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a b s t r a c t

For processing a weak periodic signal in additive white noise, a locally optimal

processor (LOP) achieves the maximal output signal-to-noise ratio (SNR). In general,

such a LOP is precisely determined by the noise probability density and also by the

noise level. It is shown that the output–input SNR gain of a LOP is given by the Fisher

information of a standardized noise distribution. Based on this connection, we find that

an arbitrarily large SNR gain, for a LOP, can be achieved ranging from the minimal value

of unity upwards. For stochastic resonance, when considering adding extra noise to the

original signal, we here demonstrate via the appropriate Fisher information inequality

that the updated LOP fully matched to the new noise, is unable to improve the output

SNR above its original value with no extra noise. This result generalizes a proof that

existed previously only for Gaussian noise. Furthermore, in the situation of non-

adjustable processors, for instance when the structure of the LOP as prescribed by the

noise probability density is not fully adaptable to the noise level, we show general

conditions where stochastic resonance can be recovered, manifested by the possibility

of adding extra noise to enhance the output SNR.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Stochastic resonance (SR), originally introduced in the
field of climate dynamics [1], is now emerging as a
nonlinear signal processing method [2–8]. This method
considers the possibility of adding an appropriate amount
of noise to a nonlinear system (or network) in order to
improve its performance described by an appropriate
quantitative measure, such as the output signal-to-noise
ratio (SNR) [2,3,6–14], the mutual information [15,16],
the Fisher information [17–19], the detection probability
[20–39], the mean-square-error of estimator [26,40], etc.
ll rights reserved.
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A proven SR result is that, within the regime of validity of
linear response theory, the output–input SNR gain cannot
exceed unity for a nonlinear system subjected to a weak
sinusoidal signal plus Gaussian white noise [4,8,41]. But,
beyond the conditions where linear response theory
applies, the possibility of SNR gain above unity is demon-
strated for certain static nonlinearities [6,7] and dynami-
cal systems [13,14]. More recently, many significant
studies on SR in the areas of statistical signal detection
and estimation [21–40] show the applicability of SR in
nonlinear signal processing for the improvement of sys-
tem performance by noise. However, most studies of SR
first establish a fixed nonlinearity, and observe the noise-
enhanced phenomenon therein. When an optimal proces-
sor can be updated according to the actual noise, specific
examples [18,26,30,31] showed that the updated optimal
processor operating on the data with extra noise can
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outperform the original optimal processor operating on
the original data without extra noise. For the generic
situation of the detection of a deterministic weak signal in
noise, it is shown that the asymptotic efficacy of a locally
optimal detector is generally determined by the Fisher
information of the noise distribution [42]. Then, based on a
Fisher information inequality, we prove that the improve-
ment by adding noise is impossible for the detection prob-
ability of a weak known signal [42].

In this paper, we focus on the possibility of the SR
effect in a locally optimal processor (LOP) that processes a
weak periodic signal in additive white noise [24,44,45]. In
this case, Zozor and Amblard [24] demonstrated that a
LOP possesses the maximal output SNR. We further
demonstrate that the output SNR of a LOP is closely
related to the Fisher information of the noise probability
density function (PDF) [43]. It is interesting to note that
the output–input SNR gain of a LOP is given by the Fisher
information of a standardized noise PDF. It is well known
that a standardized Gaussian PDF has a minimum Fisher
information of unity [44]. As a consequence, for any non-
Gaussian noise, it is always possible to achieve an output–
input SNR gain of a LOP larger than unity. Some types of
noise and their corresponding LOPs are discussed for
obtaining an arbitrary large output–input SNR gain. When
adding extra noise to the original signal, we assume that
the LOP can be updated according to the composite noise,
aiming to achieve the maximal output SNR. Then, we prove
that the updated LOP, via the Fisher information convolu-
tion inequality, is unable to improve the output SNR. This
result generalizes a proof that existed previously only for a
weak periodic signal in additive Gaussian noise [4,8,41].
This result and its domain of applicability leave open the
possibility of SR or improvement by noise in situations with
less flexibility, for instance, when the exact optimal updated
LOP is not accessible or too complex to be implemented.
Then, we further prove that, if the structure of a normalized
LOP is a function of the noise root-mean-square amplitude,
then such a prescribed LOP can exhibit the SR effect.
Moreover, utilizing dichotomous noise as the added noise
to the signal, a family of LOPs is elicited with their
structures as a function of the root-mean-square amplitude
of dichotomous noise. The SR effect is shown to always
occur in such a prescribed LOP by increasing the added
noise level to the special value given by the LOP. Based on
the relationship of Fisher information of noise distribution
and the output SNR, we show a new example of the Fisher
information equality for the uniform noise and the dichot-
omous noise. Finally, some open questions are discussed.

2. No SR effect in an updated LOP

2.1. SNR gain of a LOP

Consider a static (memoryless) nonlinearity g with its
output

yðtÞ ¼ g½xðtÞ�, ð1Þ

where xðtÞ ¼ sðtÞþzðtÞ is a signal-plus-noise mixture input.
The component s(t) is a periodic signal with a maximal
amplitude A ð0o9sðtÞ9rAÞ and period T. The zero-mean
white noise z(t), independent of s(t), is with the PDF fz and
a root-mean-square amplitude sz [7]. The input SNR for
x(t) can be defined as the power contained in the spectral
line 1/T divided by the power contained in the noise
background in a small frequency bin DB around 1/T [7],
that is

Rin ¼
9/sðtÞexp½�i2pt=T�S92

s2
zDtDB

, ð2Þ

where Dt indicates the time resolution in a discrete-time
implementation and the temporal average defined as
/ � � �S¼ ð1=TÞ

R T
0 � � �dt [7]. Here, we assume Dt5T and

observe the output y(t) for a sufficiently large time
interval of NT ðNb1Þ. Then, the practical discrete-time
white noise zðjDtÞ has the autocorrelation function
E½zðjDtÞzðjDtþkDtÞ� ¼ s2

zDtdðkDtÞ with the discrete-time
version of the Dirac delta function dðkDtÞ ¼ 1=Dt for k¼0
and zero otherwise [7]. Here, s2

z is the variance of zero-
mean white noise z(t) [7]. Similarly, based on the cyclosta-
tionarity property of y(t), the output SNR for y(t) is given by

Rout ¼
9/E½yðtÞ�exp½�i2pt=T�S92

/var½yðtÞ�SDtDB
, ð3Þ

with nonstationary expectation E½yðtÞ� and nonstationary
variance var½yðtÞ� [7].

Assume s(t) is weak ðA-0Þ, and make a Taylor expan-
sion of g around z at a fixed time t as

yðtÞ ¼ g½zþsðtÞ� � gðzÞþsðtÞg0ðzÞ, ð4Þ

with g0ðzÞ ¼ dgðzÞ=dz existing for almost all z. Here, the
Taylor expansion of g is up to first order in the small
signal s(t). We further assume that g has zero mean and
finite variance under fz, i.e. E½gðzÞ� ¼

R1
�1

gðzÞf zðzÞ dz¼ 0
and E½g2ðzÞ� ¼

R1
�1

g2ðzÞf zðzÞ dzo1. For an arbitrary mem-
oryless nonlinearity g, the zero mean of E½gðzÞ� is not
restrictive since any arbitrary g can always include a
constant bias to cancel this average [44,45]. Therefore,
we have

E½yðtÞ� ¼ E½gðzÞ�þsðtÞE½g0ðzÞ� � sðtÞE½g0ðzÞ�: ð5Þ

Using Eqs. (4) and (5), we obtain

var½yðtÞ� ¼ E½y2ðtÞ��E½yðtÞ�2

� E½y2ðtÞ��s2ðtÞE2
½g0ðzÞ�

� E½g2ðzÞ�þ2sðtÞE½gðzÞg0ðzÞ�þs2ðtÞfE½g02ðzÞ��E2
½g0ðzÞ�g

� E½g2ðzÞ�þ2sðtÞE½gðzÞg0ðzÞ�, ð6Þ

up to first order in the small signal s(t). Here, as A-0
ð0o9sðtÞ9rAÞ, the higher-order term of s2ðtÞfE½g02ðzÞ�
�E2
½g0ðzÞ�g is neglected [24,44,45]. Substituting Eqs. (5)

and (6) into Eq. (3), we have

Rout �
9/sðtÞexp½�i2pt=Ts�S92

DBDt

E2
½g0ðzÞ�

/E½g2ðzÞ�þ2sðtÞE½gðzÞg0ðzÞ�S

� Rins2
z

E2
½g0ðzÞ�

E½g2ðzÞ�
, ð7Þ

where the first-order term 2sðtÞE½gðzÞg0ðzÞ�, compared with
E½g2ðzÞ� and E2

½g0ðzÞ�, has no contribution for the calculation
of Rout in the weak signal condition (A-0 and 0o9sðtÞ9rA).
The above derivations of Eqs. (5)–(7) are valid in the limit of
a vanishing s(t) [44,45].
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Fig. 1. Fisher information Iðf z0
Þ versus the parameter m of the standar-

dized Gaussian mixture noise PDF of Eq. (15). As m¼0 and m¼1, Eq. (15)

represents the Gaussian noise PDF with Iðf z0
Þ ¼ 1 and the dichotomous

noise PDF with Iðf z0
Þ ¼1, respectively.
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Then, the output–input SNR gain of the static non-
linearity is bounded by

G¼
Rout

Rin
� s2

z

E2
½g0ðzÞ�

E½g2ðzÞ�

¼ s2
z

R1
�1

gðzÞf 0zðzÞ=f zðzÞf zðzÞ dz
� �2R1

�1
g2ðzÞf zðzÞ dz

rs2
z

Z 1
�1

f 02z ðzÞ

f 2
z ðzÞ

f zðzÞ dz

¼ s2
z E

f 02z ðzÞ

f 2
z ðzÞ

" #
¼ s2

z Iðf zÞ ¼ Iðf z0
Þ: ð8Þ

It is noted that the equality of Eq. (8) occurs as g becomes
a LOP

goptðzÞ9Cf 0zðzÞ=f zðzÞ, ð9Þ

by the Schwarz inequality for the derivative f 0zðzÞ ¼

df zðzÞ=dz (without loss of generality with C ¼�1)
[24,44,45]. Here, the scaled noise zðtÞ ¼ szz0ðtÞ has PDF
f zðzÞ ¼ f z0

ðz=szÞ=sz, and the standardized noise PDF f z0
is

with unity variance s2
z0
¼ 1 [19,46]. Then, the Fisher

information Iðf zÞ of fz can be expressed as

Iðf zÞ ¼ E
f 02z ðzÞ

f 2
z ðzÞ

" #
¼ s�2

z E
f 02z0
ðz0Þ

f 2
z0
ðz0Þ

" #
¼ s�2

z Iðf z0
Þ, ð10Þ

with the Fisher information Iðf z0
Þ of f z0

. In Eqs. (8) and (9),
note that not only the constant C but also any irrelevant
multiplicative coefficient in gopt can be reduced, resulting
in a normalized LOP gn

opt [44,45]. For instance, a normal-
ized LOP of Eq. (26) corresponds to the generalized
Gaussian noise with PDF of Eq. (25).

It is also indicated in Eq. (8) that the maximal G

achieved by gopt is completely determined by the Fisher
information Iðf z0

Þ. For a standardized PDF f z0
, we have

Iðf z0
Þ ¼ E

f 02z0
ðz0Þ

f 2
z0
ðz0Þ

" #
E½z2

0�ZE
f 0z0
ðz0Þ

f z0
ðz0Þ

z0

" #2

¼ 1, ð11Þ

with E½z2
0� ¼ s2

z0
¼ 1 and the equality occurring if

f 0z0
ðz0Þ=f z0

ðz0Þ ¼ cz0 for a constant ca0. Then, f z0
ðz0Þ ¼

exp½kþcz2
0=2� [44]. In order to be a PDF, co0 and expðkÞ

is the normalized constant. This is a standardized Gaus-
sian PDF f z0

ðz0Þ ¼ expð�z2
0=2Þ=

ffiffiffiffiffiffi
2p
p

[44]. Thus, a standar-
dized Gaussian PDF f z0

has a minimal Iðf z0
Þ ¼ 1 and any

standardized non-Gaussian PDF f z0
has Iðf z0

Þ41 [44]. In
other words, Eq. (8) shows that the output–input SNR
gain achieved by a LOP in Eq. (9) certainly exceeds unity
for a weak periodic signal in additive non-Gaussian white
noise. An interesting question arises, this is, which type of
a standardized PDF f z0

has the maximal Fisher informa-
tion Iðf z0

Þ? Therefore, can the output–input SNR gain
achieved by a LOP be arbitrarily large ranging from
unity upwards? Here, we consider the Gaussian mixture
noise that is frequently employed in previous studies
[21,24,26].

Example 1. Consider the Gaussian mixture noise z(t) with
its PDF [26]

f zðzÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffi
2pE2
p exp

�ðz�mÞ2

2E2

 !
þexp

�ðzþmÞ2

2E2

 !" #
, ð12Þ
where the variance s2
z ¼ m2þE2 and parameters m,EZ0.

Note that Eq. (12) can be expressed as

f zðzÞ ¼ exp½�yðzÞ�=
ffiffiffiffiffiffiffiffiffiffiffi
2pE2

p
, ð13Þ

with yðzÞ ¼ ðz2þm2Þ=2E2�ln½coshðmz=E2Þ� [21,24]. Based on
Eq. (13), the corresponding normalized LOP can be
expressed as

gn
optðxÞ ¼ x�m tanh

mx

E2

� �
: ð14Þ

For 0rmr1, assume m¼msz and E2 ¼ ð1�m2Þs2
z , Eq.

(13) becomes a standardized Gaussian mixture PDF [26]

f z0
ðz0Þ ¼ exp½�yðz0Þ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1�m2Þ

q
, ð15Þ

with yðz0Þ ¼ ðz
2
0þm2Þ=2ð1�m2Þ�ln ½coshðmz0=ð1�m2ÞÞ�.

The Fisher information Iðf z0
Þ versus the parameter m of

the standardized Gaussian mixture PDF is shown in Fig. 1,
and Iðf z0

Þ can be calculated as (no explicit expression
exists)

Iðf z0
Þ ¼ E

z0

1�m2
�

m

1�m2
tanh

mz0

1�m2

� �h i2
� �

: ð16Þ

It is interesting to note that, as m¼0, Eq. (15) is the
standardized Gaussian PDF with Iðf z0

Þ ¼ 1, as shown in
Fig. 1. While, Iðf z0

Þ-þ1 as m-1. In Eq. (12), for m-1,
m¼msz-sz and E2 ¼ ð1�m2Þs2

z-0, the noise z(t)
becomes the dichotomous noise with equiprobable values
at 7sz (but randomly takes levels 7sz). In this case, the
PDF of z(t) can be represented as

f zðzÞ ¼
1

2
½dðz�szÞþdðzþszÞ�, ð17Þ

where dðzÞ is the Dirac delta function. The corresponding
normalized LOP for dichotomous noise is

gn
optðxÞ ¼ x�sz signðxÞ, ð18Þ

where limE-0,m-sz
tanhðmx=E2Þ ¼ signðxÞ ðm40Þ in Eq. (14).

Here, the normalized LOP gn
opt is not continuous at x¼0, but

the above analysis is valid for processing a known weak
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signal in dichotomous noise. This point is like the case of
LOP gn

optðxÞ ¼ signðxÞ for Laplacian noise [44].

When the dichotomous noise z(t) randomly takes two
levels 7sz and s(t) is weak compared with zðtÞ ðsz49sðtÞ9Þ,
the signs of input xðtÞ ¼ sðtÞþzðtÞ always take the sign
of z(t), i.e. signðxÞ ¼ signðzÞ in Eq. (18). Therefore, the LOP
of Eq. (18) at a fixed time t can be solved as gn

opt½xðtÞ� ¼

xðtÞ�sz sign½xðtÞ� ¼ sðtÞþzðtÞ�sz sign½zðtÞ� ¼ sðtÞ. Moreover,
Refs. [7,41] have pointed out that there exists a scheme
allowing a perfect recovery of s(t) corrupted by dichoto-
mous noise z(t) with the PDF of Eq. (17). Thus, according to
the optimal performance of the LOP of Eq. (8), Iðf z0

Þ ¼1

contained in the type of PDF of Eq. (17), as shown in Fig. 1.
Using Eq. (15), Iðf z0

Þ of Eq. (16) can be computed as

Iðf z0
Þ ¼ E

f 02z0
ðz0Þ

f 2
z0
ðz0Þ

" #
¼ E

dyðz0Þ

dz0

	 
2
" #

¼ lim
m-1

Z 1
�1

1�m2�m2 sech2 mz0

1�m2

� �h i
ð1�m2Þ

2

exp½�yðz0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1�m2Þ

p dz0 ¼1,

ð19Þ

where limm-1½m
2 sech2

ðmz0=ð1�m2ÞÞ� ¼ 0, the numerator is
the infinitesimal Oð1�m2Þ and the denominator is a higher-
order infinitesimal Oðð1�m2Þ

2
Þ in the integral. Note that the

noise type with infinite Fisher information is not unique, and
another noise type is uniform noise indicated in Eq. (30).

2.2. No SR effect in an updated LOP by adding extra noise

We now consider the method of adding extra noise
ZðtÞ, independent of z(t) and s(t), to the given data x(t),
and investigate the possibility of improving the output
SNR of yðtÞ ¼ g½xðtÞþZðtÞ�. Here, it is noted that the input
SNR Rin for the given data x(t) is fixed.

After adding ZðtÞ to x(t), the resulting data x̂ðtÞ ¼

sðtÞþzðtÞþZðtÞ. The composite noise ẑðtÞ ¼ zðtÞþZðtÞ, z(t)
and ZðtÞ have PDFs of f ẑ ðẑÞ ¼

R1
�1

f zðẑ�uÞf ZðuÞ du, fz and f Z,
respectively. From Eq. (9), as s(t) is currently buried in
ẑðtÞ, the corresponding LOP should be updated as

ĝoptðxÞ ¼�f 0ẑ ðxÞ=f ẑ ðxÞ, ð20Þ

for achieving the maximal output SNR R̂out. Substituting
ĝopt into Eq. (8), the output SNR R̂out of ĝopt is

R̂out ¼ Rins2
z Iðf ẑ Þ: ð21Þ

Then, noting Eqs. (7) and (8), we can evaluate the ratio

R̂out

Rout
¼

Rins2
z Iðf ẑ Þ

Rins2
z Iðf zÞ

¼
Iðf ẑ Þ

Iðf zÞ
, ð22Þ

to judge the role of the addition of ZðtÞ to x(t).
Since z(t) and ZðtÞ are independent, it is well known

that Iðf ẑ Þ, Iðf zÞ and Iðf ZÞ of ẑðtÞ, z(t) and ZðtÞ, satisfy the
convolution inequality [46,47]

I�1
ðf ẑ ÞZ I�1

ðf zÞþ I�1
ðf ZÞ, ð23Þ

where the Fisher information Iðf Þ40 for any PDF f [46,47].
Thus, we have

R̂out

Rout
¼

Iðf ẑ Þ

Iðf zÞ
r1�

Iðf ẑ Þ

Iðf ZÞ
r1, ð24Þ
which indicates that R̂outrRout and the addition of ZðtÞ to
x(t) can not improve the output SNR.

This result of Eq. (24) generalizes a proof that existed
previously only for a weak periodic signal in additive
Gaussian white noise [4,8,41]. Using Eq. (24), the conclusion
in [4,8,41] can be easily explained. The original Gaussian
noise z(t) is with PDF f zðzÞ ¼ exp½�z2=ð2s2

z Þ�=
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

z

p
and

Fisher information Iðf zÞ ¼ 1=s2
z , and the added Gaussian

noise ZðtÞ has its Fisher information Iðf ZÞ ¼ 1=s2
Z and PDF

f ZðZÞ ¼ exp½�Z2=ð2s2
ZÞ�=

ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

Z

q
. Then, the composite noise

ẑðtÞ ¼ zðtÞþZðtÞ is also Gaussian distributed with PDF
f ẑ ðẑÞ ¼ exp½�ẑ

2
=ð2s2

ẑ Þ�=
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

ẑ

q
and the Fisher information

Iðf ẑ Þ ¼ 1=s2
ẑ
. It is noted that the equality of Eq. (23) occurs,

this is Iðf ẑ Þ
�1
¼ s2

ẑ ¼ Iðf zÞ
�1
þ Iðf ZÞ

�1
¼ s2

z þs2
Z. From

Eq. (24), the ratio of R̂out=Rout ¼ Iðf ẑ Þ=Iðf zÞ ¼ s2
z =ðs2

z þs2
ZÞ

r1 for sZZ0. We also note that the normalized LOP
for a weak signal in Gaussian noise z(t) is simply the
linear system gLðxÞ ¼ x, and the output SNR Rout ¼ Rin

[4,18,24,44]. Therefore, the conclusion in [4] is compre-
hensible that, for a static nonlinearity driven by a weak
periodic signal plus Gaussian noise, the SNR at the output
can not exceed the input SNR by adding more Gaussian
noise to the signal. Here, Eq. (24) generalizes this conclu-
sion to arbitrary noise types of z(t) and ZðtÞ for processing
a weak periodic signal.
3. SR effect in a prescribed LOP

In Section 2, it is proven that, if a LOP can be updated
according to the actual noise, the SR method cannot
improve the output SNR in the weak-signal condition.
However, this result also indicates that the SR effect
should be observed outside the restricted conditions that
a weak periodic signal in additive white noise is processed
by an updated LOP [21,24–26,42]. In this section, we
mainly explore the possibility of SR in a prescribed LOP
that is simply locally optimum at a specific noise level for
processing a weak periodic signal.
3.1. A prescribed LOP that matches the background noise

Given a LOP deduced from Eq. (9), we here give a
general conclusion of the observation of SR effect in it.
This is, if a normalized LOP gn

optðx,szÞ is a function of the
noise root-mean-square amplitude sz, then such a pre-
scribed nonlinearity gn

optðx,sn
z Þ can exhibit the SR effect.

Here, the fixed parameter sn
z is preestablished. This is

because, when gn
optðx,sn

z Þ is a function of sn
z , it is only

locally optimal for a specific value of sn
z , yielding the

maximal output–input SNR gain G¼ Iðf z0
Þ of Eq. (8) as

sz ¼ sn
z . In other words, if sz is less or larger than sn

z , the
output–input SNR gain of gn

optðx,sn
z Þ cannot reach its

maximal value of Eq. (8), and the prescribed gn
optðx,sn

z Þ is
not the corresponding LOP for the background noise. This
is the typical characteristic of SR [1,8]. On the other hand,
if a prescribed normalized LOP gn

opt is not a function of sz,
then no statistics of noise parameters can be tuned to
improve the performance of gn

opt, and no SR effect will
occur [24].
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Example 2. For generalized Gaussian noise z(t) with PDF
[44]

f zðzÞ ¼
c1

sz
exp �c2

z

sz

����
����
a	 


, ð25Þ

whereby c1 ¼ ða=2ÞG1=2
ð3=aÞ=G3=2

ð1=aÞ and c2 ¼ ½Gð3=aÞ=
Gð1=aÞ�a=2 for the exponent a40. The corresponding
normalized LOP is [44,45]

gn
optðxÞ ¼ 9x9a�1

signðxÞ: ð26Þ

Based on Eq. (8) and the theoretical results of [44,45], the
output–input SNR gain achieved by the LOP of Eq. (26) is

G¼ Iðf z0
Þ ¼ a2Gð3a�1ÞGð2�a�1Þ=G2

ða�1Þ: ð27Þ

It is noted that the normalized LOP of Eq. (26) is not a
function of sz, and the maximal output–input SNR gain
G of Eq. (27) [44] is a given quantity for a fixed exponent
a that indicates the noise type. Thus, no SR will appear in
a prescribed LOP of Eq. (26).

Example 3. For hyperbolic secant noise z(t) with an
unimodal PDF f zðzÞ ¼ ð1=2szÞsechðpx=2szÞ [45], the corre-
sponding normalized LOP gn

optðx,szÞ ¼ tanhðpx=2szÞ is a
function of sz. Then, from Eq. (7), the output–input
SNR gain G of a prescribed nonlinearity gn

optðx,sn
z Þ ¼

tanhðpx=2sn
z Þ can be calculated, as shown in Fig. 2. Here,

sn
z is a prior fixed parameter. It is clearly seen that, as

sz=sn
z ¼ 1, the output–input SNR gain can reach the

maximum of G¼ Iðf z0
Þ ¼ p2=8 determined by Eq. (8). This

example also solves the conjecture by Zozor and Amblard
[24], i.e. a prescribed LOP deduced from an unimodal
noise PDF exhibits the SR effect.

3.2. A prescribed LOP that matches the composite noise

There is another realization of SR in a prescribed LOP:
when a prescribed static nonlinearity is not the matched
LOP for the initial noise, but it is a corresponding LOP to
the composite noise. Then, if this prescribed LOP is a
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Fig. 2. The output–input SNR gain G of a prescribed normalized LOP

gn
optðx,sn

z Þ ¼ tanhðpx=2sn
z Þ versus the noise root-mean-square amplitude

sz=sn
z for the hyperbolic secant noise z(t) with PDF f zðzÞ ¼

ð1=2szÞ sechðpx=2szÞ.
function of the root-mean-square amplitude of the added
noise, the SR effect will certainly appear. Especially, when
dichotomous noise acts as the added noise, a family of
LOPs exists with their structures determined by both the
noise PDF and the level of added noise. Such a prescribed
LOP always exhibits the SR effect, whatever the type of
initial noise is. This is because, for a weak signal s(t)
corrupted by initial noise z(t) with PDF fz, we add the
dichotomous noise ZðtÞ with its PDF f ZðZÞ ¼ ½dðZ�sZÞþ
dðZþsZÞ�=2 to the signal. Then, the composite noise ẑðtÞ ¼

zðtÞþZðtÞ has PDF f ẑ ðxÞ ¼ ½f zðx�sZÞþ f zðxþsZÞ�=2, and the
corresponding LOP becomes

goptðxÞ ¼�
f 0

ẑ
ðxÞ

f ẑ ðxÞ
¼�

f 0zðx�sZÞþ f 0zðxþsZÞ
f zðx�sZÞþ f zðxþsZÞ

: ð28Þ

If goptðxÞ ¼fðsZÞgn
optðxÞ and the normalized LOP gn

optðxÞ is
not a function of sZ, then f ẑ ðxÞ ¼ C½expð�

R
gn

optðxÞ dxÞ�fðsZÞ

(C is a normalized constant). Thus, fz does not contain
x7sZ terms, which is contrary to the consequence of the
convolved PDF f ẑ . Therefore, goptðxÞ ¼fðsZÞgn

optðx,sZÞ, and
the normalized LOP gn

optðx,sZÞ must be a function of sZ.
Therefore, the addition of dichotomous noise ZðtÞ to the
signal can always elicit a family of prescribed normalized
LOPs gn

optðx,sn
ZÞ that exhibit the SR effect.

Example 4. Assume s(t) is initially corrupted by the
generalized Gaussian noise with its PDF of Eq. (25). After
adding the dichotomous noise ZðtÞ to x(t), the generalized
Gaussian mixture noise ẑðtÞ ¼ zðtÞþZðtÞ has its PDF
f ẑ ðxÞ ¼ ½f zðx�sZÞþ f zðxþsZÞ�=2 and variance s2

ẑ
¼ s2

z þs2
Z.

Then, the corresponding LOP can be expressed as

gn
optðxÞ ¼ 9x�sZ9

a�1
signðx�sZÞexp �c2

x�sZ
sz

����
����
a	 
�

þ9xþsZ9
a�1

signðxþsZÞexp �c2
xþsZ
sz

����
����
a	 



exp �c2
x�sZ
sz

����
����
a	 

þexp �c2

xþsZ
sz

����
����
a	 
� 
�1

: ð29Þ

Assume a prescribed nonlinearity gn
optðx,sn

z ,sn
ZÞ in Eq. (29)

is with the fixed parameters sn
Z ¼ 10sn

z and sn
z ¼ 1. Here, the

initial generalized Gaussian noise z(t) is given with its root-
mean-square amplitude sn

z ¼ 1. Then, the input SNR
Rn

in ¼ 9/sðtÞexp½�i2pt=T�S92
=ðDBDtÞ. Next, we add the

dichotomous noise ZðtÞ to the signal, and compute the output
SNR Rout of gn

optðx,sn
z ,sn

ZÞ by Eq. (7). For illustration, we plot
the output SNR Rout=Rn

in for Laplacian noise ða¼ 1Þ and
Gaussian noise ða¼ 2Þ in Fig. 3. It is seen in Fig. 3 that, when
sZ equals to sn

Z ¼ 10sn
z , gn

optðx,sn
z ,sn

ZÞ achieves its maximal
output SNR, and SR phenomena appear. Since the input SNR
Rn

in is a given quantity, Fig. 3 clearly shows that the output
SNR Rout at the resonant point of sZ=sn

z ¼ 10 is larger than
the initial output SNR at sZ=sn

z ¼ 0 for both Laplacian noise
ða¼ 1Þ and Gaussian noise ða¼ 2Þ.

Example 5. Adding noise to a nonlinear system is cur-
rently richly recognized for enhancing the system perfor-
mance [21,25,26,32]. Here, we illustratively show that
the method of adding noise can be used to interpret the
related information inequality [47,49]. According to the
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Fig. 3. The output SNR Rout=Rn

in of a prescribed LOP gn
optðx,sn

z ,sn
ZÞ

ðsn
Z ¼ 10sn

z ,sn
z ¼ 1Þ versus the root-mean-square amplitude sZ=sn

z of

the dichotomous noise ZðtÞ. Here, the initial noise z(t) is with the root-

mean-square amplitude sn
z ¼ 1 for a¼ 1 (Laplacian noise) and a¼ 2

(Gaussian noise), respectively. The input SNR is given by Rn

in ¼

9/sðtÞexp½�i2pt=T�S92
=ðDtDBÞ.
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relationship of the output SNR and the Fisher information
of noise distribution, we illustrate a new example of
Fisher information equality Iðf ẑ Þ

�1
¼ Iðf zÞ

�1
þ Iðf ZÞ

�1 in
Eq. (23) by adding the uniform noise to a weak periodic
signal in the dichotomous noise, except for the Gaussian
noise in Section 2.2. The Fisher information equality in
Eq. (23) has been noted in [49], but not validated by a
practical example. Consider the dichotomous noise z(t)
with its PDF of Eq. (17), the Fisher information Iðf zÞ ¼

Iðf z0
Þ=s2

z ¼1 for 0os2
z o1, as indicated in Eq. (19). From

Eq. (8), this point also represents Rout ¼1, since Rin of
Eq. (2) is finite as the variance 0os2

z o1. Next, for a
weak periodic signal s(t) buried in the dichotomous noise,
we add the uniform noise ZðtÞ to the mixture of sðtÞþzðtÞ.
Here, as the exponent a¼1, Eq. (25) represents the PDF
of uniform noise as

f ZðxÞ ¼ 1=ð2bÞ ð30Þ

for �brxrb (b¼
ffiffiffi
3
p

sZ40) and zero otherwise. Based
on Eq. (27), we know that the Fisher information of
uniform noise is Iðf ZÞ ¼ Iðf Z0

Þ=s2
Z ¼1 for 0os2

Zo1 [44].
Then, the weak signal s(t) is currently corrupted by
the composite noise ẑðtÞ ¼ zðtÞþZðtÞ with PDF f ẑ ðxÞ ¼

½f Zðx�szÞþ f ZðxþszÞ�=2. This PDF is discontinuous at
x¼ 7 ðbþszÞ, and has an infinite Fisher information Iðf ẑ Þ

[48]. Practically, we consider the three-threshold nonli-
nearity [7]

gthðxÞ ¼

�1 for xo�c,

0 for �crxrc,

þ1 for x4c,

8><
>: ð31Þ

with response thresholds at x¼ 7c for processing a weak
periodic signal in the composite noise ẑðtÞ. Based on
Eq. (8), the output–input SNR gain of the three-threshold
nonlinearity can be computed as

G¼ s2
z

E2
½g0thðxÞ�

E½g2
thðxÞ�

�����
c ¼ bþsz

¼ s2
z

2f 2
ẑ ðcÞ

1�Fẑ ðcÞ

�����
c ¼ bþsz

¼1, ð32Þ

where Fẑ ðxÞ ¼
R x
�1

f ẑ ðuÞ du represents the cumulative
distribution function of ẑðtÞ and the response threshold
c¼ bþsz. In this case, f ẑ ðcÞ ¼ f Zðc�szÞ=2¼ f ZðbÞ=2a0 and
Fẑ ðcÞ ¼ 1, then we have G¼1. Here, the three-threshold
nonlinearity in Eq. (31) corresponds to the LOP of noise
ẑðtÞ. This result of infinite G in Eq. (32) accords with the
infinite Fisher information Iðf ẑ Þ of the composite noise
ẑðtÞ. Then, the equality of Iðf ẑ Þ

�1
¼ Iðf zÞ

�1
þ Iðf ZÞ

�1 in
Eq. (23) is proven for the uniform noise ZðtÞ and the
dichotomous noise z(t).

4. Conclusion

In this paper, we studied the performance of a LOP for
processing a weak periodic signal in additive white noise.
Under the weak-signal condition, it is known that the LOP
possesses the maximal output SNR, and its structure is
precisely determined by the noise probability density and
also by the noise level. We further proved that the output
SNR of a LOP is closely related to the Fisher information of
the noise PDF. Interestingly, the output–input SNR gain of
a LOP is given by the Fisher information of a standardized
noise PDF. It is well known that the Gaussian noise PDF has
the minimal Fisher information of unity [44]. Based on the
relationship between the output–input SNR gain and the
Fisher information, this result indicates that the SNR gain, for
a LOP, is certainly larger than unity for a weak periodic signal
in additive non-Gaussian noise. Moreover, for a LOP, an
arbitrarily large output–input SNR gain can be achieved
ranging from the minimal value of unity up to infinity,
which is achieved via Gaussian mixture noise. Furthermore,
by the Fisher information convolution inequality, we demon-
strated that the updated LOP is proven unable to improve the
output SNR. This result extends a proof that existed pre-
viously only for additive Gaussian white noise [4,8,41] to
other noise types. Beyond these restrictive conditions, we
explored the possibility of SR in a prescribed LOP. We
concluded that if a normalized LOP is a function of the noise
root-mean-square amplitude, such a prescribed LOP can
exhibit the SR effect. Especially, using dichotomous noise as
the added noise, a family of LOPs is elicited with their
structures being a function of the added noise level. Then it
is shown that, such a prescribed LOP can always exhibit the
SR effect. In addition, using the relationship between the
output SNR and the Fisher information, the Fisher informa-
tion equality is valid for the uniform noise and the dichot-
omous noise. This new Fisher information equality provides a
practical realization in the context of weak signal processing.

We now know that the output SNR of an updated LOP can
not be improved by adding extra noise to a weak periodic
signal in additive white noise. Beyond the restricted condi-
tion of an updated LOP, we here observed the occurrence of
SR effect in some prescribed LOPs. Therefore, it is also
interesting to explore the SR effect that occurs outside of
other restrictive conditions given in Section 2. For instance,
the LOP is unrealizable [42] or too complex to be
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implemented [21,45], and the input signal is non-weak [26].
In some practical signal processing tasks, the original noise
distribution or the noise level is unknown [24,45] and the
LOP can not be pre-established. Therefore, we can employ a
suboptimal processor (compared with the corresponding
LOP) to obtain a better but available system performance
by exploiting the constructive role of added noise. These
problems will be of interest for further studies of nonlinear
signal processing.
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[14] J. Casado-Pascual, J. Gómez-Ordónvez, M. Morillo, Two-state theory
of nonlinear stochastic resonance, Physical Review Letters 91
(210601) (2003).

[15] A.R. Bulsara, A. Zador, Threshold detection of wideband signals: a
noise-induced maximum in the mutual information, Physical
Review E 54 (1996) R2185–R2188.

[16] N.G. Stocks, Suprathreshold stochastic resonance in multilevel
threshold systems, Physical Review Letters 84 (2000) 2310–2313.

[17] D. Rousseau, F. Chapeau-Blondeau, Noise-improved Bayesian esti-
mation with arrays of one-bit quantizers, IEEE Transactions on
Instrumentation and Measurement 56 (2007) 2658–2662.

[18] F. Chapeau-Blondeau, D. Rousseau, Noise-enhanced performance
for an optimal Bayesian estimator, IEEE Transactions on Signal
Processing 52 (2004) 1327–1334.

[19] P.E. Greenwood, U.U. Müller, L.M. Ward, Soft threshold stochastic
resonance, Physical Review E 70 (051110) (2004).
[20] P. Jung, Stochastic resonance and optimal design of threshold
detectors, Physics Letter A 207 (1995) 93–104.

[21] S. Kay, Can detectabilty be improved by adding noise? IEEE Signal
Processing Letters 7 (2000) 8–10.

[22] B. Kosko, S. Mitaim, Robust stochastic resonance: signal detection
and adaptation in impulsive noise, Physical Review E 64 (051110)
(2001).

[23] S. Zozor, P.O. Amblard, On the use of stochastic resonance in sine
detection, Signal Processing 82 (2002) 353–367.

[24] S. Zozor, P.O. Amblard, Stochastic resonance in locally optimal detec-
tors, IEEE Transactions on Signal Processing 51 (2003) 3177–3181.

[25] H. Chen, P.K. Varshney, J.H. Michels, S.M. Kay, Theory of the
stochastic resonance effect in signal detection: part I-fixed detec-
tors, IEEE Transactions on Signal Processing 55 (2007) 3172–3184.

[26] F. Chapeau-Blondeau, D. Rousseau, Raising the noise to improve
performance in optimal processing, Journal of Statistical
Mechanics: Theory and Experiment 1 (P01003) (2009).

[27] T. Kondo, T. Munakata, Stochastic resonance and self-tuning:
a simple threshold system, Physical Review E 79 (061121) (2009).

[28] A. Patel, B. Kosko, Optimal noise benefits in Neyman–Pearson and
inequality-constrained statistical signal detection, IEEE Transac-
tions on Signal Processing 57 (2009) 1655–1669.

[29] H. Chen, P.K. Varshney, S. Kay, J.H. Michels, Noise enhanced
nonparametric detection, IEEE Transactions on Information Theory
55 (2009) 499–506.

[30] F. Chapeau-Blondeau, Stochastic resonance for an optimal detector
with phase noise, Signal Processing 83 (2003) 665–670.

[31] D. Rousseau, F. Chapeau-Blondeau, Stochastic resonance and improve-
ment by noise in optimal detection strategies, Digital Signal Processing
15 (2005) 19–32.

[32] M. Guerriero, S. Marano, V. Matta, P. Willett, Stochastic resonance
in sequential detectors, IEEE Transactions on Signal Processing 57
(2009) 2–15.

[33] A. Patel, B. Kosko, Noise benefits in quantizer-array correlation
detection and watermark decoding, IEEE Transactions on Signal
Processing 59 (2011) 488–505.

[34] S. Bayram, S. Gezici, H.V. Poor, Noise enhanced hypothesis-testing
in the restricted Bayesian framework, IEEE Transactions on Signal
Processing 58 (2010) 3972–3989.

[35] V.N. Hari, G.V. Anand, A.B. Premkumar, A.S. Madhukumar, Design
and performance analysis of a signal detector based on suprathres-
hold stochastic resonance, Signal Processing 92 (2012) 1745–1757.

[36] A.A. Saha, V.G. Guha, Detectors based on stochastic resonance, part 2:
convergence analysis and perturbative corrections, Signal Processing
87 (2007) 134–147.

[37] S.M. Saberali, H. Amindavar, J.A. Ritcey, Blind detection in sym-
metric non-Gaussian noise with unknown PDF using maximum
entropy method with moment generating function constraints,
Signal Processing 90 (2010) 891–899.

[38] H. Chen, P.K. Varshney, J.H. Michels, Improving sequential detec-
tion performance via stochastic resonance, IEEE Signal Processing
Letters 15 (2008) 685–688.

[39] S. Kay, Noise enhanced detection as a special case of randomiza-
tion, IEEE Signal Processing Letters 15 (2008) 709–712.

[40] A. Patel, B. Kosko, Optimal mean-square noise benefits in quanti-
zer-array linear estimation, IEEE Signal Processing Letters 17
(2010) 1005–1009.

[41] M. DeWeese, W. Bialek, Information flow in sensory neurons,
Nuovo Cimento 17D (1995) 733–741.

[42] F. Duan, F. Chapeau-Blondeau, D. Abbott, Fisher-information con-
dition for enhanced signal detection via stochastic resonance,
Physical Review E 84 (051107) (2011).

[43] F. Duan, F. Chapeau-Blondeau, D. Abbott, Fisher information as a
metric of locally optimum processing and stochastic resonance,
PLoS One 7 (e34282) (2012).

[44] S. Kay, Fundamentals of Statistical Signal Processing: Detection
Theory, Englewood Cliffs, NJ, Prentice-Hall, 1998.

[45] S.A. Kassam, Signal Detection in Non-Gaussian Noise, Springer-
Verlag, New York, 1988.

[46] A.J. Stam, Some inequalities satisfied by the quantities of information
of Fisher and Shannon, Information and Control 2 (1959) 101–112.

[47] T.M. Cover, J.A. Thomas, Elements of Information Theory, Wiley,
New York, 1991.

[48] O. Johnson, A. Barron, Fisher information inequalities and the
central limit theorem, Probability Theory and Related Fields 129
(2004) 391–409.

[49] M. Madiman, A. Barron, Generalized entropy power inequalities
and monotonicity properties of information, IEEE Transactions on
Information Theory 53 (2007) 2317–2329.


	Exploring weak-periodic-signal stochastic resonance in locally optimal processors with a Fisher information metric
	Introduction
	No SR effect in an updated LOP
	SNR gain of a LOP
	No SR effect in an updated LOP by adding extra noise

	SR effect in a prescribed LOP
	A prescribed LOP that matches the background noise
	A prescribed LOP that matches the composite noise

	Conclusion
	Acknowledgments
	References




