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Stochastic resonance for nonlinear sensors with saturation

David Rousseau, Julio Rojas Varela, and Franc¸ois Chapeau-Blondeau
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We analyze the transmission of a noisy signal by sensor devices which are linear for small inputs and
saturate at large inputs. Large information-carrying signals are thus distorted in their transmission. We dem-
onstrate conditions where addition of noise to such large input signals can reduce the distortion that they
undergo in the transmission. This is established for periodic, as well as aperiodic, and random information-
carrying signals. Various measures characterizing the transmission, such as signal-to-noise ratio, input-output
cross correlation, and mutual information, are shown improvable by addition of noise. These results constitute
another instance of the nonlinear phenomenon of stochastic resonance where addition of noise enhances the
signal.
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I. INTRODUCTION

The phenomenon of stochastic resonance establishes
for certain types of nonlinear coupling between signal a
noise, the presence or even the addition of noise, may re
in improved performance for the signal@1,2#. Following its
introduction some twenty years ago, stochastic resonance
gradually been observed in an increasing variety of nonlin
processes, including electronic circuits@3,4#, optical devices
@5,6#, and neural systems@7,8#. It has also progressively bee
recognized that stochastic resonance can occur under m
different forms, according to the nature of the signal, of
noise, of the nonlinear coupling which are involved and a
of the measure of performance receiving improvement fr
the noise. Various forms of noise-enhanced transmiss
have been reported for periodic or aperiodic determini
signals, or for random information-carrying signals, in t
presence of Gaussian or non-Gaussian, white or colo
noise. Performance has been measured by signal-to-nois
tio, input-output gains, cross correlation, mutual informatio
channel capacity, detection probability, estimation effica
propagation distance, all these quantities have been sh
improvable by addition of noise, in definite conditions. S
far, systems that have been shown capable of producin
stochastic resonance effect essentially are nonlinear sys
with potential barriers or with thresholds. In this case,
essence of the effect is that the information-carrying sig
by itself is too small to overcome a threshold or a barrier
the response of the system. Addition of noise then allo
some type of cooperation between signal and noise, so a
overcome the threshold or barrier, and elicit a response b
ing stronger relation to the signal thanks to assistance f
the noise.

In the present paper, we extend the class of nonlin
systems that have been shown capable of stochastic
nance. We consider static or memoryless systems which
purely linear in the small-signal limit~no threshold nor bar-
rier!. At the same time, the systems we consider exhibit s
ration in their response for large input signals. Lar
information-carrying input signals are, thus, distorted in th
transmission. We demonstrate conditions where addition
noise to such large input signals can reduce the distor
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they undergo in the transmission, establishing another fo
of stochastic resonance.

II. A NONLINEAR TRANSMISSION

To have a simple demonstration of the stochastic re
nance we envision, we consider an information signals(t)
added to a white noiseh(t) endowed with a cumulative dis
tribution functionFh(u) and a probability density function
f h(u)5dFh(u)/du. The input signal-plus-noise mixtur
s(t)1h(t) is transmitted by a memoryless or static nonli
earity g(.), so as toproduce the output signal

y~ t !5g@s~ t !1h~ t !#. ~1!

We shall consider here nonlinearitiesg(.) which are lin-
ear for small inputs and saturate at large inputs. Together
shall consider an information signals(t) of different types,
successively deterministic periodic or aperiodic, or rando
In each case, an appropriate measure of similarity betw
input s(t) and outputy(t) will be introduced and investi-
gated. We will show the possibility of increasing these me
sures of similarity through enhancement of the noiseh(t),
thus, demonstrating stochastic resonance for each typ
information signal with saturating nonlinearities.

III. PERIODIC SIGNAL

When s(t) is deterministic periodic with periodTs , the
output signaly(t) of Eq. ~1! generally is a cyclostationary
random signal, with a power spectrum containing spec
lines at integer multiples of 1/Ts emerging out of a continu-
ous noise background@9#. A standard measure of similarit
of y(t) with the Ts-periodic inputs(t) is a signal-to-noise
ratio defined as the power contained in the output spec
line at 1/Ts divided by the power contained in the nois
background in a small frequency bandDB around 1/Ts .

For the input-output relationship of Eq.~1!, the power
contained in the output spectral line at frequencyn/Ts is
given @9# by uȲnu2, whereȲn is the ordern Fourier coeffi-
cient of the Ts-periodic nonstationary output expectatio
E@y(t)#, i.e.,
©2003 The American Physical Society02-1
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Ȳn5 K E@y~ t !#expS 2 in
2p

Ts
t D L , ~2!

with the time average defined as

^•••&5
1

Ts
E

0

Ts
•••dt. ~3!

The output expectationE@y(t)# at a fixed timet is comput-
able as

E@y~ t !#5E
2`

1`

g~u! f h@u2s~ t !#du. ~4!

The magnitude of the continuous noise background in
output spectrum is measured@9# by the stationarized outpu
variance ^var@y(t)#&, with the nonstationary varianc
var@y(t)#5E@y2(t)#2E@y(t)#2 at a fixed timet, and

E@y2~ t !#5E
2`

1`

g2~u! f h@u2s~ t !#du. ~5!

A signal-to-noise ratioRn , for the harmonicn/Ts in the
ouputy(t), follows as

Rn5
uȲnu2

^var@y~ t !#&DtDB
, ~6!

whereDt is the time resolution of the measurement~i.e., the
signal sampling period in a discrete-time implementation!.

As a typical example of a saturating nonlinearity, we co
sider

g~u!5tanh~bu! ~7!

with adjustable slopeb.0, which is linear asbu for small
uuu!1/b and saturates at61 for largeuuu@1/b.

Further, it is convenient for illustration to consider th
case whereh(t) is a zero-mean uniform noise ove
@2A3sh ,A3sh# with standard deviationsh . In this case,
with the nonlinearityg(.) of Eq. ~7!, the integrals of Eqs.~4!
and ~5! can be evaluated analytically so as to yield

E@y~ t !#5
1

2A3bsh

lnFcosh$b@s~ t !1A3sh#%

cosh$b@s~ t !2A3sh#%
G ~8!

and

E@y2~ t !#5
1

2A3bsh

†2A3bsh1tanh$b@s~ t !2A3sh#%

2tanh$b@s~ t !1A3sh#%‡. ~9!

Figure 1 shows the output signal-to-noise ratioR1 at fre-
quency 1/Ts from Eq. ~6!, with DtDB51023, as a function
of the rms amplitudesh of the zero-mean uniform nois
h(t), for the transmission of the periodic inputs(t)510
110sin(2pt/Ts) by the nonlinearity of Eq.~7!. Three values
of the slopeb are tested.
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In the conditions of Fig. 1, the inputs(t)510
110sin(2pt/Ts) displays excursions to large amplitudes,
relation to the parameter 1/b of the nonlinearity of Eq.~7!.
Therefore,s(t) is strongly distorted in its transmission. I
Fig. 1, atsh→0, the signal-to-noise ratioR1 gets infinite
because, although the periodic component is very sma
the outputy(t), the noise component vanishes. Next, as
noise levelsh increases above zero,R1 rapidly drops. Yet,
whensh becomes sufficiently large,R1 starts to rise. This is
properly the stochastic resonance effect. The noiseh(t)
added to the large inputs(t) makes it possible to operate th
system in regions of the nonlinearity tanh@b(.)# that are more
favorable to the transmission ofs(t). Thus, on average, the
noise reduces the distortion experienced by the large in
s(t) in its transmission. This results in a signal-to-noise ra
R1 in Fig. 1 which can increase assh is raised, to culminate
for an optimal noise level where the distortion in the tran
mission of the periodic component is minimized. This effe
of noise-assisted transmission is preserved whenb is varied,
and, as visible in Fig. 1, is more pronounced for largeb
when the distortion by the saturating nonlinearity is strong

IV. APERIODIC SIGNAL

When the deterministic inputs(t), we seek to extract ou
of the outputy(t), is no longer periodic, then the signal-to
noise ratioRn of Eq. ~6! is no longer available as a mean
ingful input-output measure of similarity. Considers(t) a
deterministic aperiodic signal existing over the durationTs .
In such a case, meaningful input-output measures of sim
ity are provided by cross correlations as used for instanc
Refs. @10,11#. We choose here to use the normalized tim
averaged cross covariance between inputs(t) and output
y(t); it provides a similarity measure insensitive to bo
scaling and translation in signal amplitude. We introduce
signals centered around their time-averaged statistical ex
tation,

FIG. 1. Output signal-to-noise ratioR1 from Eq. ~6! as a func-
tion of the rms amplitudesh of the uniform noiseh(t), for s(t)
510110 sin (2pt/Ts) and in Eq. ~7! with b51 ~top!, b52
~middle!, b55 ~bottom!.
2-2
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s̃~ t !5s~ t !2^s~ t !& ~10!

and

ỹ~ t !5y~ t !2^E@y~ t !#&, ~11!

with the time average again defined by Eq.~3!. The normal-
ized time-averaged cross covariance is

Csy5
^E@ s̃~ t !ỹ~ t !#&

A^E@ s̃2~ t !#&^E@ ỹ2~ t !#&
, ~12!

or equivalently, sinces(t) is deterministic,

Csy5
^s~ t !E@y~ t !#&2^s~ t !&^E@y~ t !#&

A@^s~ t !2&2^s~ t !&2#@^E@y2~ t !#&2^E@y~ t !#&2#
,

~13!

with E@y(t)# andE2@y(t)# again given by Eqs.~4! and ~5!.
For an illustration of the possibility of stochastic res

nance in the transmission of an aperiodic signal by a satu
ing sensor, we again consider the nonlinearityg(.) of Eq.
~7!. Figure 2 shows the cross covariance from Eq.~13!, as a
function of the rms amplitudesh of the zero-mean uniform
noiseh(t), for the transmission by the nonlinearity of E
~7! of the aperiodic input

s~ t !55 sinS 2p
t

Ts/2
D14 sinS 2p

t

3Ts/2
D , ~14!

when tP@0,Ts#, ands(t)50 elsewhere.
Again, Fig. 2 illustrates an effect of noise-assisted sig

transmission, where the correlation between the aperiodic
put s(t) and the outputy(t) is maximized for a sufficient
nonzero noise level. Figure 3 shows the large signals(t) of
Eq. ~14! and the way it is transmitted in the absence of no
and at the optimal noise level. Figure 3~c! displays an en-
semble average of the outputy(t) showing that noise addi

FIG. 2. Input-output normalized cross covarianceCsy from Eq.
~13! as a function of the rms amplitudesh of the uniform noise
h(t), for s(t) of Eq. ~14! and in Eq.~7! with b52 ~top!, b55
~middle!, b58 ~bottom!.
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tion yields an output which is more similar to the inputs(t),
on average, compared to the transmission with no noise
Fig. 3~b!.

An alternative way can be used to quantify the benefit
adding noise. Figure 4 represents the ratioCsy /Csx , where
x(t)5s(t)1h(t) is the input signal-plus-noise mixture, an
Csx the normalized cross covariance betweens(t) and x(t)
computed as in Eqs.~12! and ~13!. The ratioCsy /Csx also
can be increased by raising the noise, and it culminates
maximum. The optimal value of the noise is different forCsy
of Fig. 2 and forCsy /Csx of Fig. 4, because these are tw
distinct quantitative measures of a qualitatively similar effe
of noise-improved transmission.

V. RANDOM SIGNAL

For the transmission according to Eq.~1!, we now con-
sider the case wheres(t) is a random information-carrying

FIG. 3. Transmission by Eq.~7! with b52. ~a! Input signals(t)
of Eq. ~14!. ~b! Output y(t)5tanh@bs(t)# with no noise.~c! En-
semble average of outputy(t)5tanh$b@s(t)1h(t)#% with h(t) a
zero-mean uniform noise at the optimumsh52.5.

FIG. 4. Output/input ratio of the cross covarianceCsy /Csx ~see
text! as a function of the rms amplitudesh of the uniform noise
h(t), for s(t) of Eq. ~14! and in Eq.~7! with b52 ~top!, b55
~middle!, b58 ~bottom!.
2-3
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signal, chosen to be a white noise, statistically independ
of h(t). The mutual informationI (s;y) between inputs(t)
and outputy(t) is defined as@12#

I ~s;y!5E E p~s,y!log
p~s,y!

ps~s!py~y!
dsdy, ~15!

whereps(s) andpy(y) are the marginal probability densitie
of s(t) and y(t), respectively, andp(s,y) their joint prob-
ability density.

An approach to stochastic resonance would consis
studyingI (s;y) as a function of the level of the noiseh(t),
and looking for conditions whereI (s;y) can be increased b
raisingh(t). If the nonlinearityg(.) of Eq. ~1! is invertible,
a complete transmission of information froms(t) to y(t)
occurs at zero noise, and consequently no improvemen
the input-output mutual information is obtainable by addi
noise. We therefore turn, for a stochastic resonance effec
a noninvertible transmission channel, under the form o
nonlinearityg(.) very common for sensors with saturatio
i.e.,

g~u!5H 21 for u<21

u for 21,u,1

1 for u>1.

~16!

In order to explicitly computeI (s;y) in this case, we
introduce a conditional probability density byp(y,s)
5p(yus) ps(s), which enables us to express Eq.~15! under
the form

I ~s;y!5E dsps~s! I 1~s!, ~17!

where

I 1~s!5E dyp~yus!log
p~yus!

py~y!
. ~18!

For anyyP(21,1), the linear part ofg(.) of Eq. ~16!,
one hasp(yus)5 f h(y2s). Also, givens, the probability that
y521 is Prob$y521us%5Prob$s1h,21%5Fh(21
2s). In a similar way, one has Prob$y51us%512Fh(1
2s). For any yP(2`,1`), the conditional density
p(yus), through the use of the Diracd function d(.), can,
thus, be expressed as

p~yus!5Fh~212s!d~y11!1 f̄ h~y2s!

1@12Fh~12s!#d~y21!, ~19!

where f̄ h(y2s) coincides withf h(y2s) for yP(21,1) and
is zero fory elsewhere.

Next, we have

py~y!5E p~yus!ps~s!ds. ~20!

Therefore, thanks to Eqs.~19! and~20!, the integralI 1(s)
of Eq. ~18! is expressible as
02110
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I 1~s!5Fh~212s!log
Fh~212s!

E Fh~212s8!ps~s8!ds8

1E
21

1

f h~y2s!log
f h~y2s!

E f h~y2s8!ps~s8!ds8

dy

1@12Fh~12s!#

3 log
12Fh~12s!

E @12Fh~12s8!#ps~s8!ds8

. ~21!

Equation~17! together with Eq.~21! provide an explicit
expression for the input-output mutual informationI (s;y), in
the transmission by the saturating nonlinearity of Eq.~16!, as
a function of the statistical properties of the information s
nal s(t) conveyed byps(s) and of those of the noiseh(t)
conveyed byf h(u) and Fh(u). For some choices ofps(s)
and f h(u), Eq. ~21! and then Eq.~17! may be explicitly
integrable in analytical forms; in other conditions, one m
have to resort to numerical integrations. We shall now sh
the possibility of conditions, where the mutual informatio
I (s;y) can be increased by raising the level of the no
h(t).

As a first example, we consider the case whereh(t) is a
zero-mean noise uniform over (2A3sh ,A3sh), ands(t) is
uniform over (2A3ss1m,A3ss1m) with mean E@s(t)#
5m. In this case, Fig. 5 represents the input-output mut
information I (s;y) from Eq. ~15!, in various conditions.

Figure 5 explicitly shows the possibility of condition
whereI (s;y) can be raised through an increase of the no
rms amplitudesh , over some ranges ofsh . Especially,

FIG. 5. Input-output mutual informationI (s;y) in shannon~log
base 2! from Eq.~15!, as a function of the rms amplitudesh of the
zero-mean uniform noiseh(t), in the transmission by the saturatin
sensor of Eq.~16!. The information signals(t) is uniform over
(2A3ss1m,A3ss1m) with ss51 andm52.5 ~a!, m52.7 ~b!,
m53 ~c!, m54 ~d!.
2-4
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when the excursion ofs(t) is such that its lower bound
2A3ss1m is always above the saturation level11 at the
input of the sensor of Eq.~16!, then the sensor output i
always at saturation, and no information froms(t) is trans-
mitted ontoy(t) in the absence of noise. This is visible
Figs. 5~c!,5~d!, where I (s;y) is zero whensh is zero. If
noise then is added, a cooperative effect takes place betw
s(t) andh(t), whose result is to bring the sensor to opera
on some occasions, in its linear part, enabling a transmis
of information between inputs(t) and outputy(t) with as-
sistance from the noiseh(t). This favorable outcome is
maximized by a sufficient nonzero optimal amount of noi
as visible in Fig. 5. This is a form of stochastic resonance
noise-aided transmission of information through saturat
sensors. A similar stochastic resonance effect is also pos
when the signal lower bound2A3ss1m is not always
above the saturation level11 at zero noise. This is the cas
in Figs. 5~a!,5~b!, where at zero noises(t) evolves partly
below the saturation in the linear region of the sens
whence a nonzeroI (s;y) when sh is zero. Then, a non
monotonic influence of the added noise follows whensh is
raised above zero. A degradation ofI (s;y) appears first at
low sh , but which is followed by a possibility of enhancin
I (s;y) by further raisingsh , over some ranges ofsh .

As another example, we consider the case whereh(t) is a
zero-mean Gaussian noise, ands(t) is a random binary sig-
nal with probability densityps(u)5@d(u1ss2m)1d(u
2ss2m)#/2. This s(t) describes a random stream of tw
equiprobable binary symbols fluctuating at6ss away from
the mean levelm. In this case, Fig. 6 represents the inpu

FIG. 6. Input-output mutual informationI (s;y) in shannon~log
base 2! from Eq.~15!, as a function of the rms amplitudesh of the
zero-mean Gaussian noiseh(t), in the transmission by the satura
ing sensor of Eq.~16!. The information signals(t) is a random bit
stream with probability densityps(u)5@d(u1ss2m)1d(u2ss

2m)#/2 with ss51 andm52.5 ~a!, m52.7 ~b!, m53 ~c!, m54
~d!.
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output mutual informationI (s;y) from Eq. ~15!, in various
conditions.

In the conditions of Fig. 6, the bit streams(t) fluctuates
always above the saturation level11 of the sensor of Eq.
~16!, thus, strictly no information is transmitted atsh50 in
the absence of noise. As soon assh is raised above zero
transmission of information becomes possible in princip
because of the infinite wings of the Gaussian density, bu
very inefficient at smallsh . It is only for a sufficiently large
noise levelsh that a substantial amount of information tran
mission takes place, associated to a maximum ofI (s;y) in
Fig. 6. This again represents a form of stochastic resona
or noise-aided information transmission.

VI. CONCLUSION

We have shown that the transmission of an informatio
carrying signal by sensors linear for small inputs and sa
rating for large inputs, can be improved by addition of noi
This was established for periodic as well as aperiodic and
random information-carrying signals. Various measures ch
acterizing the transmission, including signal-to-noise ra
input-output cross correlation and mutual information, we
shown improvable by addition of noise. The conditions w
have considered here to exhibit stochastic resonance in s
rating nonlinearities are merely illustrative, and the effect
preserved in many other conditions. Together with its qu
titative assessment, a qualitative explanation of the effec
that for large signals, not well positioned in relation to t
saturating nonlinearity, addition of noise at the input acts a
random bias shifting, on average, the operating zone of
sensor towards its linear part, more favorable to the transm
sion of the signal. These results can be interpreted as
instance of the general phenomenon of stochastic resona
by which nonlinear transmission of a signal can be improv
by addition of noise. Such an effect can be useful wh
a signal has to be transmitted by nonlinear systems o
which no full control is available, especially to adjust th
operating zone of the nonlinearity in accordance with
signal.

A class of natural systems, achieving very efficient sig
processing, and in which stochastic resonance has b
shown to operate, is formed by neural systems. In neuro
transmission, stochastic resonance has been reported e
tially in the region of the neuron threshold, to assist sm
subthreshold signals. Yet, in addition to their threshold, n
rons also exhibit saturation in their response. In the region
the neuron saturation, the form of stochastic resonance
have reported here could also play a role for improved p
formance. In a speculative way, this could happen for
stance in the perception of visual information in the prese
of a very high level of ambiant light bringing the syste
close to saturation, or in the hearing of acoustic signals in
presence of suddenly high aerostatic pressure.
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