotated basis {|0′〉 , |1′〉},
the receiver decodes the pixel value 0 when the measurement projects on |0′〉, and it
decodes the pixel value 1 when the measurement projects on |1′〉. In this way, when
in the basis {|0′〉 , |1′〉} measurement is performed on the qubit state |0〉, the pixel
value 0 is decoded with a (conditional) probability given by the squared inner product
Pr{0 ∣∣ |0〉} = | 〈0′|0〉 |2 = cos2(ξ); when measurement is performed on the qubit state
|1〉, the pixel value 1 is decoded with probability Pr{1 ∣∣ |1〉} = | 〈1′|1〉 |2 = cos2(ξ).
So, when measuring in the basis {|0′〉 , |1′〉} of Eq. (2) rotated by the angle ξ , each
pixel value of the binary image is correctly recovered only with probability cos2(ξ),
which consistently matches 1 at ξ = 0 with no rotation. For a rotation angle ξ �= 0,
Fig. 1 illustrates the degradation in the decoding process incurred by measuring the
quantum image in the rotated basis {|0′〉 , |1′〉} instead of the coding basis {|0〉 , |1〉}.

In Fig. 1, at the rotation angle ξ = 0 no decoding error occurs and the binary
image is perfectly restored by the receiver. As the angle ξ increases above zero in
Fig. 1, decoding errors occur with a probability 1 − cos2(ξ) = sin2(ξ) at each pixel.
As a result, the decoded binary image progressively degrades, as visible in Fig. 1.
The degradation increases with ξ up to the angle ξ = π/4 where degradation is
maximal, with a probability of error sin2(π/4) = 1/2 at each pixel, resulting in a
completely random binary image decoded by the receiver in Fig. 1. If the angle ξ was
further increased from π/4 to π/2, then the decoding would start to progressively
favor a deterministic inversion of the binary value at each pixel. Ultimately, at ξ =
π/2, the probability of decoding error would be sin2(π/2) = 1, which amounts to a
deterministic inversion of each binary pixel, restoring precisely an inverted version of
the input binary image, which would preserve the essential constitutive information
of the input image. So it is indeed the angle ξ = π/4 restoring a purely random image
as in Fig. 1 which represents the worse condition for decoding.

The mismatch by an angle ξ between the coding and decoding bases, leading to a
probability of decoding error of sin2(ξ) at each pixel, produces a detrimental effect
equivalent to the degradation inflicted by a quantum bit-flip noise acting before a
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decoding which would take place with otherwise aligned frames. In general, on a
qubit in a state represented by the density operator ρ, the action of the bit-flip noise
[18] leaves the state ρ unchanged with probability 1 − p while it applies the Pauli
operator σx flipping the quantum state with probability p. This can be represented by
the quantum operation realized by the superoperatorN (·) transforming the qubit state
ρ into the qubit state N (ρ) defined by

N (ρ) = (1 − p)ρ + pσxρσ †
x . (4)

When a binary image coded in the basis {|0〉 , |1〉} is degraded by the bit-flip noise of
Eq. (4) with flipping probability p = sin2(ξ) prior to the decoding which takes place
in the same basis {|0〉 , |1〉}, the degradation is equivalent to that illustrated in Fig. 1
caused by a mismatch angle ξ between the coding and decoding bases with no noise.

The task of aligning twodistant reference frames represents a costly process in terms
of transmission and measurement [19]. Alignment methods [12,20–24] are usually
based on repeated transmissions and measurements, so as to progressively estimate
the frame orientation. In principle, exact estimation of this orientation requires an
infinite quantity of information. In practice, alignment is usually performed with a
limited precision, entailing some remaining mismatch angle ξ , with an impact as
exemplified in Fig. 1. The eventuality of time-varying orientations of the reference
frames is another feature to complicate the alignment process.

To avoid the detrimental effect of a mismatch between the coding and decoding
bases, as illustrated in Fig. 1, and also avoid the costly process of performing frame
alignment, the proposal here is to show the feasibility of a frame-independent image
coding by exploiting quantum entanglement. Entangled qubit states have stronger
invariance properties in a change of basis than single-qubit states. This property will
provide the ground for frame-independent image coding.

3 Pixel coding by an entangled qubit pair

For a binary image as in Sect. 2, each pixel will be coded by means of a qubit pair of
H2⊗H2 prepared in one of two controlled entangled states. The pixel value 0 is coded
by the state |β00〉, and the pixel value 1 is coded by the state |β11〉, where we refer to
the so-called Bell states of an entangled qubit pair expressible from the computational
basis {|0〉 , |1〉} local to the coding stage as [18]

|β00〉 = 1√
2

(
|00〉 + |11〉

)
, (5)

|β11〉 = 1√
2

(
|01〉 − |10〉

)
. (6)

When measuring each qubit by projecting in the basis {|0〉 , |1〉}, the state |β00〉 always
leads to two qubits which are simultaneously found in the same state, either |0〉 or
|1〉; meanwhile, the state |β11〉 always leads to two qubits which are found in opposite
states, either |0〉 or |1〉. In this way, when measuring separately the qubits of the pair,
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the outcome of two qubits found in the same state decodes the pixel value 0, while
the outcome of two qubits in opposite states decodes the pixel value 1. This recovers
deterministically, with no error, the encoded pixel value, by separate measurement of
two individual qubits in the original basis {|0〉 , |1〉}.

We now examine how the two coding states
(|β00〉 , |β11〉

)
of Eqs. (5)–(6) are seen

from the rotated basis {|0′〉 , |1′〉} of Eq. (2). From Eq. (3), we have

|00〉 = (
cos(ξ) |0′〉 − sin(ξ) |1′〉) ⊗ (

cos(ξ) |0′〉 − sin(ξ) |1′〉),
= cos2(ξ) |0′0′〉 + sin2(ξ) |1′1′〉 − cos(ξ) sin(ξ)

(|0′1′〉 + |1′0′〉). (7)

In a similar way, from Eq. (3),

|11〉 = (
sin(ξ) |0′〉 + cos(ξ) |1′〉) ⊗ (

sin(ξ) |0′〉 + cos(ξ) |1′〉),
= sin2(ξ) |0′0′〉 + cos2(ξ) |1′1′〉 + cos(ξ) sin(ξ)

(|0′1′〉 + |1′0′〉). (8)

With Eqs. (7)–(8) substituted in Eq. (5), we therefore obtain

|β00〉 = cos2(ξ) + sin2(ξ)√
2

(
|0′0′〉 + |1′1′〉

)
= 1√

2

(
|0′0′〉 + |1′1′〉

)
= |β ′

00〉 . (9)

Also, from Eq. (3) we have

|01〉 = (
cos(ξ) |0′〉 − sin(ξ) |1′〉) ⊗ (

sin(ξ) |0′〉 + cos(ξ) |1′〉),
= cos(ξ) sin(ξ)

(|0′0′〉 − |1′1′〉) + cos2(ξ) |0′1′〉 − sin2(ξ) |1′0′〉 . (10)

In a similar way, from Eq. (3),

|10〉 = (
sin(ξ) |0′〉 + cos(ξ) |1′〉) ⊗ (

cos(ξ) |0′〉 − sin(ξ) |1′〉),
= cos(ξ) sin(ξ)

(|0′0′〉 − |1′1′〉) − sin2(ξ) |0′1′〉 + cos2(ξ) |1′0′〉 . (11)

With Eqs. (10)–(11) substituted in Eq. (6), we therefore obtain

|β11〉 = cos2(ξ) + sin2(ξ)√
2

(
|0′1′〉 − |1′0′〉

)
= 1√

2

(
|0′1′〉 − |1′0′〉

)
= |β ′

11〉 . (12)

The comparison of Eqs. (5), (6) with Eqs. (9), (12) reveals that the two entangled
coding states

(|β00〉 , |β11〉
)
can be considered as invariant when seen from a rotated

basis {|0′〉 , |1′〉} at any angle ξ in Eq. (2). When measuring separately the qubits of the
pair by projecting in any rotated basis {|0′〉 , |1′〉}, the state |β00〉 of Eq. (9) always leads
to two qubits found in the same state so as to decode a pixel value at 0, and the state
|β11〉 of Eq. (12) always leads to two qubits found in opposite states so as to decode a
pixel value at 1. This recovers deterministically, with no error, the encoded pixel value,
through measurements of two individual qubits in any rotated basis {|0′〉 , |1′〉}. The
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coding scheme especially no longer suffers from the detrimental effect, as illustrated
in Fig. 1, of a rotation angle ξ �= 0 between the coding and decoding bases.

Alternatively, instead of two separate measurements on each qubit, a (more elab-
orate) joint measurement of the qubit pair can be performed. When pixel coding is
accomplished through the two entangled states

(|β00〉 , |β11〉
)
defined via Eqs. (5)–

(6) from the basis {|0〉 , |1〉} local to the coding stage, then decoding through a joint
measurement of the qubit pair projecting in particular on the two entangled states(|β ′

00〉 , |β ′
11〉

)
defined via Eqs. (9), (12) from any rotated basis {|0′〉 , |1′〉} local to the

decoding stage, leads in the same way to exact error-free decoding.

4 Decoding by measuring an observable on the qubit

When measuring a qubit with a two-outcome measurement, any statistics conceivable
for the measurement outcomes can be obtained by measuring an observable Ω of the
qubit under the form

Ω = ω · σ = ωxσx + ωyσy + ωzσz (13)

withω = [ωx , ωy, ωz]	 a unit vector ofR3, andσ a formal vector assembling the three
2 × 2 (traceless Hermitian unitary) Pauli matrices [σx , σy, σz] = σ . The observable
of Eq. (13) defines [18] a spin measurement in the direction ω of R3.

Any qubit state of the complex two-dimensional Hilbert space H2 can be repre-
sented by a density operator ρ on H2 expressible in Bloch representation as[18]

ρ = 1

2

(
I2 + r · σ

)
, (14)

with I2 the 2× 2 identity matrix onH2, and a Bloch vector r = [rx , ry, rz]	 ∈ R3 of
unit Euclidean norm ‖r ‖ = 1 for a pure state, as considered here for image coding,
and ‖r ‖ < 1 for a mixed state.

Any qubit observable Ω as in Eq. (13) has two eigenvalues ω± = ±1 which as
measurement outcomes can be used to decode the two binary pixel values 0/1. The
two associated eigenstates are |ω±〉 defined in Eq. (14) by the two Bloch vectors
±ω. Measuring the observable Ω of Eq. (13) is equivalent to performing a projective
measurement in its orthonormal eigenbasis expressible as

{
|ω+〉 = + cos(θ/2) |0〉 + eiϕ sin(θ/2) |1〉
|ω−〉 = − sin(θ/2) |0〉 + eiϕ cos(θ/2) |1〉 (15)

associated with a Bloch vector under the form ω = [ωx = sin(θ) cos(ϕ), ωy =
sin(θ) sin(ϕ), ωz = cos(θ)]	 which is the general form of a unit vector inR3 defined
by a coelevation angle θ ∈ [0, π ] with the Oz axis and an azimuth angle ϕ ∈ [0, 2π)

around the Oz axis.
The orthonormal basis {|ω+〉 , |ω−〉} of Eq. (15) used as a projective basis defines

the most general two-outcome measurement for a qubit, characterized by two angles

123



2692 F. Chapeau-Blondeau, E. Belin

(θ, ϕ) as degrees of freedom. By comparison, the projective basis {|0′〉 , |1′〉} of Eq. (2)
represents a more restricted class of measurements, assuming ϕ = 0, and correspond-
ing to observables Ω defined by ω = [ωx = sin(θ), ωy = 0, ωz = cos(θ)]	 lying in
plane (Ox, Oz) ofR3 with a single angle ξ = θ/2 as degree of freedom.

In this respect, the restricted class of decoding bases {|0′〉 , |1′〉} of Eq. (2) is appro-
priate to represent an arbitrary mismatch between the coding and decoding bases, only
if the emitter and receiver share at least one common axis of reference. One common
axis shared between the emitter and receiver allows the receiver to set up a measure-
ment in a plane (Ox, Oz) corresponding to an azimuth ϕ = 0. A shared common axis
is therefore a necessary (and sufficient) condition to have access to the coding scheme
of Sect. 3 allowing error-free decoding from any rotated basis {|0′〉 , |1′〉} of Eq. (2)
through separate measurement of individual qubits. In particular, the rotation angle ξ

between the coding and decoding bases needs not be known and has no impact on the
decoding, provided the emitter and receiver share a common axis to refer the rotation
by the arbitrary (unknown) angle ξ .

In practice, the condition of a shared common axis represents a rather natural situ-
ation, which can be met relatively frequently. This is, for instance, the case each time
a particle delivery link, such as a light beam, materializes a physical axis common
to the emitter and receiver [13]. Sometimes also, the solid-state structure of quan-
tum components establishes such a shared physical axis [13]. Also, the condition of
frame alignment limited to a shared axis is investigated as a realistic and meaningful
circumstance in various tasks of quantum communication, such as cryptographic key
distribution [13] or entanglement assertion [15–17].Beyond,we shall next demonstrate
the possibility of an invariant image coding with strictly no alignment information (no
common frame, no common axis) shared between the emitter and receiver.

5 Coding invariance with an arbitrary frame

With strictly no shared alignment information, the receiver refers the qubits to a local
orthonormal basis {|0′〉 , |1′〉} related to the coding basis {|0〉 , |1〉} via an arbitrary
unitary transform

{
|0′〉 = a |0〉 + b |1〉
|1′〉 = c |0〉 + d |1〉 (16)

with complex coefficients (a, b, c, d) ∈ C4 yielding the unit-modulus determinant
|ad − bc| = 1 by unitarity of Eq. (16). Also, both the rows and columns of the
2 × 2 unitary matrix [a b; c d] defined by Eq. (16) form two sets of orthonormal
vectors, implying the conditions |a|2 + |b|2 = 1, |c|2 + |d|2 = 1, ac∗ + bd∗ = 0,
and |a|2 + |c|2 = 1, |b|2 + |d|2 = 1, ab∗ + cd∗ = 0. Equation (2) is a special
case of Eq. (16) with real (a, b, c, d) ∈ R4; meanwhile, given all the constraints on
(a, b, c, d) ∈ C4, Eq. (15) offers an equivalent general parametrization of the unitary
transform of Eq. (16).

By using Eq. (16) for developing the tensor products for |0′1′〉 = |0′〉 ⊗ |1′〉 and
|1′0′〉 = |1′〉 ⊗ |0′〉, it follows

123



Quantum image coding with a reference-frame-independent scheme 2693

|0′1′〉 = ac |00〉 + ad |01〉 + bc |10〉 + bd |11〉 (17)

|1′0′〉 = ac |00〉 + bc |01〉 + ad |10〉 + bd |11〉 (18)

and by summation of Eqs. (17) and (18),

|β ′
11〉 = 1√

2

(
|0′1′〉 − |1′0′〉

)
= (ad − bc)

1√
2

(
|01〉 − |10〉

)
= (ad − bc) |β11〉

(19)

indicating that, up to an irrelevant global phase factor ad − bc = eiγ , the Bell state
|β ′

11〉 of Eq. (19) local to the receiver, is equivalent to the analogue Bell state |β11〉
of Eq. (6) local to the emitter. The entangled Bell state, or singlet state, |β11〉 defined
by Eq. (6) is therefore in this respect invariant in any unitary transform according to
Eq. (16). The two one-dimensional subspaces of H2 ⊗ H2 spanned, respectively, by
|β11〉 and by |β ′

11〉 therefore coincide, i.e., span
(|β11〉

) ≡ span
(|β ′

11〉
)
is an invariant

subspace through the transformation of Eq. (16).
It is now useful to introduce the two other Bell states[18]

|β01〉 = 1√
2

(
|01〉 + |10〉

)
(20)

|β10〉 = 1√
2

(
|00〉 − |11〉

)
(21)

which together with Eqs. (5)–(6) form the orthonormal Bell basis {|β00〉 , |β01〉 , |β10〉 ,

|β11〉} of H2 ⊗ H2, in its version local to the emitter. There is also the analogously
defined orthonormal Bell basis {|β ′

00〉 , |β ′
01〉 , |β ′

10〉 , |β ′
11〉} of H2 ⊗ H2 referred to

the computational basis {|0′〉 , |1′〉} local to the receiver. An important point is that
each of these two Bell bases, local to the emitter and to the receiver, is an orthogonal
basis of H2 ⊗ H2. The three-dimensional subspace span

(|β00〉 , |β01〉 , |β10〉
)
repre-

sents the (unique) orthogonal complement of span
(|β11〉

)
in H2 ⊗ H2. In the same

way, the three-dimensional subspace span
(|β ′

00〉 , |β ′
01〉 , |β ′

10〉
)
represents the (unique)

orthogonal complement of span
(|β ′

11〉
)
inH2⊗H2. Since span

(|β11〉
)
and span

(|β ′
11〉

)
coincide, and the unitary transform from Eq. (16) preserves orthogonality; therefore,
span

(|β00〉 , |β01〉 , |β10〉
)
and span

(|β ′
00〉 , |β ′

01〉 , |β ′
10〉

)
also coincide and represent

the same subspace ofH2 ⊗H2 orthogonal to span
(|β11〉

) ≡ span
(|β ′

11〉
)
. This means

that, through the transformation of Eq. (16) relating the reference frames of the emit-
ter and of the receiver, span

(|β00〉 , |β01〉 , |β10〉
) ≡ span

(|β ′
00〉 , |β ′

01〉 , |β ′
10〉

)
is an

invariant subspace of H2 ⊗ H2.
In this way, any state prepared in span

(|β00〉 , |β01〉 , |β10〉
)
by the emitter is seen by

the receiver in span
(|β ′

00〉 , |β ′
01〉 , |β ′

10〉
)
, for any transformation in Eq. (16) relating

the emitter frame {|0〉 , |1〉} and the receiver frame {|0′〉 , |1′〉}. This can especially
be verified explicitly by direct computation (although this is now granted from our
previous geometric argument) for the three Bell states |β ′

00〉, |β ′
01〉 and |β ′

10〉, as it was
accomplished for the Bell state |β ′

11〉 with Eq. (19), through the use of Eqs. (17)–(18),
now complemented from Eq. (16) by
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|0′0′〉 = a2 |00〉 + ab |01〉 + ab |10〉 + b2 |11〉 (22)

|1′1′〉 = c2 |00〉 + cd |01〉 + cd |10〉 + d2 |11〉 (23)

and establishing these three states as linear combinations of |β00〉, |β01〉 and |β10〉.
For any unitary transform in Eq. (16), we therefore have two invariant orthogonal
subspaces, span

(|β11〉
)
and span

(|β00〉 , |β01〉 , |β10〉
)
, realizing a direct sum forH2 ⊗

H2. This provides the ground for a coding scheme of binary images allowing frame-
independent decoding.

For a frame-independent coding scheme of binary images, the pixel value 0 is, for
instance, coded by the two-qubit state |β00〉 of Eq. (5), and the pixel value 1 coded
by the two-qubit state |β11〉 of Eq. (6), (or conversely), relative to the local reference
frame of the emitter. Then for binary decoding, the receiver sets up a two-outcome
measurement acting jointly on the qubit pair, and formed by the two orthogonal pro-
jectors (Π0,Π1) decomposing the identity I4 = I2 ⊗ I2 = Π0 + Π1 of H2 ⊗ H2.
The projector Π0 = |β ′

00〉 〈β ′
00| + |β ′

01〉 〈β ′
01| + |β ′

10〉 〈β ′
10| projects on the invariant

subspace span
(|β ′

00〉 , |β ′
01〉 , |β ′

10〉
) ≡ span

(|β00〉 , |β01〉 , |β10〉
)
, while the projector

Π1 = |β ′
11〉 〈β ′

11| projects on the invariant subspace span
(|β ′

11〉
) ≡ span

(|β11〉
)
. In

this way, in any reference frame local to the receiver, when the qubit pair upon mea-
surement is projected in span

(|β ′
00〉 , |β ′

01〉 , |β ′
10〉

)
, this decodes the pixel value 0, and

when it is projected in span
(|β ′

11〉
)
, this decodes the pixel value 1, so achieving exact

error-free decoding. We note that any state in span
(|β00〉 , |β01〉 , |β10〉

)
could be used

as a coding state in place of |β00〉 andwould preserve an invariant coding. For instance,
the same invariant coding is shown with |00〉 for transmitting one bit of classical infor-
mation in [12] outside the field of image processing. However, the Bell state |β00〉,
or alternatively |β01〉, is preferable for additional properties of resistance to noise or
decoherence of the code, as we next show.

6 Resistance to noise

The invariant coding of Sect. 5 based on the two entangled two-qubit states
(|β00〉 , |β11〉) also brings in some superior resistance to quantumnoise or decoherence.
With direct image coding with the two one-qubit states (|0〉 , |1〉) examined in Sect. 2,
there is no frame invariance and also no immunity to the bit-flip noise of Eq. (4). In fact,
both phenomena acting separately have an equivalent detrimental effect, as illustrated
in Fig. 1, spoiling image decoding. Conversely, the coding based on (|β00〉 , |β11〉) in
Sect. 5 displays general frame invariance and is also more resistant to bit-flip noise as
we now show.

The action of the bit-flip noise on one qubit in H2, as defined by Eq. (4), can be
extended to a qubit pair in H2 ⊗ H2. Application of Eq. (4) to each qubit in the pair
leads to the transformation for the two-qubit Bell states as follows:

N ⊗ N (|β00〉 〈β00|
) = [

(1 − p)2 + p2
] |β00〉 〈β00| + 2(1 − p)p |β01〉 〈β01| (24)

N ⊗ N (|β01〉 〈β01|
) = [

(1 − p)2 + p2
] |β01〉 〈β01| + 2(1 − p)p |β00〉 〈β00| (25)

N ⊗ N (|β10〉 〈β10|
) = [

(1 − p)2 + p2
] |β10〉 〈β10| + 2(1 − p)p |β11〉 〈β11| (26)
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N ⊗ N (|β11〉 〈β11|
) = [

(1 − p)2 + p2
] |β11〉 〈β11| + 2(1 − p)p |β10〉 〈β10| . (27)

From Eq. (24) it is seen that the coding state |β00〉 through the action of the bit-flip
noise always remains in the subspace span

(|β00〉 , |β01〉
)
, and a fortiori in the invari-

ant subspace span
(|β00〉 , |β01〉 , |β10〉

) ≡ span
(|β ′

00〉 , |β ′
01〉 , |β ′

10〉
)
; it will therefore

always be decoded correctly, restoring the pixel value 0 with no error, for any probabil-
ity p characterizing the bit-flip noise. On the contrary, the coding state |β11〉 through
the action of the bit-flip noise in Eq. (27) is changed to the state |β10〉 with proba-
bility 2(1 − p)p. In this circumstance, the decoding scheme will produce an error,
by decoding incorrectly the pixel value 0 instead of the pixel value 1. Such decoding
error occurs with the probability 2(1 − p)p of measuring the qubit pair outside the
invariant subspace span

(|β11〉
) ≡ span

(|β11〉
)
. This probability of error 2(1 − p)p

is therefore invariant with the local frame used by the receiver for decoding. This
coding–decoding process of a binary image, with one of the two coding states being
completely immune to the noise, can be interpreted as a classical information channel
known as a Z-channel [25].

For a classical Z-channel transmitting the symbol 0 with no error and the symbol
1 with a probability of error q, the input–output mutual information can be computed
from the standard entropies and comes out as [25,26]

IZ = h
(
(1 − q)P1

) + h
(
1 − (1 − q)P1

) − [
h(q) + h(1 − q)

]
P1 (28)

with the function h(u) = −u log2(u) and P1 the probability of a symbol 1 at the input.
IZ is maximized by the input probability

P∗
1 = qq/(1−q)

1 + (1 − q)qq/(1−q)
(29)

achieving capacity. In the presence of the bit-flip noise of Eq. (4)with flipping probabil-
ity p, the frame-invariant coding–decoding based on (|β00〉 , |β11〉) realizes a classical
Z-channel with probability of error q = 2(1 − p)p. Meanwhile, the direct coding–
decoding with the states (|0〉 , |1〉) realizes a classical binary symmetric channel with
bit error probability p, having an input–output mutual information also computable
from the standard entropies [26] as

IS = h
(
p(1 − P1) + (1 − p)P1

) + h
(
pP1 + (1 − p)(1 − P1)

) − h(p) − h(1 − p)

(30)

which is maximized for equiprobability of the two input symbols. A superior noise
resistance between the two coding schemes is manifested, for any given flipping prob-
ability p in Eq. (4), by a mutual information IZ(p) which is always above IS(p), as
shown in the typical conditions of Fig. 2 at two values of the probability P1.

To complement the typical illustrations of Fig. 2, due to the complicated nonlinear
forms of Eqs. (28) and (30), it is difficult to obtain a formal proof of IZ ≥ IS for all
relevant configurations of (P1, p). It is, however, straightforward to use Eqs. (28)
and (30) for direct numerical computation of the difference IZ − IS . The relevant
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Fig. 2 As a function of the flipping probability p of the quantum bit-flip noise in Eq. (4), the input–output
mutual information IZ of Eq. (28) (two blue curves marked Z) characterizing the frame-invariant coding–
decoding based on (|β00〉 , |β11〉), and IS of Eq. (30) (two red curves marked S) characterizing the direct
coding–decoding with (|0〉 , |1〉) with no frame invariance. In the binary image, the probability of a symbol
1 is P1 = 0.5 (solid lines), and P1 = 0.11 (dashed lines) (Color figure online)

domain is (P1, p) ∈ [0, 1/2] × [0, 1] since one always has the option of selecting
the noise-immune binary state of the Z-channel as the binary pixel value predominant
in the input image. Over this domain, with a very fine grid for (P1, p) with step
10−4 in both directions, IZ − IS was everywhere found nonnegative and smooth,
providing strong numerical evidence suggesting IZ ≥ IS everywhere, as illustrated in
Fig. 2.

Also in Fig. 2, over a wide range of p around 1/2, the mutual information IZ
associated with a two-qubit per pixel (frame-invariant) code, is larger than twice IS
associated with a one qubit per pixel (non-frame-invariant) code. So per qubit, the
frame-invariant code keeps also a significant superiority over the non-frame-invariant
code.

For another illustration of the superior noise resistance of the frame-invariant
scheme of Sect. 5, Fig. 3 displays the behavior of the frame-invariant coding of the
binary image of Fig. 1 when affected by the quantum bit-flip noise of Eq. (4) at dif-
ferent values of the flipping probability p. The binary image involved in Figs. 1 and
3 has a fraction 0.89 of white pixels; accordingly, the white pixels (predominant) are
coded by the quantum state |β00〉 associated with a decoding immune to the noise, and
corresponding to a probability P1 = 0.11 as in Fig. 2.

The four noise conditions (four values of p) illustrated in Fig. 3 are quantitatively
characterized in Fig. 2 by the input–output mutual information IZ at P1 = 0.11 and
the corresponding values of p in abscissa. Also quantitatively for Fig. 3, the frame-
invariant coding allows a probability of 1 for a white pixel at the input to be decoded as
a white pixel at the output (noise immunity), and a probability of q = 2(1− p)p for a
black pixel at the input to be decoded as a white pixel at the output (noise error), these
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Fig. 3 Anoriginal binary image (the leftmost image of Fig. 1) coded by the frame-invariant scheme based on
(|β00〉 , |β11〉) forwhite/black pixels, then corrupted by the bit-flip noise of Eq. (4) with flipping probability
p, and finally decoded as in Sect. 5. From left to right p = 0.095, 0.206, 0.345 and 0.5, equivalent via
p = sin2(ξ) to the effect of a mismatch angle ξ at the same values ξ = 0.1π , 0.15π , 0.2π and 0.25π of
Fig. 1

two probabilities being combined to determine the input–output mutual information
IZ in Fig. 2.

By comparing Figs. 3 and 1 at similar levels of p (or ξ ) assessing the degradation,
visual perception also manifests the superior quality of the images of Fig. 3 benefiting
from the frame-invariant coding of Sect. 5, and especially the noise immunity it can
confer to the predominant class of (white) pixels. At the most detrimental flipping
probability p = 0.5 (or ξ = 0.25π ) of the noise, the corresponding binary image
in Fig. 1 has become completely random, in accordance with the mutual information
IS(p = 0.5) = 0 in Fig. 2 at P1 = 0.11. Meanwhile, at this p = 0.5, the comparable
binary image in Fig. 3 keeps significant similarity with the original noise-free image,
in accordance with the mutual information IZ(p = 0.5) ≈ 0.2 strictly above zero in
Fig. 2 at P1 = 0.11. For complementing the Shannonmutual information of Fig. 2 and
the visual appreciation of Fig. 3, other quantitative generalized information metrics
[27,28] could also be used for other viewpoints on the enhanced resistance to noise
of the invariant coding.

7 Conclusion

In this paper, we considered quantum coding of binary images. Non-binary images,
such as gray images, with pixel intensities represented on an arbitrary number of bits
(typically 8, 12 or 16) are also concerned by considering each of their bit planes as
a binary image. And color images with their three red, green and blue planes are
also concerned by considering each of their three color planes as a gray image. We
investigated the issue of a quantum coding performed by an emitter which would be
decodable by a receiver in the absence of reference frames shared between the emitter
and receiver. Direct coding with one qubit per pixel and no aligned frames leads to
decoding errors equivalent to a quantum bit-flip noise having a level increasing with
the misalignment between the coding and decoding frames. Consequently, instead
of a coding scheme tied to an absolute reference frame, we turned to the possibility
of a more relative coding leaning on the relative orientations of two qubits inside an
entangled pair.We showed the feasibility of frame-invariant image coding by using for
each pixel a qubit pair selectively prepared in the entangled Bell states |β00〉 or |β11〉
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of Eqs. (5)–(6). Provided there is just one common axis shared between the emitter
and receiver, we established that exact decoding for each pixel can be performed, by
means of a two-outcome projective measurement in any orthonormal basis local to
the receiver and operating separately on each qubit of the pair. Furthermore, in the
more stringent condition where strictly no alignment information is shared between
the emitter and receiver, we established that exact decoding can be performed, by
measuring with two orthogonal projectors operating jointly on the qubit pair and
projecting on two invariant subspaces realizing a direct sum of H2 ⊗ H2. Projective
quantummeasurements are used here to realize the frame-invariant decoding restoring
a classical image from its quantum representation. Such projective measurements of
qubits are in principle very basic measurements, which are very often employed in
quantum information and quantum communication. Their physical implementation
will, however, depend on the physical realization of the qubit itself, for instance, with
photon polarization, or electron spin, or otherwise [18,29,30].

In addition, we showed that the frame-invariant coding is much more resistant to
quantum bit-flip noise compared to the direct non-invariant coding. So, for a cost per
pixel of two (entangled) qubits instead of one, we obtain in this way complete frame
invariance for image coding and enhanced noise resistance. The present invariant
coding may also possibly be combined with other types of coding for quantum images
[2–9,11], so as to add frame independence to other desirable properties of the coding.
Also, as a bit-based method, the frame-invariant coding can be applied to any kind of
bit-based quantum signal transmission, like audio signals for example.

The quantum bit-flip noise considered here arises naturally with binary images and
their (misaligned) measurement as seen in Sect. 2. However, other quantum noises,
such as phase-flip noise or depolarizing noise [18], could also be considered so as
to assess their impact on the frame-independent coding developed here for images.
The present coding scheme offers the option to select one of the two coding states
in the invariant subspace span

(|β00〉 , |β01〉 , |β10〉
)
. This represents a relatively broad

flexibility in the choice. Here with the bit-flip noise acting according to Eqs. (24)–(27),
no choice can perform better than |β00〉, which is completely immune to the noise.
But with other noises, the choice of this coding state could be settled so as to optimize
the decoding for maximally efficient detection or estimation from noisy qubits in the
presence of definite quantum noises [31–33].

At the decoding stage, instead of performing quantum measurements to restore a
classical binary image, it can be envisaged as an alternative to set up quantum circuits
operating on the coded quantum states available at the receiver, so as to generate
another quantum image under a form possibly more suitable to efficient processing by
quantum algorithms. The initial quantum image will have benefited from the frame-
independent coding for transmission, and at the receiving end it can then undergo
lossless quantum recoding for local quantum processing. Efficient quantum image
representations may in this respect turn out to be distinct for distinct informational
operations, such as invariant transmission, resistance to noise, computing, or else. We
have concentrated here on quantum image coding endowed with a frame-invariance
property. This step can be pipelined with other steps of the image processing chain.
One can, for instance, envision compression/decompression, denoising, enhancement,
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segmentation and pattern recognition. In this way, our proposal of frame-invariant
coding fits into the ongoing development of quantum image processing.
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