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Stochastic resonance for nonlinear sensors with saturation
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We analyze the transmission of a noisy signal by sensor devices which are linear for small inputs and
saturate at large inputs. Large information-carrying signals are thus distorted in their transmission. We dem-
onstrate conditions where addition of noise to such large input signals can reduce the distortion that they
undergo in the transmission. This is established for periodic, as well as aperiodic, and random information-
carrying signals. Various measures characterizing the transmission, such as signal-to-noise ratio, input-output
cross correlation, and mutual information, are shown improvable by addition of noise. These results constitute
another instance of the nonlinear phenomenon of stochastic resonance where addition of noise enhances the
signal.
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[. INTRODUCTION they undergo in the transmission, establishing another form
of stochastic resonance.
The phenomenon of stochastic resonance establishes that,

for certain types of nonlinear coupling between signal and II. A NONLINEAR TRANSMISSION
noise, the presence or even the addition of noise, may result ) ) )
in improved performance for the signl,2]. Following its To have a simple demonstration of the stochastic reso-

introduction some twenty years ago, stochastic resonance h3&nce we envision, we consider an information sigs{&)

gradually been observed in an increasing variety of nonlineadded to a white noisg(t) endowed with a cumulative dis-

processes, including electronic circuigs4], optical devices  tribution functionF ,(u) and a probability density function

[5,6], and neural systeni3,8]. It has also progressively been f,(1)=dF,(u)/du. The input signal-plus-noise mixture

recognized that stochastic resonance can occur under mag{t) + 7(t) is transmitted by a memoryless or static nonlin-

different forms, according to the nature of the signal, of the€arity g(.), so as toproduce the output signal

noise, of the nonlinear coupling which are involved and also

of the measure of performance receiving improvement from y(©)=gls(t)+n(t)]. @

the noise. Various forms of noise-enhanced transmission . . . . .

have been reported for periodic or aperiodic deterministic Ve shall consider here nonlinearitige.) which are lin-

signals, or for random information-carrying signals, in the®2" for small inputs and saturate at large inputs. Together, we

presence of Gaussian or non-Gaussian, white or coloreghall consider an information signa(t) of different types,

noise. Performance has been measured by signal-to-noise gHCCessively deterministic periodic or aperiodic, or random.

tio, input-output gains, cross correlation, mutual information,/n €ach case, an appropriate measure of similarity between

channel capacity, detection probability, estimation efficacyinPut S(t) and outputy(t) will be introduced and investi-

propagation distance, all these quantities have been shov#ted. We will show the possibility of increasing these mea-

improvable by addition of noise, in definite conditions. SoSures of similarity through enhancement of the noige),

far, systems that have been shown capable of producing fUS, demonstrating stochastic resonance for each type of

stochastic resonance effect essentially are nonlinear systerffgormation signal with saturating nonlinearities.

with potential barriers or with thresholds. In this case, the

essence of the effect is that the information-carrying signal Ill. PERIODIC SIGNAL

by itself is too small to overcome a threshold or a barrier in ) L o _

the response of the system. Addition of noise then allows 'Whens(t) is deterministic periodic with periods, the

some type of cooperation between signal and noise, so as f§/tPut signaly(t) of Eq. (1) generally is a cyclostationary

overcome the threshold or barrier, and elicit a response beaf@ndom signal, with a power spectrum containing spectral

ing stronger relation to the signal thanks to assistance frori"€S at integer multiples of Tf emerging out of a continu-

the noise. ous noise backgrouni®]. A standard measure of similarity
In the present paper, we extend the class of nonlinea®f Y(t) with the Ts-periodic inputs(t) is a signal-to-noise

systems that have been shown capable of stochastic res@tio defined as the power contained in the output spectral

nance. We consider static or memoryless systems which af€¢ at 17T divided by the power contained in the noise

purely linear in the small-signal limitno threshold nor bar- Packground in a small frequency band around 17s.

rier). At the same time, the systems we consider exhibit satu- For the input-output relationship of Eql), the power

ration in their response for large input signals. Largecontained in the output spectral line at frequendyl’s is

information-carrying input signals are, thus, distorted in theirgiven [9] by |Y.|2, whereY, is the ordem Fourier coeffi-

transmission. We demonstrate conditions where addition ofient of the T¢-periodic nonstationary output expectation

noise to such large input signals can reduce the distortioE[y(t)], i.e.,
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Yn=<E[y(t)]exr< —|n—t)>, 3]
Ts
with the time average defined as
1J’Ts
Ly=—] "...dt 3
o=t @

The output expectatiok[y(t)] at a fixed timet is comput-
able as

eyol= | g fu-swln @

The magnitude of the continuous noise background in the

output spectrum is measur¢d] by the stationarized output
variance (vafy(t)]), with the nonstationary variance
vafy(t)]=E[y?(t)]— E[y(t)]? at a fixed timet, and

evol- [ @i fu-solan @

A signal-to-noise ratidR,,, for the harmonia/Tg in the
ouputy(t), follows as

B Yal?
= aly(D 1) ATAB”

(6)

whereAt is the time resolution of the measureméird., the
signal sampling period in a discrete-time implementation
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FIG. 1. Output signal-to-noise rati8, from Eq.(6) as a func-
tion of the rms amplituder,, of the uniform noisen(t), for s(t)
=10+10sin (27t/T) and in Eq. (7) with =1 (top), B=2
(middle), =5 (bottom).

In the conditions of Fig. 1, the inputs(t)=10
+10sin(27t/Ty) displays excursions to large amplitudes, in
relation to the parameter g/of the nonlinearity of Eq(7).
Therefore,s(t) is strongly distorted in its transmission. In
Fig. 1, ato,—0, the signal-to-noise rati®, gets infinite
because, although the periodic component is very small in
the outputy(t), the noise component vanishes. Next, as the
noise levelo, increases above zer®, rapidly drops. Yet,

n
wheno ,, becomes sufficiently larg&y, starts to rise. This is

As a typical example of a saturating nonlinearity, we con-properly the stochastic resonance effect. The nojgg)

sider

g(u)=tanh(Bu) (7)

with adjustable slopg>0, which is linear agdu for small
|u|<1/8 and saturates at 1 for large|u|> 1/8.

Further, it is convenient for illustration to consider the
case wheren(t) is a zero-mean uniform noise over
[—30,,\30,] with standard deviatiowr,,. In this case,
with the nonlinearityg(.) of Eq.(7), the integrals of Eqg4)
and (5) can be evaluated analytically so as to yield

cosH B[ s(t)+ 3,1}
E[y(t)]= 8
Lyl 2\/51307,” cosH B[ s(t)— 30,1} ®
and
1
2 = g - g
By (0]=7 A B%[Z@B ,FtanHBls(t) — 30,1}
—tanH B[s(t) + 30,1} 1. (9)

Figure 1 shows the output signal-to-noise railg at fre-
quency 1T from Eq. (6), with AtAB=10"3, as a function
of the rms amplituder,, of the zero-mean uniform noise
n(t), for the transmission of the periodic inps{t)=10
+ 10sin(27t/Ty) by the nonlinearity of Eq(7). Three values
of the slopeB are tested.

added to the large inps(t) makes it possible to operate the
system in regions of the nonlinearity tay.)] that are more
favorable to the transmission sft). Thus, on average, the
noise reduces the distortion experienced by the large input
s(t) in its transmission. This results in a signal-to-noise ratio
R4 in Fig. 1 which can increase as, is raised, to culminate
for an optimal noise level where the distortion in the trans-
mission of the periodic component is minimized. This effect
of noise-assisted transmission is preserved whénvaried,
and, as visible in Fig. 1, is more pronounced for lagge
when the distortion by the saturating nonlinearity is stronger.

IV. APERIODIC SIGNAL

When the deterministic inpug(t), we seek to extract out
of the outputy(t), is no longer periodic, then the signal-to-
noise ratioR,, of Eq. (6) is no longer available as a mean-
ingful input-output measure of similarity. Considsft) a
deterministic aperiodic signal existing over the durafign
In such a case, meaningful input-output measures of similar-
ity are provided by cross correlations as used for instance in
Refs.[10,11. We choose here to use the normalized time-
averaged cross covariance between ingit) and output
y(t); it provides a similarity measure insensitive to both
scaling and translation in signal amplitude. We introduce the
signals centered around their time-averaged statistical expec-
tation,
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FIG. 2. Input-output normalized cross covariarieg from Eq.
(13) as a function of the rms amplitude,, of the uniform noise
n(t), for s(t) of Eq. (14) and in Eq.(7) with =2 (top), B=5
(middle), B=8 (bottom).

S(t)=s(t)—(s(t)) (10

and

y(t)=y(t)—(E[y(t)]),

with the time average again defined by E8). The normal-
ized time-averaged cross covariance is

_ (E[smym])
7 VEFOIETO)
or equivalently, sinces(t) is deterministic,

o - (s(ELy()]) —(s(E[y(1)])
¥ (s = (s I(EYAO 1) —(E[y(D )2 ’(13)

(11)

12

with E[y(t)] andE?[y(t)] again given by Eqs4) and(5).

For an illustration of the possibility of stochastic reso-
nance in the transmission of an aperiodic signal by a saturat-

ing sensor, we again consider the nonlineagty) of Eq.
(7). Figure 2 shows the cross covariance from 8¢), as a

function of the rms amplitude-, of the zero-mean uniform
noise 7(t), for the transmission by the nonlinearity of Eq.

(7) of the aperiodic input

. t
+4 SIF(ZWFS/Z), (14

whente[0,T¢], ands(t)=0 elsewhere.

. t
s(t)=5 su-( 27?/2

Again, Fig. 2 illustrates an effect of noise-assisted signal
transmission, where the correlation between the aperiodic in- =
put s(t) and the outputy(t) is maximized for a sufficient

nonzero noise level. Figure 3 shows the large sig(gl of

PHYSICAL REVIEW E 67, 021102 (2003

7F -
,.\5: a
[

é.

0 Ts
=[ T . .
G ( b
&
=1
[=
8

° 0 Ts
— C
>
Im]

0 . I T:

time t °

FIG. 3. Transmission by E@7) with 8=2. (a) Input signals(t)

of Eq. (14). (b) Output y(t) =tanHBs(t)] with no noise.(c) En-

semble average of output(t) =tanHAB[s(t)+ 7(t)]} with 7(t) a
zero-mean uniform noise at the optimum=2.5.

tion yields an output which is more similar to the inm(t),
on average, compared to the transmission with no noise of
Fig. 3(b).

An alternative way can be used to quantify the benefit of
adding noise. Figure 4 represents the raiq/Cs,, where
x(t) =s(t) + n(t) is the input signal-plus-noise mixture, and
Csx the normalized cross covariance betwesét) and x(t)
computed as in Eqg12) and (13). The ratioCs,/Cs, also
can be increased by raising the noise, and it culminates at a
maximum. The optimal value of the noise is different @y,
of Fig. 2 and forCs,/Cs, of Fig. 4, because these are two
distinct quantitative measures of a qualitatively similar effect
of noise-improved transmission.

V. RANDOM SIGNAL

For the transmission according to Ed), we now con-
sider the case wherg(t) is a random information-carrying

3 1 1 1 1 1 1 1 1 1
© 0 1 2 3 4 5 6 7 8 9 10
noise rms amplitude

FIG. 4. Output/input ratio of the cross covariarg,/Cs, (see

Eq. (14) and the way it is transmitted in the absence of noiseexy as a function of the rms amplitude,, of the uniform noise

and at the optimal noise level. FigurécBdisplays an en-
semble average of the outpyft) showing that noise addi-

n(t), for s(t) of Eq. (14) and in Eq.(7) with B=2 (top), B=5
(middle), B=8 (bottom).
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signal, chosen to be a white noise, statistically independent 0.4/
of »(t). The mutual informatior (s;y) between inpu(t)
and outputy(t) is defined a$12]

Soaf
isy= [ [pisyios Po0 gsay  am  F
' ' Ps(S)py(y) €
o
wherepg(s) andp,(y) are the marginal probability densities Eo.a
of s(t) andy(t), respectively, ang(s,y) their joint prob- ©
ability density. .g
An approach to stochastic resonance would consist of g01

studyingl (s;y) as a function of the level of the noisgt),
and looking for conditions whergs;y) can be increased by
raising z(t). If the nonlinearityg(.) of Eq. (1) is invertible, Ot
a complete transmission of information frog(t) to y(t)
occurs at zero noise, and consequently no improvement of
the input-output mutual information is obtainable by adding  FiG. 5. Input-output mutual informatior(s:y) in shannor(log
noise. We therefore turn, for a stochastic resonance effect, tgase 2 from Eq.(15), as a function of the rms amplitude, of the

a noninvertible transmission channel, under the form of gero-mean uniform noisg(t), in the transmission by the saturating
nonlinearityg(.) very common for sensors with saturation, sensor of Eq(16). The information signak(t) is uniform over
ie., (—Bost+m,\ 3o+ m) with os=1 andm=2.5 (a), m=2.7 (b),

m=3 (c), m=4 (d).

2
noise rms amplitude

-1 for us-1
gluy=qu for —1<u<l (16) F,(-1-9)
1 for u=L1l. l1(s)=F,(—1-s)log

f F,(—1—s")pg(s’)ds'

In order to explicitly compute (s;y) in this case, we
introduce a conditional probability density byp(y,s)

=p(y|s) ps(s), which enables us to express Eg5) under i fl f,(y—s)log f(y—s) dy
the form -1 j fL(y—s')py(s')ds’
I(s;y)=f dspy(s) 14(s), (17 +[1-F ,(1-9)]
1-F (1-

where X log /179 (21)

p(y[s) f 1-F,(1-5")]ps(s’)ds’
Il(s)=J dyp(y|s)log ———. (18) =P Ipd
Py(Y)
For anyye(—1,1), the linear part of(.) of Eq. (16), Equation(17) together with Eq(21) provide an explicit

one hap(y|s)=f,(y—s). Also, givens, the probability that  expression for the input-output mutual informatics;y), in
y=—1 is Prolfy=—1|s}=Profs+7<—-1}=F,(=1  the transmission by the saturating nonlinearity of &), as
—s). In a similar way, one has Prpp=1|s}=1—F,(1 g function of the statistical properties of the information sig-
—s). For any ye(—«,+%), the conditional density na|s(t) conveyed byps(s) and of those of the noise(t)
p(yls). through the use of the Dirag function &(.), can,  conveyed byf,(u) andF,(u). For some choices gbq(s)

thus, be expressed as and f,(u), Eq. (21) and then Eq.(17) may be explicitly
— integrable in analytical forms; in other conditions, one may
p(yls)=F,(—1—-s)d(y+1)+f,(y—s) have to resort to numerical integrations. We shall now show
+[1-F (1-9s)]a(y—1), (19) the possibility of conditions, where the mutual information

I(s;y) can be increased by raising the level of the noise

T (v— inci i _ _ 7(t).
}/;/hzeerreof ?c(JXr/y ;)Sg\?vlkrllg:cei.es withf,(y —s) fory  (~1,1) and As a first example, we consider the case whe(g is a
Next we have zero-mean noise uniform over-(3a,,+30,), ands(t) is
’ uniform over 3o+ m,\3os+m) with mean E[s(t)]

=m. In this case, Fig. 5 represents the input-output mutual

py(y)=J p(yls)ps(s)ds. (200 information(s;y) from Eg.(15), in various conditions.
Figure 5 explicitly shows the possibility of conditions

Therefore, thanks to Eq§19) and(20), the integrall 1(s) wherel(s;y) can be raised through an increase of the noise

of Eq. (18) is expressible as rms amplitudeo,, over some ranges of,. Especially,
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iy ' - - - - ' - output mutual informatior (s;y) from Eq. (15), in various
conditions.
In the conditions of Fig. 6, the bit streas(t) fluctuates
=08f .
5 always above the saturation levell of the sensor of Eq.
b= (16), thus, strictly no information is transmitted at,=0 in
£06; the absence of noise. As soon as is raised above zero,
K<) transmission of information becomes possible in principle,
£ because of the infinite wings of the Gaussian density, but is
Tg°'4' very inefficient at smalbr,,. It is only for a sufficiently large
5 noise levelr, that a substantial amount of information trans-
€02l mission takes place, associated to a maximunh(sfy) in
Fig. 6. This again represents a form of stochastic resonance
o or noise-aided information transmission.

3
noise rms amplitude

FIG. 6. Input-output mutual informatiol(s;y) in shannon(log VI CONCLUSION

base 2 from Eq.(15), as a function of the rms amplitude, of the We have shown that the transmission of an information-
zero-mean Gaussian noiggt), in the transmission by the saturat- Carrying Signa| by sensors linear for small inputs and satu-
ing sensor of Eq(16). The information signas(t) is a random bit  rating for large inputs, can be improved by addition of noise.
stream with probability densitpy(u)=[5(u+os—m)+8(u—0os  This was established for periodic as well as aperiodic and for
—m)]/2 with os=1 andm=2.5 (@), m=2.7 (b), m=3 (¢), m=4  andom information-carrying signals. Various measures char-
@. acterizing the transmission, including signal-to-noise ratio,
input-output cross correlation and mutual information, were
shown improvable by addition of noise. The conditions we
have considered here to exhibit stochastic resonance in satu-
rating nonlinearities are merely illustrative, and the effect is
preserved in many other conditions. Together with its quan-
X : ! ) s tid . titative assessment, a qualitative explanation of the effect is
mitted ontoy(t) in the absence of noise. This is visible in hat for large signals, not well positioned in relation to the
Figs. 5c),5(d), wherel(s;y) is zero wheno, is zero. If  satyrating nonlinearity, addition of noise at the input acts as a
noise then is added, a cooperative effect takes place betwegsndom bias shifting, on average, the operating zone of the
s(t) and7(t), whose result is to bring the sensor to operategensor towards its linear part, more favorable to the transmis-
on some occasions, in its linear part, enabling a transmissiogion of the signal. These results can be interpreted as an
of information between inpus(t) and outputy(t) with as-  jnstance of the general phenomenon of stochastic resonance,
sistance from the noisg(t). This favorable outcome is Ly which nonlinear transmission of a signal can be improved
maximized by a sufficient nonzero optimal amount of noise,by addition of noise. Such an effect can be useful when
as visible in Fig. 5. This is a form of stochastic resonance, og signal has to be transmitted by nonlinear systems over
noise-aided transmission of information through saturatingyhich no full control is available, especially to adjust the

sensors. A similar stochastic resonance effect is also possibiherating zone of the nonlinearity in accordance with the
when the signal lower bound-\3cs+m is not always signal.

above the saturation level 1 at zero noise. This is the case A class of natural systems, achieving very efficient signal
in Figs. §a),5(b), where at zero noiss(t) evolves partly processing, and in which stochastic resonance has been
below the saturation in the linear region of the sensorshown to operate, is formed by neural systems. In neuronal
whence a nonzerd(s;y) when o, is zero. Then, a non- transmission, stochastic resonance has been reported essen-
monotonic influence of the added noise follows whehis tially in the region of the neuron threshold, to assist small
raised above zero. A degradation Igk;y) appears first at subthreshold signals. Yet, in addition to their threshold, neu-
low o,,, but which is followed by a possibility of enhancing rons also exhibit saturation in their response. In the region of
I(s;y) by further raisingo,,, over some ranges af,, . the neuron saturation, the form of stochastic resonance we

As another example, we consider the case whgt@ isa  have reported here could also play a role for improved per-
zero-mean Gaussian noise, a(d) is a random binary sig- formance. In a speculative way, this could happen for in-
nal with probability densitypg(u)=[é(u+ os—m)+d(u stance in the perception of visual information in the presence
—os—m)]/2. This s(t) describes a random stream of two of a very high level of ambiant light bringing the system
equiprobable binary symbols fluctuating &tz away from  close to saturation, or in the hearing of acoustic signals in the
the mean levem. In this case, Fig. 6 represents the input- presence of suddenly high aerostatic pressure.

when the excursion o8(t) is such that its lower bound
— 3o+ m is always above the saturation levell at the
input of the sensor of Eq(l6), then the sensor output is
always at saturation, and no information fraft) is trans-
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