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The optimal detection of a signal of known form hidden in additive white noise is examined
in the framework of stochastic resonance and noise-aided information processing. Conditions
are exhibited where the performance in the optimal detection increases when the level of the
additive (non-Gaussian bimodal) noise is raised. On the additive signal–noise mixture, when a
threshold quantization is performed prior to the optimal detection, another form of improvement
by noise can be obtained, with subthreshold signals and Gaussian noise. Optimization of the
quantization threshold shows that even in symmetric detection settings, the optimal threshold
can be away from the center of symmetry and in subthreshold configuration of the signals. These
properties concerning non-Gaussian noise and nonlinear preprocessing in optimal detection, are
meaningful to the current exploration of the various modalities and potentialities of stochastic
resonance.
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1. Introduction

More and more studies have shown that noise is not
necessarily always a nuisance, but can sometimes
have a beneficial constructive action. This possi-
bility has now been concretized in many different
settings and conditions. Stochastic resonance is a
generic denomination that can be used to designate
such constructive manifestations of the noise [Moss
et al., 1994; Chapeau-Blondeau & Godivier, 1996;
Gammaitoni et al., 1998; Andò & Graziani, 2000].
Instances of stochastic resonance have been regis-
tered in electronic circuits [Anishchenko et al., 1992,
1994; Godivier et al., 1997; Harmer & Abbott, 2000;
Morfu et al., 2003], optical devices [McNamara
et al., 1988; Dykman et al., 1995; Jost & Saleh, 1996;
Vaudelle et al., 1998], neural processes [Bulsara
et al., 1991; Douglass et al., 1993; Pantazelou et al.,
1995; Chapeau-Blondeau & Godivier, 1996], nano-
technologies [Lee et al., 2003]. Many possible dis-
tinct forms have appeared for stochastic resonance,

depending on the types of processes coupling signal
and noise, and the various measures of performance
receiving improvement from the noise. Inventory
and analysis of these various forms and modalities
of stochastic resonance are still ongoing endeavors.
The developments are driven both by the impor-
tant conceptual significance of stochastic resonance
concerning the status of noise, and by its potentiali-
ties for applications, especially for information pro-
cessing. In particular, stochastic resonance has been
investigated within standard signal processing prob-
lems, like detection [Zozor & Amblard, 2002; Saha
& Anand, 2003] or estimation [Chapeau-Blondeau
& Rojas Varela, 2001; Rousseau et al., 2003] of sig-
nals in noise.

Most forms of stochastic resonance observed so
far concern suboptimal processes, in which a pro-
cessing system is not tuned at its best, and where
the noise is used to alter the operating conditions
of the system so as to bring them closer to the best
performance. Very recently, the possibility of some
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form of stochastic resonance has been extended to
optimal processes. Constructive action of the noise
was reported in optimal detection of signals cor-
rupted by non-additive phase noise in [Rousseau
& Chapeau-Blondeau, 2002; Chapeau-Blondeau,
2003]. In the present paper, we shall show that a
similar property can be obtained in the more com-
mon case of an additive signal–noise mixture. We
shall also study the possibility of another type of
improvement by noise when nonlinear preprocess-
ing under the form of threshold quantization is per-
formed prior to the optimal detection.

2. Optimal Detection

We consider a standard detection situation, where a
deterministic signal s(t) can assume one among two
known expressions s0(t) (with prior probability P0)
or s1(t) (with prior probability P1 = 1 − P0). This
signal s(t) is mixed to a noise η(t), the resulting
mixture forming the observable signal x(t). This sig-
nal x(t) is measured at N distinct times tk, for k = 1
to N , so as to provide N data points xk = x(tk).
We wish to use the data x = (x1, . . . , xN ) to decide
whether the signal s(t) is s0(t) (hypothesis H0) or
is s1(t) (hypothesis H1).

According to classical detection theory [Van
Trees, 2001; Kay, 1998], a given detector will decide
hypothesis H0 whenever the data x = (x1, . . . , xN )
falls in the region R0 of IRN , and it will decide H1

when x falls in the complementary region R1 of
IRN . In doing so, the detector achieves an overall
probability of detection error Per expressable as

Per = P1

∫
R0

p(x|H1)dx + P0

∫
R1

p(x|H0)dx, (1)

where p(x|Hj) is the probability density for observ-
ing x when Hj holds, with j ∈ {0, 1}, and the nota-
tion

∫ · dx stands for the N -dimensional integral∫ · · ·∫ · dx1 · · · dxN .
Since R0 and R1 are complementary in IRN ,

one has∫
R0

p(x|H1)dx = 1 −
∫
R1

p(x|H1)dx, (2)

which substituted in Eq. (1) yields

Per = P1 +
∫
R1

[P0p(x|H0) − P1p(x|H1)]dx. (3)

The detector that minimizes Per can be
obtained by making as negative as possible the
integral over R1 on the right-hand side of Eq. (3).

This is realized by including into R1 all and only
those points x for which the integrand P0p(x|H0)−
P1p(x|H1) is negative. This yields the optimal
detector, that uses the likelihood ratio

L(x) =
p(x|H1)
p(x|H0)

, (4)

to implement the test

L(x)

H1

>
<

H0

P0

P1
. (5)

The minimal Per reached by the optimal detec-
tor of Eq. (5) is expressable as

Per =
∫

IRN
min[P0p(x|H0), P1p(x|H1)]dx. (6)

Since min(a, b) = (a + b − |a − b|)/2, the minimal
probability of error of Eq. (6) reduces to

Per =
1
2
− 1

2

∫
IRN

|P1p(x|H1) − P0p(x|H0)|dx. (7)

We consider here that the signal–noise mixture
x(t) is the additive mixture

x(t) = s(t) + η(t), (8)

with η(t) a stationary white noise of cumulative
distribution function Fη(u) and probability den-
sity function fη(u) = dFη/du. Additive signal–noise
mixture is a case very often met in practice.
A more complicated nonlinear mixture is con-
sidered in [Rousseau & Chapeau-Blondeau, 2002;
Chapeau-Blondeau, 2003]. It follows then, that
the conditional densities factorize as p(x|Hj) =∏N

k=1 p(xk|Hj), with

p(xk|Hj) = fη[u − sj(tk)], (9)

for j ∈ {0, 1}. Now this last Eq. (9) makes pos-
sible the explicit evaluation of the optimal detec-
tor of Eqs. (4) and (5), and of its performance
[Eq. (7)].

3. Constructive Role of Noise

The level of noise η(t) is quantified by its rms
amplitude ση. A situation often met in practice
is the case where η(t) in the mixture of Eq. (8)
is a Gaussian noise. In this case, it is well-known
that the performance Per in Eq. (7) of the opti-
mal detector experiences a monotonic degradation
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as the noise level ση increases. However, it is impor-
tant to realize that the expectation of a monotonic
degradation of the performance Per of an opti-
mal detector when the noise level is raised, is not
true in generality. This was illustrated in [Rousseau
& Chapeau-Blondeau, 2002; Chapeau-Blondeau,
2003] with a nonlinear signal–noise mixture. We
shall show here that the same can occur with the
more common linear signal–noise mixture of Eq. (8)
when it operates with certain non-Gaussian noises.

For our demonstration, we consider in the
sequel the basic situation where the signals to be
detected are the constant signals s0(t) = s0 and
s1(t) = s1, for all t, with two constants s0 < s1.
In the standard case where the white noise η(t) in
Eq. (8) is zero-mean Gaussian, it is well-known that
the optimal detector of Eqs. (4) and (5) reduces to

x

H1

>
<

H0

s0 + s1

2
+

σ2
η

N
s1 − s0

ln
(

P0

P1

)
= xT , (10)

with x = N−1
∑N

k=1 xk. This optimal test of
Eq. (10) achieves the probability of error in Eq. (7)
which reads

Per =
1
2

[
1 + P1 erf

(√
N

xT − s1√
2ση

)

−P0 erf
(√

N
xT − s0√

2ση

)]
. (11)

It is easy to verify that the performance Per of
Eq. (11) experiences a monotonic degradation as
the noise level ση increases.

For the white noise η(t) in Eq. (8) we now turn
to a non-Gaussian case, by way of the class of zero-
mean Gaussian mixture with standardized proba-
bility density (0 < m < 1)

fgm(u) =
1

2
√

2π
√

1 − m2

{
exp

[
− (u + m)2

2(1 − m2)

]

+ exp
[
− (u − m)2

2(1 − m2)

]}
, (12)

and cumulative distribution function

Fgm(u) =
1
2

+
1
4

[
erf

(
u + m√

2
√

1 − m2

)

+ erf
(

u − m√
2
√

1 − m2

)]
. (13)

As m → 0, Eq. (12) approaches the zero-mean unit-
variance Gaussian density; as m → 1, Eq. (12)
approaches the zero-mean unit-variance dichotomic
density at ±1. With fη(u) = fgm(u/ση)/ση, Fig. 1
shows different evolutions of the performance Per in
Eq. (7) of the optimal detector, as the noise rms
amplitude ση increases.

Figure 1 reveals the possibility of nonmono-
tonic evolutions of performance measure Per of the
optimal detector, as the level ση of the Gaussian-
mixture noise is raised. With no noise, at ση = 0,
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Fig. 1. Probability of error Per of Eq. (7) for the optimal detector of Eq. (5), as a function of the rms amplitude ση of the
Gaussian-mixture noise η(t) from Eq. (12) at different m. Also, s0(t) ≡ s0 = −1, s1(t) ≡ s1 = 1 and P0 = 1/2; (a) N = 1 or
(b) N = 2.
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the probability of detection error Per is always at
its best value Per = 0 in Fig. 1, as expected for an
optimal detector operating in noise-free condition.
When the noise level ση rises above zero in Fig. 1,
the probability of error Per starts gradually to
degrade (to increase). However, this degradation of
Per does not always proceed monotonically as ση is
further increased. Conditions exist in Fig. 1, where
the performance Per can improve (decrease) when
the noise level ση is further raised, over some ranges.
This constructive action of the additive noise η(t)
on the performance Per of the optimal detector,
can be interpreted as a novel aspect of stochastic
resonance. At even larger levels, the detrimental
action of the noise resumes, and Per degrades again
by increasing towards the least favorable value of
1/2. As seen in Fig. 1, the constructive action
occurs when the noise η(t) departs sufficiently from
a Gaussian noise, i.e. when m in Eq. (12) is suffi-
ciently close to 1. On the contrary, Gaussian noise
or values of m approaching zero in Fig. 1, lead to a
monotonic increase of Per as ση is raised.

A similar behavior with a constructive action of
the noise, can be obtained with other non-Gaussian
densities for η(t). Let us consider passing a noise
uniform over [−1, 1] through the nonlinearity

g(u) =
1
a

βu√
1 + (βu)2

(14)

parameterized by β > 0, with a =√
1 − arctan(β)/β. This produces a standardized

noise whose probability density fsq(u) is zero for u
outside [−g(1), g(1)], and otherwise

fsq(u) =
1
2β

a

[1 − (au)2]3/2
, (15)

and its cumulative distribution function is

Fsq(u) =
1
2

+
1
2β

au√
1 − (au)2

(16)

over the support u ∈ [−g(1), g(1)], and Fsq(u) = 0
for u < −g(1) and Fsq(u) = 1 for u > g(1).
As β → 0, one recovers the uniform noise over
[−√

3,
√

3]. For increasing β, the density fsq(u)
develops peaks at its two modes in −g(1) and g(1),
up to β → +∞ which yields a dichotomic noise at
±1. With fη(u) = fsq(u/ση)/ση , Fig. 2 shows dif-
ferent evolutions of the performance Per in Eq. (7)
of the optimal detector, as the noise rms amplitude
ση increases.
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Fig. 2. Probability of error Per of Eq. (7) for the opti-
mal detector of Eq. (5), as a function of the rms ampli-
tude ση of the noise η(t) from Eq. (15) at different β. Also,
s0(t) ≡ s0 = −1, s1(t) ≡ s1 = 1, P0 = 1/2 and N = 1.

Figure 2 reveals that, as the noise level ση

increases, the possibility of a nonmonotonic evo-
lution of the performance Per, rather than a
monotonic degradation, is preserved with the noise
density of Eq. (15). This occurs in Fig. 2 for suf-
ficiently large values of β, associated to the noise
η(t) with a density from Eq. (15) with a sufficiently
pronounced bimodal structure.

The bimodal structure of the noise η(t) seems
here, both in Figs. 1 and 2, to be an essential ingre-
dient for observing the improvement by noise of
Per. This can be understood qualitatively, because a
zero-mean bimodal noise with rms amplitude ση, as
used in Figs. 1 and 2, tends to concentrate its ampli-
tudes around ±ση, as opposed to a unimodal noise
which concentrates its amplitudes around zero. In
a binary detection task, noise fluctuations around
±ση, especially for well-chosen ranges of ση in rela-
tion to the levels s0 and s1 to be detected, can be
less damageable than noise fluctuations around zero
to the capacity of distinguishing between s0 and
s1. At the extreme, a purely dichotomic noise at
±ση would let intact the capacity of distinguishing
between s0 and s1, as long as s0±ση cannot be con-
fused with s1, which is the rule, except in the very
special configuration where ση = s1−s0. Especially,
when ση > s1 − s0, the capacity of distinguishing
between s0 and s1 is unaffected by the dichotomic
noise, however large ση may be. It is a reminiscence
of this property of dichotomic noise, which is at
work in Figs. 1 and 2, to allow the nonmonotonic
evolution of the performance Per with continuous
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bimodal noises interpolating between dichotomic
and unimodal noises.

Beyond the necessity of bimodal noises for the
above mechanism to apply, what we wish to empha-
size here is the conceptual significance in princi-
ple of the results in Figs. 1 and 2. These results
establish that an optimal detector operating on
an addditive signal–noise mixture can experience
an improvement of its performance Per, when the
noise level increases, over some ranges of the noise,
instead of a monotonic degradation of Per. The
same property was shown possible with nonlin-
ear signal–noise mixture in [Rousseau & Chapeau-
Blondeau, 2002; Chapeau-Blondeau, 2003], and
it is extended here to the more common linear
(additive) signal–noise mixture. It is clear in Figs. 1
and 2 that the improvement of Per does not appear
as soon as the noise level ση is raised above zero. A
nonzero amount of noise η(t) has to pre-exist before
improvement of Per by a further increase in ση is
obtained; but a pre-existing amount of noise is usu-
ally the rule in a signal-processing task. Also, for a
non-Gaussian η(t), the increase of the rms ampli-
tude ση cannot be achieved by a simple addition
of more noise if one wants to keep the same shape
for the probability density fη(u), so as to match
the conditions of Figs. 1 and 2 which increase ση at
fη(u) constant in shape. A more internal adjustable
parameter, analog to a physical temperature, has
to be assumed to increase ση at fη(u) constant
in shape. Alternatively, the change of the density
fη(u) can be explicitly modeled as more noise is
added (what is not done here). Improvement by
noise can still be expected in these more elaborate
conditions, since we show here that such improve-
ment is robustly preserved over various shapes for
fη(u), this point remaining to be explicitly explored.
But again, beyond such issues which are oriented
towards practical implementation of the proposed
framework, what we want to emphasize here is its
conceptual significance: the feasibility in principle of
a form of improvement by noise in optimal detec-
tion with additive signal–noise mixture. This pos-
sibility is an important feature which complements
all the aspects and properties known to stochastic
resonance.

4. Nonlinear Transformation Before
Detection

It sometimes happens that a nonlinear transfor-
mation is performed on the signal–noise mixture

x(t) = s(t) + η(t) prior to the detection process.
Such a nonlinear transformation may be imposed
by the physics of the sensing or measuring device.
Let us consider here the nonlinear transformation,
very often considered in the context of stochas-
tic resonance, which produces the output signal
y(t) as

y(t) = sign[s(t) + η(t) − θ] = ±1. (17)

The transformation of Eq. (17) realizes a one-
bit quantization of the input signal–noise mixture
x(t) = s(t) + η(t), with quantization threshold θ.
It offers a parsimonious signal representation which
can be useful for fast real-time processing; it also
bears some similarity with neuronal coding.

When the detection is based on y(t), the same
considerations as in Sec. 2 yield the optimal detec-
tor as

L(y) =
Pr{y|H1}
Pr{y|H0}

H1

>
<

H0

P0

P1
, (18)

with y = (y1, . . . , yN ) and yk = y(tk) for k = 1
to N . Equation (18) is the minimal-Per detector,
achieving the minimum Per among all detection
schemes based on y, this minimum being

Per =
1
2
− 1

2

∑
y∈{−1,1}N

|P1Pr{y|H1} − P0Pr{y|H0}|

(19)

with the sum performed over the 2N distinct states
(y1 = ±1, . . . , yN = ±1) accessible to the data y.
For η(t) a white noise, we have Pr{y|Hj} =∏N

k=1 Pr{yk|Hj}, for j ∈ {0, 1}. At any time t, we
have according to Eq. (17), the conditional prob-
ability Pr{y(t) = −1|Hj} which is also Pr{sj(t) +
η(t) ≤ θ}, this amounting to

Pr{y(t) = −1|Hj} = Fη [θ − sj(t)]. (20)

In the same way, we have Pr{y(t) = 1|Hj} = 1 −
Fη[θ − sj(t)]. This allows the explicit evaluation of
the optimal detector of Eq. (18) and of its perfor-
mance of Eq. (19).

We again consider in the following, the basic
situation where the signals to be detected are the
constant signals s0(t) = s0 and s1(t) = s1 > s0, for
all t. In this case, the optimal test of Eq. (18) can
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be reduced to a simpler expression taking the form

N1

H1

>
<

H0

ln
(

P0

P1

)
− N ln

[
Fη(θ − s1)
Fη(θ − s0)

]

ln
[
1 − Fη(θ − s1)
1 − Fη(θ − s0)

]
− ln

[
Fη(θ − s1)
Fη(θ − s0)

] = NT ,

(21)

where N1 is the number, between 0 and N , of com-
ponents yk at +1 in the data y. This optimal test
of Eq. (21) achieves the probability of error

Per = P1

∑
N1<NT

CN
N1

[1 − Fη(θ − s1)]N1

×Fη(θ − s1)N−N1

+ P0

∑
N1≥NT

CN
N1

[1 − Fη(θ − s0)]N1

×Fη(θ − s0)N−N1 , (22)

with CN
N1

as the binomial coefficients.
When the noise η(t) has a Gaussian-mixture

density as in Eq. (12), then Fig. 3 represents the
evolution of the probability of error Per of Eq. (22)
for the optimal detector of Eq. (21), as the rms
amplitude ση of the noise η(t) is raised. It is interest-
ing to compare Fig. 3 characterizing the detection
from the quantized data y, to Fig. 1 characterizing
the detection from the analog (unquantized) data

x in otherwise similar conditions. Two important
observations can be made in this respect.

The first observation is that Per in the detection
with the quantized data y is always larger (in the
same noise condition) than with the analog unquan-
tized data x. This observation has a natural expla-
nation: one-bit quantization by y of the analog data
x entails a loss of information, whence the reduced
performance in detection. The reduced performance
is even more pronounced at N = 2 in Fig. 3(b)
than at N = 1 in Fig. 3(a), because the loss of
information increases with the number N of data
points. The trade-off is that y represents a much
more parcimonious representation with only one bit
per data point which can be useful for fast real-
time processing, compared to x which in principle
requires a infinite number (12 to 16 in practice) of
bits per data point.

The second observation is that the construc-
tive action of noise present in Fig. 1 is absent in
Fig. 3. When the thresholding is done prior to the
detection, the detector cannot benefit from a soft,
smooth, analog representation of the data, which
is somehow richer than the hard-thresholded rep-
resentation imposed to base the decision in Fig. 3.
The constructive action of the noise can operate in
the soft analog representation of Fig. 1, but is sup-
pressed in the thresholded representation of Fig. 3.
This has been revealed by the present analysis.
This is somehow a novel aspect which enriches the
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Fig. 3. Solid lines: probability of error Per of Eq. (22) for the optimal detector of Eq. (21) from the quantized data y, as a
function of the rms amplitude ση of the Gaussian-mixture noise η(t) from Eq. (12) at different m. The quantization threshold
in Eq. (17) is θ = 0. Also as in Fig. 1: s0(t) ≡ s0 = −1, s1(t) ≡ s1 = 1 and P0 = 1/2; (a) N = 1 or (b) N = 2. The dotted
lines are Per redrawn from Fig. 1 for the detection from the analog (unquantized) data x.
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properties known to stochastic resonance. Improve-
ment by noise usually occurs, in known forms of
stochastic resonance, for a nonlinear transformation
of an input signal–noise mixture. Here, improve-
ment by noise is possible on the linear input signal–
noise mixture x(t), and disappears after a nonlinear
transformation on x(t).

However, if the nonlinear transformation of
Fig. 3 performed with the quantization threshold
θ = 0, is modified by varying θ, then a construc-
tive action of the noise can be recovered. Figure 4
addresses a situation where the thresholding of
Eq. (17) is performed in such a way that both sig-
nals s0(t) and s1(t) to be detected are on the same
side of the threshold θ.

In Fig. 4, when the noise η(t) is absent in
Eq. (17), both signals s0(t) and s1(t) are always
below the quantization threshold θ, and are there-
fore always quantized exactly in the same way. In
this case, at η(t) ≡ 0, no discriminating detection
is possible based on the quantized data y and the
performance is at its worst, i.e. Per = 1/2 in Fig. 4.
Next, as the noise level ση is raised above zero, the
presence of the noise η(t) progressively allows the
signals s0(t) and s1(t) to be quantized differently by
Eq. (17). This translates in Fig. 4, into an improve-
ment of the detection performance Per as the noise
level ση increases, up to an optimal nonzero noise
level where the probability of detection error Per is
minimized. The constructive action of the noise, or
stochastic resonance, is recovered, under the form of
a noise-assisted detection of subthreshold signals.

For subthreshold signals, the constructive
action of the noise is possible with the Gaussian
mixture noise of Fig. 4, but it is also possible with
Gaussian noise, as shown in Fig. 5.

Figures 4 and 5 also confirm a remark made
above for Fig. 3, that the detection from the quan-
tized data y never improves over the detection from
the analog (unquantized) data x. This is observed
whatever the position of the quantization threshold
θ, either in a suprathreshold (Fig. 3) or a subthresh-
old (Fig. 4) configuration of the signals s0(t) and
s1(t), as also confirmed in Fig. 5.

Another important observation in Figs. 4 and 5,
is that a quantization threshold θ in a subthreshold
configuration, can lead to a better detection perfor-
mance Per compared to θ in a suprathreshold config-
uration of the signals s0(t) and s1(t). For instance,
in Figs. 4 and 5, for the detection of s0(t) ≡ −1 and
s1(t) ≡ 1, at large noise levels ση, the performance
Per in the subthreshold configuration θ = 1.1 is gen-
erally better than that in the suprathreshold config-
uration θ = 0. This is true for any N in Fig. 4 with
Gaussian-mixture noise, and for N > 1 in Fig. 5
with Gaussian noise. This is an important property
for the use of quantization devices, as often con-
sidered for stochastic resonance: even in completely
symmetric conditions of the signals and noise and
process, the optimal configuration for the quanti-
zation threshold is not necessarily at the center of
symmetry θ = 0.

The above observation naturally leads to raise
the issue of optimizing the quantization threshold θ
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Fig. 4. Same as Fig. 3, except that θ = 1.1 . The dashed lines are redrawn from Fig. 3.
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Fig. 5. Solid and dashed lines: probability of error Per of Eq. (22) for the optimal detector of Eq. (21) from the quantized
data y, as a function of the rms amplitude ση of the Gaussian noise η(t), and different quantization thresholds θ. Also as in
Fig. 1: s0(t) ≡ s0 = −1, s1(t) ≡ s1 = 1 and P0 = 1/2; (a) N = 1 or (b) N = 2. In (b), the dotted line is Per of Eq. (11) for
detection from the analog (unquantized) data x; in (a) this line is superimposed to the curve at θ = 0.
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Fig. 6. Performance of the optimal detector of Eq. (21) from
the quantized data y, as a function of the rms amplitude ση

of the Gaussian noise η(t), and different number N of data
points. Also as in Fig. 1: s0(t) ≡ s0 = −1, s1(t) ≡ s1 = 1
and P0 = 1/2. Upper panel: optimal value θopt of the quan-
tization threshold θ in Eq. (17) minimizing Per of Eq. (22).
Due to the symmetry of the process, −θopt is also an optimal
threshold. Lower panel: Minimum Per at θopt.

so as to maximize the performance (minimize Per)
in given conditions of the noise η(t) and signals to
be detected. For illustration, this issue is solved in
Fig. 6 for conditions with Gaussian noise η(t).

With Gaussian noise, the results of Fig. 6 reveal
that the optimal threshold θopt is never zero for N
even, although it is always zero for N odd. The same
trend that takes θopt away from zero is even more
manifest with non-Gaussian noise η(t); for instance,
with the Gaussian-mixture noise of Eq. (12), θopt

never remains at zero, even for N odd. Moreover,
Fig. 6 shows that the optimal threshold θopt can lie
in a subthreshold configuration of the signals s0(t)
and s1(t) to be detected, i.e. θopt is above 1 for
detection between s0(t) ≡ −1 and s1(t) ≡ 1 at large
values of the noise rms amplitude ση and N even.
However, as also shown in Fig. 6, when the process
is tuned at θopt, the resulting probability of detec-
tion error Per is generally an increasing function of
the noise level ση. Improvement of Per by increasing
ση is feasible when θ is not at its optimal position,
as in Fig. 4, but disappears when θ is at its optimum
θopt. Noise improvement occurs here in nonoptimal
processes, while it occurred in optimal processes in
Sec. 3.

5. Summary and Outlook

We have examined the optimal detection of a sig-
nal of known form hidden in additive white noise,
in the framework of stochastic resonance or noise-
aided information processing. Several conclusions,
meaningful in this framework, can be emphasized
as follows.
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• It is in principle possible for an optimal detector
operating on an addditive signal–noise mixture
to experience an improvement of its performance
when the noise level increases, over some ranges
of the noise, instead of a monotonic degradation.
This property is obtained here with non-Gaussian
bimodal noise. A similar property was observed in
[Rousseau & Chapeau-Blondeau, 2002; Chapeau-
Blondeau, 2003], yet with a nonlinear signal–
noise mixture, but unimodal noise. Other forms
of optimal processing with a constructive role of
noise, could also be found, with linear or nonlin-
ear signal–noise mixtures, bimodal or unimodal
or Gaussian noises. It is important, in the cur-
rent endeavor of inventory and analysis of all the
modalities and potentialities of stochastic reso-
nance or improvement by noise in information
processing, to have in mind this possibility of a
constructive action of the noise in optimal pro-
cessing, which although counterintuitive is autho-
rized in principle, as confirmed here.

• When the optimal detection is performed after a
common nonlinear transformation like a thresh-
old quantization, another form of improvement
by noise can be registered. When the quantization
threshold is not placed in an optimal position and
is associated to a subthreshold configuration of
the signals to be detected, then injection of noise
can improve the detection performance, and this
improvement can also occur with Gaussian noise.

• Even in completely symmetric detection settings,
the optimal location of the quantization thresh-
old θ is not necessarily at the center of symmetry
θ = 0. The optimal quantization threshold θopt

can in principle be determined by application of
the present treatment. Especially, we have shown
that conditions exist where the optimum θopt can
lie in a subthreshold configuration of the signals
to be detected.

These properties of optimal detection with
additive signal–noise mixtures, possibly with non-
linear preprocessing, are meaningful to the current
ongoing explorations and analyses of the various
modalities of stochastic resonance and of its poten-
tialities for noise-aided information processing. We
have focused here essentially on the case of constant
signals, which is a basic configuration of detection;
yet the theory of Sec. 2 is general and can be applied
to investigate comparable properties of the optimal
detection of arbitrary signals. Also, similar prop-
erties can be investigated in other forms of optimal

detection, for instance in Bayes or Neyman-Pearson
sense, following an approach much alike to what
is done here for the minimal-Per detector. Further,
other types of optimal processing with a construc-
tive action of noise, in particular additive noise, can
also be sought for investigation, since again, as ver-
ified here, this possibility although counterintuitive
is not a priori prohibited in principle. This could
form the basis for innovative information process-
ing strategies exploiting the noise instead of com-
bating it.
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