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An extension is presented to the source coding
theorem traditionally based on the Shannon en-
tropy and latter generalized to the Rényi entropy.
Another possible generalization is demonstrated,
with a lower bound realized by the Tsallis entropy,
when the performance is measured by a gener-
alized average coding length which is exhibited,
and with the optimal codelengths expressed from
the escort probability distribution also known in
nonextensive thermodynamics.
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Introduction: As a quantitative measure of information,
the Rényi entropy is defined, for a probability distribu-
tion pi, i = 1 to N , as [1]

Hα(pi) =
1

1− α
log

(

N
∑

i=1

pα
i

)

, (1)

and represents an extension to the traditional Shannon
entropy H1(pi) = −

∑N
i=1 pi log(pi) obtained at the limit

α = 1. The Rényi entropy of Eq. (1) can be motivated
by its satisfying a set of axiomatic requirements, and, as
an important complement, it has been shown to convey
operational significance for practical problems, a very
essential one being source coding [2], that we review
below and complement.

Rényi source coding: The N symbols of a source alphabet
are encoded into D-ary codewords, with length ℓi for
symbol i having probability pi, for i = 1 to N . For a
uniquely decipherable code, the lengths ℓi must satisfy
[2] the Kraft inequality

N
∑

i=1

D−ℓi ≤ 1 . (2)

The traditional approach to optimal source coding
measures the elementary cost of encoding symbol i
directly by its codelength ℓi, and then seeks those
lengths ℓi that minimize the average coding length
∑N

i=1 piℓi = ℓ while satisfying (2). The optimal lengths
come out as ℓ∗i = − logD(pi), for i = 1 to N , and

these achieve the minimum average coding length ℓ
∗

=
−
∑N

i=1 pi logD(pi), i.e. the Shannon entropy, which also
forms a lower bound to ℓ for any other codelengths ℓi.

The generalized approach to source coding of [2]
measures the elementary cost of encoding symbol i as
Dβℓi , introducing a cost which is an exponential function
of the codelength ℓi, with a parameter β > 0 to have
the cost an increasing function of the length ℓi. The
global cost of encoding the source is expressed by the
exponential average

Cβ =

(

N
∑

i=1

piD
βℓi

)1/β

. (3)

Minimizing the cost Cβ of Eq. (3) is equivalent to
minimizing the monotonic increasing function of Cβ as

Lβ = logD(Cβ) . (4)

By measuring the coding performance with Lβ of Eq. (4),
the traditional approach is recovered at the limit 0← β,
when L0 = ℓ in Eq. (4). As 0 ← β, the length Lβ

tends to distribute the weights among the codewords in
proportion of their lengths, while as β →∞ more weight
is put on long codewords [2, 3].

In this generalized approach to source coding, it can
be proved [2] that the Rényi entropy forms a lower bound
to the average coding length Lβ, as

Lβ = logD(Cβ) ≥ Hα(pi) , (5)

with α = 1/(β + 1), or equivalently, for the exponential
mean of Eq. (3),

Cβ ≥ DHα(pi) . (6)

And the optimal lengths

ℓ∗i = − logD

pα
i

N
∑

j=1

pα
j

, (7)

achieve equality in Eqs. (5) and (6) at the minimum
average length L∗

β = Hα(pi) while satisfying Eq. (2).
We now show that a similar approach can be devel-

oped, so as to provide in the same way an operational sig-
nificance with a source coding problem, to a more recent
measure of information consisting in the Tsallis entropy.

Tsallis source coding: The Tsallis entropy is defined, for
a probability distribution pi, i = 1 to N , as [4]

Sq(pi) =
1

ln(D)

1

q − 1

(

1−
N
∑

i=1

pq
i

)

, (8)

and represents another extension to the traditional Shan-
non entropy S1(pi) = −

∑N
i=1 pi logD(pi) obtainable at

the limit q = 1. The Tsallis entropy has been postulated
to form the ground of a nonextensive generalization to
statistical mechanics [4].

It is possible to express Eq. (8) through a generaliza-
tion [5, 4] of the traditional logarithm of base D, under
the form of the q-logarithm of base D defined as

logq
D(x) =

1

ln(D)

1− x1−q

q − 1
. (9)

Inversion of y = logq
D(x) defines the q-exponential

function

expq
D(y) =

[

1 + ln(D)(1 − q)y
]1/(1−q)

. (10)

At q = 1, one recovers the traditional logarithm log1
D(x) =

logD(x) and exponential exp1
D(y) = Dy. The Tsallis en-

tropy of Eq. (8) is an expectation of the q-logarithm as

Sq(pi) = E
[

logq
D(1/pi)

]

=

N
∑

i=1

pi logq
D(1/pi) . (11)



By extracting the common factor
∑

i pα
i from Eq. (1)

and replacing in Eq. (8), a relation between Rényi Hα

and Tsallis Sq entropies is obtained as Sq = Rq(Hq) with
the function

Rq(x) =
1

ln(D)

1

q − 1

[

1−D(1−q)x
]

, (12)

where D is the logarithm base used in Eq. (1) for Hq.
From Eq. (9), another form is accessible for the relation
based on Eq. (12), as

Sq = logq
D

(

DHq
)

. (13)

The transformation by the monotonic increasing func-
tion of Eq. (13) can be applied to Eq. (5) to yield

Kβ = logα
D(Cβ) ≥ Sα(pi) , (14)

or equivalently, analogous to Eq. (6),

Cβ ≥ expα
D[Sα(pi)] . (15)

A new generalized length Kβ emerges with Eq. (14),
which parallels Lβ of Eq. (5), and which implements an-
other monotonic increasing transformation of the expo-
nential average Cβ of Eq. (3) as a measure of the coding
performance. Both Lβ and Kβ reduce to the traditional
length ℓ in the configuration (β = 0, α = 1/(β + 1) = 1),
and otherwise stand as two distinct measures of the cod-
ing performance. Eq. (14) expresses a new coding the-
orem, where the Tsallis entropy forms a lower bound
to the new length Kβ, much like the Rényi entropy to
the length Lβ, and the Shannon entropy to the length
ℓ. The new length Kβ , contrary to Lβ, is not a gener-
alized average of the type ϕ−1[

∑

i piϕ(ℓi)] as considered
in [3]. Instead, Kβ emerges as a simple expression of the
q-deformed logarithm, a basic tool of nonextensive ther-
modynamics [5, 4], where also the Tsallis entropy plays a
central role. Furthermore, consistently with the deriva-
tion of Eq. (14), the optimal codelengths ℓ∗i that mini-
mize Kβ down to the Tsallis entropy bound, are again
those of Eq. (7). These optimal codelengths are also

expressible as ℓ∗i = − logD P
(α)
i , with {P

(α)
i } the escort

probability distribution also playing an important role in
nonextensive thermodynamics [4]. A comparable source
coding study appeared in [6] yet with an entropy different
from the plain Tsallis of Eq. (8), a coding length differ-
ent from Kβ of Eq. (14), and with optimal codelengths
not given by the escort distribution.

ELECTRONICS LETTERS 3rd February 2011 Vol. 47 No. 3 pages 187-188

Conclusion: Eq. (14) confers an operational role to
the Tsallis entropy through a new coding theorem on
a generalized length. Next is to investigate practical
situations where the new generalized length Kβ could
be specifically useful. Complex conditions, like long-
range correlations, heavy-tailed distributions, as usually
associated with nonextensive thermodynamics, could
offer a relevant context.
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[1] A. Rényi, “On measures of entropy and information,”
in Proceedings 4th Berkeley Symposium on Mathe-

matical Statistics and Probability, (Berkeley, USA),
pp. 547–561, University of California Press, 1961.

[2] L. L. Campbell, “A coding theorem and Rényi’s
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