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This paper analyzes a binary channel by means of information measures based on the Rényi entropy. The
analysis extends, and contains as a special case, the classic reference model of binary information transmission
based on the Shannon entropy measure. The extended model is used to investigate further possibilities and
properties of stochastic resonance or noise-aided information transmission. The results demonstrate that sto-
chastic resonance occurs in the information channel and is registered by the Rényi entropy measures at any
finite order, including the Shannon order. Furthermore, in definite conditions, when seeking the Rényi infor-
mation measures that best exploit stochastic resonance, then nontrivial orders differing from the Shannon case
usually emerge. In this way, through binary information transmission, stochastic resonance identifies optimal
Rényi measures of information differing from the classic Shannon measure. A confrontation of the quantitative
information measures with visual perception is also proposed in an experiment of noise-aided binary image
transmission.
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I. INTRODUCTION

Information measures are important both for the founda-
tion of information sciences and for practical applications of
information processing. For measuring information, a gen-
eral approach is provided in a statistical framework based on
the information entropy introduced by Shannon �1�. As a
measure of information, the Shannon entropy satisfies some
desirable axiomatic requirements and also it can be assigned
operational significance in important practical problems, for
instance, in coding and telecommunication �2�. For informa-
tion measure, an extension to the Shannon entropy has been
proposed with the Rényi entropy �3�. As an extension, the
Rényi entropy satisfies a set of axiomatic requirements �3�,
slightly less restrictive than the Shannon case, but still pre-
serving suitability as a natural measure of information. The
Rényi entropy offers a parametric family of measures, from
which the Shannon entropy is accessible as a special case.
On the operational side, it is appropriate to test the Rényi
entropy as a general parametric approach for the measure of
information in concrete practical processes. In this respect, it
is the special Shannon case of the measure that has been
most largely involved in practice. Beyond, it remains inter-
esting and useful to identify and investigate the possibilities
of assigning some specific role, significance, or properties to
the Rényi entropy outside the special Shannon case. In this
direction, the present paper proposes an analysis, with
Rényi-entropy-based measure of information, of a basic pro-
cess of information transmission with a binary channel. This
analysis is a natural extension of, and contains as a special
case, the classic reference model of information transmission
formed by the binary channel quantified with Shannon-
entropy-based measure �2�. In addition, in the analysis of the
binary channel based on the Rényi entropy, we will specifi-
cally examine the possibility of a stochastic resonance phe-
nomenon or a regime of information transmission aided by
noise.

Stochastic resonance, in a broad acceptation, designates
situations where the noise can play a constructive role in

transmission or processing of information �4–6�. Stochastic
resonance has been reported to operate in many different
areas, including electronic circuits �7–9�, neuronal processes
�10–13�, nonlinear sensors �14–16�, and optical devices
�17–19�. For example, the currently vibrant state of the topic
of stochastic resonance in relation to neuroscience can be
illustrated in recent works �20–24�. Stochastic resonance is
usually identified by a relevant measure of performance
which culminates �resonates� at a maximum for a nonzero
optimal amount of noise. Stochastic resonance was first dem-
onstrated in the transmission of a periodic signal aided by
noise. In such situation, the standard measure of performance
is a signal-to-noise ratio defined in the frequency domain
�4,25,26�. Later, stochastic resonance was extended to noise-
aided transmission of aperiodic signals, assessed by cross-
correlation measures �27–29�. Situations of noise-aided sig-
nal detection or estimation were also reported and
characterized by appropriate performance measures, such as
a probability of detection �5,30,31�, an estimation error
�32–34�, or a Fisher information �35–37� improvable by the
noise. Owing to their status of general information measures,
information-theoretic quantities based on the Shannon en-
tropy were also employed to characterize stochastic reso-
nance. Situations were reported of mutual information
�38–41� or information capacity �42–44� improved by noise.
A natural extension is to test the ability of general informa-
tion measures based on the Rényi entropy for the character-
ization of stochastic resonance. A study is proposed on this
issue in the present paper. We will demonstrate that Rényi-
entropy-based measures are capable of registering noise-
aided transmission in an information channel. Moreover,
when seeking the information measures benefiting from the
largest amount of noise, we will show that nontrivial optimal
orders emerge for the Rényi entropy, which differ from the
special order defining the Shannon entropy.

A previous study appeared in �45� associating the Rényi
entropy and stochastic resonance. The problem addressed in
�45� is, for a deterministic signal in additive noise, to esti-
mate the signal-to-noise ratio classically defined as the ratio
of the signal power to the noise power. For this purpose, Ref.
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�45� proposed a scheme exploiting trajectories in symbolic
dynamics and measure of their complexity by running cylin-
der or word entropies. From time averages on such entropies,
an estimator is suggested in �45� for the signal-to-noise ratio.
The estimator based on the Shannon entropy is proved in
�45� to converge, for a sinusoidal signal in noise, asymptoti-
cally at large signal-to-noise ratio. An improvement factor is
defined by the derivative of the estimator with respect to the
signal-to-noise ratio and �45� finds that there is a maximum
of the improvement factor at intermediate noise levels, which
is interpreted as a form of stochastic resonance. When the
scheme is used with the Rényi entropy, Ref. �45� reports a
shift of the maximum of the improvement factor toward
lower noise amplitudes. By contrast, our present study does
not deal with the problem of estimating the signal-to-noise
ratio of a sinusoid in noise, but it realizes the analysis of an
information channel.

In the present paper, we will first review definitions and
basic properties of Rényi entropy based information mea-
sures. We will especially present a practical problem, in
source coding, where a specific operational role is assigned
to the Rényi entropy in a configuration differing from the
traditional Shannon entropy. Next, we will present a binary
information channel and its analysis based on the Rényi en-
tropy. We will demonstrate stochastic resonance or noise-
aided transmission in this information channel and optimality
conditions that single out nontrivial orders for the Rényi en-
tropy also differing from the traditional Shannon entropy. A
confrontation of the quantitative information measures with
visual perception will also be proposed in an experiment of
noise-aided binary image transmission. The results of the
paper seek to contribute in two directions: to enlarge the
vision of the capabilities of Rényi-entropy-based information
measures and to consolidate stochastic resonance as a uni-
versal phenomenon characterizable with general information
measures.

II. RÉNYI ENTROPY MEASURES AND PROPERTIES

A. Rényi entropy

From an alphabet of N symbols, an information source
emits symbols independently with probabilities Pi, for i=1 to
N. The Rényi entropy of the source is defined as �3�

H��Pi� =
1

1 − �
log��

i=1

N

Pi
�� , �1�

for an order ��0. At the limit �=1, the L’Hospital rule
yields H1�Pi�=−�i=1

N Pi log�Pi�, i.e., the Shannon entropy.
For any order ��0, the Rényi entropy H��Pi� of Eq. �1� is
nonnegative and it reaches its maximum Hmax=log�N� at
equiprobability Pi=1 /N for all i=1 to N �46�. H��Pi� is con-
cave �� � for 0���1 and pseudoconcave �a single maxi-
mum� for 1�� �47�. For a given probability distribution,
H��Pi� is a decreasing function of � �46�, decaying from
H0�Pi�=log�N�=Hmax down to H��Pi�=−log�maxi�Pi��. The
Rényi entropy is additive for independent random variables.

For illustration, Fig. 1 shows the Rényi entropy H��Pi� of
Eq. �1� for a binary source �of interest to us in the sequel�.

Especially, Fig. 1 depicts how the entropy H��Pi� loses its
concavity �� � at ��1 while keeping a single maximum
�pseudoconcave�.

B. Rényi relative entropy

Associated with the Rényi entropy is the Rényi relative
entropy or divergence, which refers to two probability distri-
butions �Pi	 and �Qi	, i=1 to N, over the same alphabet, and
is defined as �3,46�

D��Pi 
 Qi� =
1

� − 1
log��

i=1

N

Pi
�Qi

1−�� . �2�

At the limit �=1, the L’Hospital rule yields D1�Pi 
Qi�
=�i=1

N Pi log�Pi /Qi�, i.e., the Kullback-Leibler relative en-
tropy �2�. For any order ��0, the Rényi relative entropy
D��Pi 
Qi� of Eq. �2� is nonnegative and vanishes if and only
if Pi=Qi for all i=1 to N �46�.

For two given probability distributions �Pi	 and �Qi	,
i=1 to N, the Rényi relative entropy D��Pi 
Qi� is an increas-
ing function of �. At the limit 0←�, one has D0←��Pi 
Qi�
=�D1�Qi 
 Pi�, meaning that the Rényi relative entropy
D��Pi 
Qi� reaches zero as a lower bound when 0←�, with
the limiting behavior controlled by the Kullback-Leibler
relative entropy D1�Qi 
 Pi�. This is in accordance with a gen-
eral property of D��Pi 
Qi� of Eq. �2� which for any 0��
�1 verifies �1−��D��Pi 
Qi�=�D1−��Qi 
 Pi�. At the limit
�→�, one has D�→��Pi 
Qi�=log�maxi�Pi /Qi�� as the upper
bound reached by D��Pi 
Qi�. By choosing the reference
probabilities �Qi	 as the uniform distribution �Qi=1 /N	 for
all i=1 to N, one obtains

D��Pi 
 Qi = 1/N� = Hmax − H��Pi� , �3�

expressing a connection between entropy and relative en-
tropy at any Rényi order �.

C. Rényi transinformation

One now considers an input alphabet with N symbols, an
output alphabet with M symbols, and over those two a joint
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FIG. 1. �Color online� Rényi entropy H��Pi� of Eq. �1�, as a
function of the probability P1 of a binary source �P1 ,1− P1	, for
three values of the order �=0.4, �=20, and �=1 identified by
crosses ��� corresponding to the Shannon entropy.
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probability distribution �Pij	, for �i , j�� �1,N�� �1,M�, as
would occur between the emitting and receiving ends of a
communication channel. The N input symbols, indexed by i,
have marginal probabilities Pi=� j=1

M Pij. The M output sym-
bols, indexed by j, have marginal probabilities Qj =�i=1

N Pij. A
Rényi transinformation or mutual information follows as

I� = D��Pij 
 PiQj� =
1

� − 1
log��

i=1

N

�
j=1

M

Pij
�Pi

1−�Qj
1−�� .

�4�

In the case �=1 the Rényi transinformation I�=1 from Eq.
�4� is the Shannon transinformation. The limit behaviors of
the Rényi relative entropy D� indicated in Sec. II B give for
the Rényi transinformation I0←�=�D1�PiQj 
 Pij� and I�→�

=log�maxi,j�Pij / PiQj��.

D. Source coding with the Rényi entropy

We now describe a practical problem of source coding
introduced in �48� and in the resolution of which the Rényi
entropy emerges at an order � differing from the traditional
Shannon entropy. The N symbols of a source alphabet are
coded with an encoding alphabet of D characters. Symbol i,
having probability Pi, is coded by a word with a length �i of
D-ary characters, for i=1 to N. For a uniquely decipherable
code, the lengths �i must satisfy �2,49� the Kraft inequality

�
i=1

N

D−�i � 1. �5�

The traditional approach to optimal source coding �2,49�
is to measure the elementary cost ci of encoding symbol i
directly by its code length �i=ci and then to seek those
lengths �i that minimize the average coding length �i=1

N Pi�i
while satisfying the constraint �5�. The optimal lengths come
out as �i=−logD�Pi�, for all i=1 to N, and these achieve the
minimum average coding length −�i=1

N Pi logD�Pi� which is
the Shannon entropy of the source. For all other code lengths
�i, the Shannon entropy forms a lower bound to the average
coding length �i=1

N Pi�i.
A less traditional approach to optimal source coding �48�

is to measure the elementary cost of encoding symbol i as
ci=D	�i, introducing a cost ci which is an exponential func-
tion of the code length �i, with a parameter 	�0 to have the
cost ci an increasing function of the length �i. The global cost
of encoding the source is expressed by the average

C	 = �
i=1

N

Pici = �
i=1

N

PiD
	�i. �6�

Minimizing the average cost C	 of Eq. �6� is equivalent to
minimizing the monotonic increasing function of C	 as

L	 =
1

	
logD��

i=1

N

PiD
	�i� . �7�

By measuring the coding performance with L	 of Eq. �7�, the
traditional approach can be recovered as a special case. At

the limit 0←	 in Eq. �7�, the L’Hospital rule yields L0
=�i=1

N Pi�i which is the traditional average coding length.
Also, at the limit 	→�, Eq. �7� yields L�=maxi��i� putting
all the weight on the longest code word. For intermediate
values of 	, the quantity L	 of Eq. �7� is interpretable as a
generalized average coding length1 of order 	 and is a non-
decreasing function of 	 verifying L0�L	�L�. As 0←	,
the average coding length L	 tends to distribute the weights
among the code words in proportion of their lengths, while
as 	→� more weight is put on the long code words.

Now this extended approach to optimal source coding
�48� seeks those lengths �i that minimize the generalized
average coding length L	 of Eq. �7� while satisfying the con-
straint �5�. The optimal lengths come out as

�i = − logD

Pi
�

�
j=1

N

Pj
�

= − � logD�Pi� + �1 − ��H��Pi� , �8�

for all i=1 to N, with �=1 / �	+1�. And the optimal lengths
�i of Eq. �8� achieve in Eq. �7� the minimum average coding
length H��Pi� which is the Rényi entropy of order � of the
source. For all other code lengths �i, the Rényi entropy
H��Pi� at �=1 / �	+1� forms a lower bound to the general-
ized average coding length L	 of Eq. �7�. These results con-
tain, as a special case, the traditional approach to optimal
source coding, in the limit 0←	. This generalized approach
to optimal coding finds application to minimize the probabil-
ity of buffer overflow �51� or other design optimization in
communication systems �52,53�. These results are further de-
veloped in �46,50,54�. They are especially interesting since
arguably they represent, among the rare instances of this
kind, the most simple and concrete, yet fundamental, situa-
tion where a special and operational role is assigned to the
Rényi entropy at an order � differing from the traditional
Shannon case �=1. This is realized at the occasion of a
source coding problem where the generalized �nonlinear� av-
erage coding length being optimized determines the non-
trivial order ��1 of the Rényi entropy. In the sequel, we
will present another process, under the form of a noise-aided
information transmission over a binary channel, which also
points to a nontrivial order ��1 for the Rényi entropy.

III. BINARY INFORMATION CHANNEL

An information channel emits input symbols X from the
binary alphabet �0,1	. The successive input symbols are in-
dependent and identically distributed with the probabilities
P1=Prob�X=1	 and P0=1− P1=Prob�X=0	. At the receiving
end of the channel, the output symbols Y are in the binary
alphabet �0,1	. Transmission over the channel is character-

1Two interpretations are possible for Eqs. �6� and �7�: an exponen-
tial elementary cost ci=D	�i associated with a conventional linear
average in Eq. �6� �followed by the increasing transformation of Eq.
�7� with no change to the minimizer� or a conventional linear el-
ementary cost ci=�i associated with a generalized �50� exponential
average 
−1��iPi
��i�� realized by Eq. �7� with the strictly increas-
ing function 
�u�=D	u.
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ized by the four conditional probabilities Pj�i=Prob�Y = j �X
= i	, for �i , j�� �0,1	2. The joint input-output probabilities
result as Pij = Pj�iPi and the output probabilities Qj =Prob�Y
= j	=�i=0

1 Pj�iPi. Thus in Eq. �4�, one has Pij
�Pi

1−�= Pj�i
� Pi and

the input-output Rényi transinformation follows as

I��X;Y� =
1

� − 1
log��

j=0

1

�Pj�0
� P0 + Pj�1

� P1�Qj
1−�� . �9�

Equation �9� is the input-output Rényi transinformation
for any �memoryless� binary channel characterized by the
four transmission probabilities Pj�i. We now specify concrete
physical conditions that determine a definite channel and its
probabilities Pj�i. We consider the binary input X in the trans-
mission corrupted by a white noise W to yield X+W and then
at the receiver X+W is compared to a fixed decoding thresh-
old � to determine the binary output Y of the channel accord-
ing to

If X + W � � then Y = 1,

else Y = 0.
�10�

The noise W has the cumulative distribution function F�w�
=Prob�W�w	. The input X and the noise W are statistically
independent.

The input-output transmission probabilities of this binary
channel are readily derived. For instance, the probability
P0�1=Prob�Y =0 �X=1	 is also Prob�X+W�� �X=1	 which
amounts to Prob�W��−1	=F��−1�. With similar rules, one
arrives at

P0�1 = Prob�Y = 0�X = 1	 = F�� − 1� , �11�

P1�1 = Prob�Y = 1�X = 1	 = 1 − F�� − 1� , �12�

P0�0 = Prob�Y = 0�X = 0	 = F��� , �13�

P1�0 = Prob�Y = 1�X = 0	 = 1 − F��� . �14�

These transmission probabilities Pj�i, �i , j�� �0,1	2, define an
asymmetric binary channel. For this channel, a typical evo-
lution of the Rényi transinformation I��X ;Y� of Eq. �9� is
shown in Fig. 2, with the binary input X=0 or 1 evolving on
both sides of the decoding threshold �=0.8. In such condi-
tion, the presence of the channel noise W in Eq. �10� hinders
the recovery of the information signal at the receiving end. It
results that the performance of the transmission, as measured
by the input-output Rényi transinformation I��X ;Y�, de-
creases as the level of noise increases, as visible in Fig. 2.

In Fig. 2, a similar decreasing evolution of the Rényi
transinformation I��X ;Y� as the level of noise increases is
observed for any order �, especially, but not only, in the
Shannon case �=1. In this respect, this shows that the Rényi
transinformation I��X ;Y� at any order � is capable of mani-
festing the detrimental action of the noise in the transmission
of information through the channel. We will now consider
another regime of operation of the channel of Eq. �10� and
show the possibility of a constructive action of the noise in
the transmission of information assessed with the Rényi
transinformation I��X ;Y�.

IV. NOISE-IMPROVED INFORMATION TRANSMISSION

A. Noise-improved Rényi transinformation

For an information channel with a decoding threshold �
=1.2 in Eq. �10�, the evolution of the input-output Rényi
transinformation I��X ;Y� from Eq. �9� is presented in Fig. 3.
The results of Fig. 3 clearly demonstrate a nonmonotonic
action of the noise. In the conditions of Fig. 3, the binary
input X by itself is always below the response threshold �
=1.2 on the output. As a consequence, in the absence of
noise at �=0 in Fig. 3, the channel output permanently re-
mains at Y =0. No information is transmitted through the
channel, as expressed by the Rényi transinformation I��X ;Y�
which stays at zero when �=0 for any finite order �. How-
ever, as the noise level � is progressively raised above zero
in Fig. 3, a cooperative effect can take place, with the noise
W assisting the subthreshold input X to overcome the re-
sponse threshold �. This elicits transitions in the output Y
bearing statistical dependence with the input X. As a conse-
quence, a nonzero input-output transmission of information
occurs, as registered by the Rényi transinformation I��X ;Y�
which starts to increase in Fig. 3 as the noise level � rises
above zero. There exists a nonzero amount of noise for
which the information transfer measured by I��X ;Y� is maxi-
mized and such a maximum of I��X ;Y� occurs for any finite
order � as shown in Fig. 3. This is the effect of stochastic
resonance or noise-aided information transmission, regis-
tered by the Rényi transinformation I��X ;Y� in Fig. 3 at any
finite order �.

In Fig. 3, the order �=1 corresponds to the situation
where I�=1�X ;Y� is the Shannon transinformation and
I�=1�X ;Y� in Fig. 3 culminates at a maximum for a nonzero
level of noise �, as also reported in �42�. For the limit order
0←�, the Rényi transinformation goes to zero as

I0←��X;Y� = �D1�PiQj 
 Pij� , �15�

and meanwhile, I0←��X ;Y� of Eq. �15� keeps a maximum as
a function of � which is a maximum inherited from
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FIG. 2. �Color online� Input-output Rényi transinformation
I��X ;Y� from Eq. �9�, as a function of the rms amplitude � of the
zero-mean Gaussian noise W, for an information channel with input
probability P1=0.45 and threshold �=0.8. The order � goes from
0.2 to 2 with step 0.2. The crosses ��� identify �=1 when
I�=1�X ;Y� is the Shannon transinformation.
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D1�PiQj 
 Pij�. It is the location of this maximum, occurring
also at a nonzero level of noise �, which is indicated by a
circle on the curve of I�=0�X ;Y� in Fig. 3.

For the limit order �→�, the Rényi transinformation be-
haves as I�→��X ;Y�=log�maxi,j�Pj�i /Qj��. For the binary
channel resulting from Eq. �10�, we have P0�0� P0�1 and
P1�1� P1�0, so that

max
i,j

�Pj�i/Qj� = max�P0�0

Q0
,
P1�1

Q1
� . �16�

And from Eqs. �11�–�14�, it comes

max
i,j

�Pj�i/Qj� = max� F���
P0F��� + P1F�� − 1�

,
1 − F�� − 1�

P0�1 − F���� + P1�1 − F�� − 1��� . �17�

In this way, Eq. �17� provides access to the Rényi transinfor-
mation I�→��X ;Y�=log�maxi,j�Pj�i /Qj�� especially as a func-
tion of the noise level � intervening through the cumulative
distribution function F� · � of the channel noise W. In Eq.
�17�, the maximum in the right-hand side switches from one
term to the other depending on � �at given P1 and ��. An
evolution resulting for I�→��X ;Y� is depicted in Fig. 3�b�. In
the conditions of Fig. 3, at P1=0.45 and ��1, the maximum
in Eq. �17� is realized by the second term in the right-hand
side to yield

I�→��X;Y� = log� 1 − F�� − 1�
P0�1 − F���� + P1�1 − F�� − 1��� ,

�18�

which forms a decreasing function of �, depicted in Fig.
3�b�. The maximum of I�→��X ;Y� occurs at �=0 and comes
out as −log�P1� indicated in Fig. 3�b� as −log2�0.45�=1.152.
The order �→� is the only configuration where the maxi-
mum of I��X ;Y� occurs at �=0, while for any finite order �,
the maximum of I��X ;Y� occurs at a nonzero level � of the
channel noise. This is the manifestation of the stochastic

resonance effect, taking place with any finite order � of the
Rényi transinformation I��X ;Y�.

It is visible in Fig. 3 that the maximum of the Rényi
transinformation I��X ;Y� occurs at an optimal level �opt of
the noise which varies with the Rényi order �. This variation
of �opt with � is further analyzed in Fig. 4 for different
values of the decoding threshold �.

A remarkable property observed in Fig. 4 is that the opti-
mal noise level �opt maximizing I��X ;Y� experiences a non-
monotonic evolution with the order �. There exists in Fig. 4
an optimal value �opt=2.20 of the Rényi order where �opt is
maximized. At �opt=2.20 in Fig. 4, the maximum reached by
�opt is usually dependent on the decoding threshold � and
�opt increases as � increases since more noise is required to
assist the subthreshold input at higher threshold. Neverthe-
less, the nonmonotonic evolution of �opt maximized at �opt
in Fig. 4 demonstrates that the stochastic resonance effect
selects a specific order �opt of the Rényi transinformation
I��X ;Y�. This optimal order �opt identifies the Rényi transin-
formation I�opt

�X ;Y� that is capable of drawing the most pro-
nounced benefit of the added noise in stochastic resonance,
since I�opt

�X ;Y� stands as the measure of input-output infor-
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FIG. 3. �Color online� Input-output Rényi transinformation I��X ;Y� from Eq. �9�, as a function of the rms amplitude � of the zero-mean
Gaussian noise W, for an information channel with input probability P1=0.45 and threshold �=1.2. On each curve, the maximum is indicated
by a circle ���, except for �=1 identified by a cross ��� when I�=1�X ;Y� is the Shannon transinformation. The order � goes from 0 to 5 with
step 0.1 �panel A� and from 0 to 10 with step 0.5, then �=20, 30, 40, 50, � �panel B�.
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mation transfer that gets maximized at the largest optimal
noise level �opt.

Additionally, another property also observed in Fig. 4 is a
quasi-invariance of the optimal Rényi order �opt with the
decoding threshold �. Due to the intricacy of the �nonlinear�
dependencies involved in the Rényi transinformation
I��X ;Y�, we were not able to obtain an analytical character-
ization of the theoretical relation implied between �opt and �.
Alternatively, we have performed a numerical characteriza-
tion which presents in Fig. 5 the optimal Rényi order �opt, as
a function of the input probability P1, at different values of
the decoding threshold �. The results of Fig. 5 show that in
the region around P1�0.5, which corresponds to an approxi-
mately balanced binary input, almost no influence of the de-
coding threshold is observed on the optimal order �opt. In
such conditions, the optimal order �opt appears intrinsic to
the channel structure and independent of the decoding
threshold �, at least in the range tested in Fig. 5 for �. These
are the conditions that prevail in Fig. 4, at P1=0.45, with no
detected dependence of �opt on �. For small or large values

of P1, far from the balanced case P1�0.5, a dependence of
�opt on � gradually appears, as visible in Fig. 5. Neverthe-
less, this dependence, whenever it applies, does not critically
impact the essential property of the existence of an optimal
order �opt selected by stochastic resonance in the operation
of the binary channel.

It is also interesting to note that this optimal Rényi order
�opt selected by stochastic resonance at its maximum usually
differs from the Shannon order �=1. The Rényi transinfor-
mation I��X ;Y� that best exploits the stochastic resonance is
usually not the Shannon transinformation I1�X ;Y�. It is nei-
ther a degenerate configuration I�=0�X ;Y� nor I�=��X ;Y� oc-
curring as the limit of a monotonic evolution. It is a truly
nontrivial instance I�opt

�X ;Y� that usually emerges for the
Rényi transinformation in the presence of stochastic reso-
nance.

B. Image transmission

As another point of view complementing the quantifica-
tion of stochastic resonance performed in Sec. IV A with the
Rényi transinformation, a visual illustration of the noise-
enhanced information transmission is proposed in an experi-
ment with images. The early study of �55� reported stochastic
resonance or improvement by noise in an experiment of vi-
sual perception of images, with an evaluation based on the
psychovisual assessment performed by human subjects. We
extend this approach with a similar experiment of image
transmission, associated with an evaluation by quantitative
information measures. We consider an experiment of binary
image transmission. The binary input X is a black and white
image where the probability P1=Prob�X=1	 is the fraction
of white pixels. A noise W is added, followed by the thresh-
old decoding according to Eq. �10� to reconstruct a black and
white output image Y. Various output images Y are shown in
Fig. 6 at different levels of the noise W on the transmission
channel, in conditions matching those quantified in Figs. 3
and 4.

The nonmonotonic action of the noise is visually perceiv-
able on the images of Fig. 6. For a subthreshold input image
X in Fig. 6, when the level � of the noise is too small as in
Fig. 6�a�, a poor reconstructed image Y is obtained at the
output. For intermediate noise levels as in Figs. 6�b� and
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P1=0.45, zero-mean Gaussian noise W, and threshold �.
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FIG. 6. Binary image Y at the output of an information channel
according to Eq. �10�. Black and white input image X has size
610�555 pixels, with the fraction P1=0.45 of white pixels. The
decoding threshold �=1.2. The channel noise W is zero-mean
Gaussian with rms amplitude �a� �=0.1, �b� �=0.46 maximizing
the Shannon transinformation I1�X ;Y� in Fig. 3, �c� �=0.52 maxi-
mizing the Rényi transinformation I�opt

�X ;Y� at the optimal order
�opt=2.20 in Fig. 3, and �d� �=1.
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6�c�, there is a favorable action of the noise which assists the
subthreshold input image to overcome the decoding thresh-
old. This results in a much better quality of image recon-
struction in Figs. 6�b� and 6�c� at the output, thanks to the
action of the noise. Further, at still higher noise level as in
Fig. 6�d�, the noise gradually recovers its detrimental impact
resulting in poorer quality of the reconstructed image Y at
the output.

When improvement by noise of image transmission takes
place in Figs. 6�b� and 6�c�, the noise level is set succes-
sively at the maximum of the Shannon transinformation
I1�X ;Y� and of the Rényi transinformation I�opt

�X ;Y� at the
optimal order �opt=2.20, as deduced from Figs. 3 and 4. The
visual perception in Figs. 6�b� and 6�c� also records im-
proved image transmission in these two configurations. This
expresses that I1�X ;Y� or I�opt

�X ;Y� are both acceptable mea-
sures to quantify the benefit from noise in image transmis-
sion as perceived visually and that also no one measure
emerges against the other as being more suitable for this
purpose. For noise-improved image transmission, other per-
formance measures more specific to images have also been
shown appropriate for quantifying stochastic resonance �56�.
In this respect, the main point of the present study is to
demonstrate the ability of a general information measure
such as the Rényi transinformation to quantify stochastic
resonance. And the present experiment with images shows
that the optimal Rényi measure I�opt

�X ;Y� emerging with sto-
chastic resonance is consistent with noise-improved image
transmission as registered by visual perception.

C. Noise-improved Rényi information capacity

The optimal Rényi order �opt selected by the stochastic
resonance as discussed in Sec. IV A is usually related to a
given information source characterized by the input probabil-
ity P1. This is for instance illustrated by the evolutions of
�opt with P1 in Fig. 5. A point of view not impacted by this
dependence with P1 is accessible by considering the Rényi
information capacity of the channel. The Rényi transinforma-
tion I��X ;Y� observed in Figs. 3 and 4 assesses the transmis-
sion through the noisy channel of a binary input X with given
probability P1=Prob�X=1	=1−Prob�X=0	. The Rényi in-
formation capacity C� is defined by seeking the value P1

� of
P1 achieving the maximum C� of I��X ;Y� at given order �.
For the optimal input probability P1

�, an explicit analytical
expression exists in the special case �=1 of the Shannon
information capacity C�=1 of the asymmetric binary channel,
taking the form �42�

P1
� =

AP0�0 − 1

A�P0�0 − P0�1�
, �19�

with

A = 1 + exph�P0�0� + h�P1�0� − h�P1�1� − h�P0�1�

P0�0 − P0�1
� ,

�20�

with the function h�u�=−u ln�u�. Then, the Shannon capacity
C�=1 follows from Eq. �19� in I��X ;Y� at �=1. For an arbi-

trary order � other than �=1, the optimal probability P1
�

usually needs to be computed numerically by maximizing
I��X ;Y� from Eq. �9�. In this way, we have realized an evalu-
ation of the optimal probability P1

� in Fig. 7, and of the
corresponding Rényi information capacity C� in Fig. 8, for
the binary channel according to Eq. �10�.

In addition to the case �=1 ruled by Eq. �19�, analytical
insight on the capacity C� can also be obtained in two other
limit cases for the Rényi order �. In the limit 0←�, the
Rényi transinformation I0←��X ;Y� of Eq. �15� is ruled by
D1�PiQj 
 Pij� which takes its maximum at P1

��1 /2, espe-
cially P1

�→1 /2 when the noise level � goes to zero or to
infinity. In these conditions, the capacity C0←� as well as the
Rényi transinformation I0←��X ;Y� of Eq. �15� go to zero.
The evolutions to these limit behaviors for P1

� and C0←� are
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� achieving
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nel with decoding threshold �=1.2. The order � goes from 0.2 to 4
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discernable in Figs. 7 and 8, respectively. At the limit �
→�, the Rényi transinformation I�→��X ;Y� from Eq. �17� is
maximized by P1

�→0 to yield the capacity C�→�=log
��1−F��−1�� / �1−F����	 which is the limit of Eq. �18� as
P1

�→0.
Compared to the Rényi transinformation I��X ;Y� at fixed

P1 as in Fig. 3, the same remarkable properties related to
stochastic resonance are observed for the Rényi information
capacity C� at the optimal P1

� in Fig. 8. At any order �, the
Rényi information capacity C� undergoes a nonmonotonic
evolution as the noise level � increases. In the regime �
�1 of a subthreshold binary input X, when no noise is
present, no information is transmitted, as marked by a van-
ishing Rényi capacity C� at any order � when �=0 in Fig. 8.
Adding noise then modifies the channel, in a way where the
subthreshold input X=1 has more chance to get across and
be correctly decoded as Y =1 at the output. This constructive
action of the noise induces a capacity C� rising above zero in
Fig. 8. Moreover, a nonzero level of noise exists where the
capacity C� is maximized in Fig. 8. This is again a manifes-
tation of the stochastic resonance with a Rényi information
capacity C� maximized at a nonzero optimal level of noise
on the channel. Also, as in Fig. 3, the optimal noise level �opt
maximizing C� in Fig. 8 is found dependent on the Rényi
order �, yet with a nonmonotonic dependence. This depen-
dence of �opt with � is represented in Fig. 9.

The nonmonotonic dependence in Fig. 9 identifies an op-
timal Rényi order �opt=1.44 at which the optimal noise level
�opt of stochastic resonance assumes its largest value. And
this optimal order �opt=1.44 is found in Fig. 9 invariant with
the decoding threshold � of the channel. This invariance is at
least observed, as in Fig. 4, in the absence of a theoretical
proof, at the precision of our numerical analysis and for the
“reasonable” range of � tested in Fig. 9. However, indepen-
dently of this invariance with the channel threshold �, we
have now a characterization of an optimal Rényi order �opt
which is not attached to a given information source via its
P1. The stochastic resonance selects a nontrivial Rényi order
�opt=1.44 through the Rényi information capacity C�opt

that
exploits stochastic resonance in the most pronounced way
since C�opt

gets maximized by the largest possible optimal

noise level �opt. The optimal Rényi order �opt=1.44 selected
by stochastic resonance in the capacity is now intrinsic to the
binary channel and insensitive to the input probability �and
to the decoding threshold�. And the optimal order �opt, se-
lected by stochastic resonance in the Rényi information ca-
pacity, differs from the Shannon order �=1.

V. DISCUSSION AND CONCLUSION

After reviewing basic properties of generalized informa-
tion measures based on the Rényi entropy, we have applied
these generalized measures for the analysis of a binary infor-
mation channel. This analysis contains as a special case: the
classic reference model of information transmission over a
binary channel quantified with Shannon entropy based mea-
sure. The analysis with the Rényi entropy therefore offers an
extended reference model useful to describe information
transmission in broader conditions. We have exploited this
extended model to investigate further possibilities and prop-
erties of stochastic resonance or noise-aided information
transmission. The results demonstrate that stochastic reso-
nance occurs and is registered by the Rényi entropy mea-
sures at any finite order �, including the Shannon order �
=1. Moreover, in definite conditions when one seeks the Ré-
nyi information measure that best exploits stochastic reso-
nance, i.e., the information measure that is maximized by the
largest optimal amount of noise, then a nontrivial order �opt
differing from the Shannon case �=1 usually emerges. In
this way, in binary information transmission over the chan-
nel, stochastic resonance selects a specific nontrivial Rényi
measure of information differing from the classic Shannon
measure.

The optimal Rényi information measure can be selected
as the Rényi transinformation I�opt

�X ;Y� associated with a
given information source to be transmitted. In this case, the
optimal order �opt, such as the Rényi transinformation
I��X ;Y� itself, is usually dependent on the input probability
P1 of the binary information source applied to the channel.
The optimal Rényi transinformation I�opt

�X ;Y� is in this way
optimal for transmission of a given information source. Such
a dependence of the optimal Rényi order with the binary
information source disappears when one turns to the Rényi
capacity C� of the channel. We have shown that the capacity
C�, as well as I��X ;Y�, is capable of registering a noise-
aided information transmission at any finite order �. And in
general, the optimal order selected for I�opt

�X ;Y� or C� by
stochastic resonance differs from the Shannon order �=1.

In addition to the demonstration of feasibility of stochas-
tic resonance in the binary channel, it therefore appears as a
remarkable and robust observation that stochastic resonance
acts to select an optimal Rényi information measure, under
the form of an optimal Rényi transinformation I�opt

�X ;Y� for
a given information source, or of an optimal Rényi capacity
C�opt

. Beyond its nominal defining condition of optimality, it
remains difficult for the moment to further specify a more
concrete interpretation to the optimal Rényi order �opt
emerging in different situations of stochastic resonance. On
this issue, we have conducted an experiment of noise-aided
binary image transmission. It showed that the assessment of
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tion channel is with zero-mean Gaussian noise W and threshold �.
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the improvement by the optimal Rényi measure is consistent
with the visual perception, as the Shannon transinformation
also is. In any case, we find it helpful to have access to
definite quantitative processes capable of assigning special
roles or properties to Rényi information measures at non-
trivial orders differing from the Shannon order. This may
serve for getting more insight on the various possible ways

of quantitatively measuring information, in different contexts
and for different prospects where information contents are
relevant and need be formalized. In this way, the results of
the paper want to contribute in two directions: to consolidate
stochastic resonance as a universal phenomenon characteriz-
able with general information measures and to enlarge the
appreciation of quantitative measures of information.
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[52] A. C. Blumer and R. J. McEliece, “The Rényi redundancy of generalized Huffman codes,” IEEE Transactions on Infor-

mation Theory, vol. 34, pp. 1242–1249, 1988.
[53] M. B. Baer, “Optimal prefix codes for infinite alphabets with nonlinear costs,” IEEE Transactions on Information Theory,

vol. 54, pp. 1273–1286, 2008.
[54] J. F. Bercher, “Source coding with escort distributions and Rényi entropy bounds,” Physics Letters A, vol. 373, pp. 3235–
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